C. Berthon¹, M. de Leffe², <u>V. Michel-Dansac¹</u>

 $^1 {\rm Laboratoire}$ de Mathématiques Jean Leray, Université de Nantes $$^2 {\rm HydrOcean}$$

Wednesday, May 14th, 2014

Contents

- 1 General introduction to the SPH method
 - Brief history
 - Core of the SPH method
 - Discretization of the SPH equations
 - Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
- 4 Conclusion and perspectives

General introduction to the SPH method

1 General introduction to the SPH method

- Brief history
- Core of the SPH method
- Discretization of the SPH equations
- Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
- 4 Conclusion and perspectives

General introduction to the SPH method

-Brief history

General introduction to the SPH methodBrief history

- Core of the SPH method
- Discretization of the SPH equations
- Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
- 4 Conclusion and perspectives

General introduction to the SPH method

-Brief history

History of the SPH method

- 1977: Monaghan, Gingold, Lucy particle method for astrophysics, coined the term SPH: "smoothed particle hydrodynamics"
- 1994: Monaghan SPH for free-surface hydrodynamics
- 1998: Vila SPH formulation using Riemann problems
- recent & ongoing work:
 - multi-fluid SPH
 - variable mesh
 - viscous terms

General introduction to the SPH method

-Core of the SPH method

General introduction to the SPH method Brief history

• Core of the SPH method

- Discretization of the SPH equations
- Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
- 4 Conclusion and perspectives

- General introduction to the SPH method
 - -Core of the SPH method

The regularizing kernel

General kernel expression

$$W(r,h) = \frac{C_{\theta}}{h} \theta\left(\frac{|r|}{h}\right)$$
, with

- θ cut-off function
- C_{θ} normalization constant

properties of this kernel:

- **2** compact support K
- **3** bell parameters: r (position) and h (width)

$$\int_{\mathbb{R}} W(r,h) \ dr = 1$$

$$\int_{\mathbb{R}} W'(r,h) \ dr = 0$$

General introduction to the SPH method

-Core of the SPH method

The particle approximation

•
$$f(x) = (f * \delta)(x)$$
, with $f : \mathbb{R} \to \mathbb{R}$ and δ the Dirac distribution
= $\int_{\mathbb{R}} f(y)\delta(x-y) \, dy$

•
$$\Pi^{h}(f)(x) = (f * W)(x)$$
$$= \int_{K} f(y)W(x - y, h) \ dy \simeq f(x)$$

•
$$\Pi^{h}(f')(x) = \int_{K} f'(y)W(x-y,h) dy$$

= $[f(y)W(x-y,h)]_{\partial K} - \int_{K} f(y)(W(x-y,h))' dy$
= $\int_{K} f(y)W'(x-y,h) dy \simeq f'(x)$

General introduction to the SPH method

-Core of the SPH method

The particle approximation

Accuracy of the continuous approximation

second-order accuracy requires properties 4 and 5 (Mas-Gallic - Raviart, 1987; Monaghan, 1992):

•
$$\int_{\mathbb{R}} W(r,h) dr = 1$$
, i.e. $\Pi^{h}(1) = 1$
• $\int_{\mathbb{R}} W'(r,h) dr = 0$, i.e. $\Pi^{h}(1') = 0$

General introduction to the SPH method

-Core of the SPH method

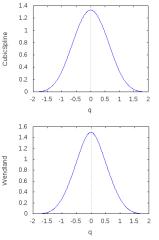
Different kernels

cut-off for the cubic spline kernel (Monaghan, 1998):

$$\theta(q) = \begin{cases} 4 - 6q^2 + 3q^3 & \text{if } 0 \le q < 1\\ (2 - q)^3 & \text{if } 1 \le q < 2\\ 0 & \text{otherwise} \end{cases}$$

cut-off for the Wendland kernel (Wendland, 1995):

$$\theta(q) = \begin{cases} (2-q)^4 (1+2q) & \text{if } 0 \le q < 2\\ 0 & \text{otherwise} \end{cases}$$



General introduction to the SPH method

-Discretization of the SPH equations

1 General introduction to the SPH method

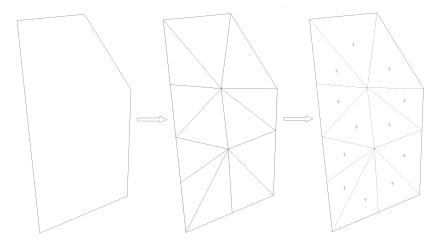
- Brief history
- Core of the SPH method

Discretization of the SPH equations

- Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
- 4 Conclusion and perspectives

- General introduction to the SPH method
 - Discretization of the SPH equations

The "mesh"



- General introduction to the SPH method
 - -Discretization of the SPH equations

Discrete SPH equations

A quadrature formula

$$\int_{\mathbb{R}} f(y) \, dy \simeq \sum_{j \in \mathbb{Z}} \omega(x_j) f(x_j) = \sum_{j \in \mathbb{Z}} \omega_j f_j \, , \, \text{where:} \,$$

- x_j are the quadrature points, or *particles*
- $\omega_j = \omega(x_j)$ are their volumes
- f_j denotes $f(x_j)$

$$\bullet W_{ij} = W(x_i - x_j, h)$$

 $\square \mathcal{P}$: set of interacting particles x_j close enough to particle x_i

- General introduction to the SPH method
 - -Discretization of the SPH equations

Discrete SPH equations

Approximation of a function

$$\Pi^{h}(f)(x) = \int_{K} f(y)W(x-y,h) \ dy$$

becomes
$$\Pi^{h}(f)_{i} = \sum_{j \in \mathcal{P}} \omega_{j} f_{j} W_{ij} \simeq f_{i}$$

Approximation of its derivative

$$\Pi^{h}(f')(x) = \int_{K} f(y)W'(x-y,h) \, dy$$

becomes
$$\Pi^{h}(f')_{i} = \sum_{j \in \mathcal{P}} \omega_{j}f_{j}W'_{ij} \simeq f'_{i}$$

- General introduction to the SPH method
 - -Discretization of the SPH equations

Main issue: consistency

Properties not verified in discrete form!

the discrete analogues of 4 and 5 are generally not true:

$$\sum_{j \in \mathcal{P}} \omega_j W_{ij} \neq 1 \text{ and } \sum_{j \in \mathcal{P}} \omega_j W'_{ij} \neq 0$$

 \rightsquigarrow loss of the consistency

aim of the SPH methods: numerical resolution of PDE's \longrightarrow we need a suitable derivation operator

General introduction to the SPH method

-Discretization of the SPH equations

Main issue: consistency

Weak formulation

reinforce the derivation operator:

$$D_h(f)_i = \Pi^h(f')_i - f_i \Pi^h(1')_i$$
$$= \sum_{j \in \mathcal{P}} \omega_j (f_j - f_i) W'_{ij} \simeq f'_i$$

 $\rightsquigarrow D_h(f)_i$ is exactly 0 for constant f

yet another issue: this formulation is *not conservative*!

General introduction to the SPH method

-Discretization of the SPH equations

Main issue: consistency

Conservativity

the formulation $D_h(f)_i$ will be conservative iff

$$\sum_{i\in\mathbb{Z}}\omega_i D_h(f)_i = 0$$

$$\sum_{i \in \mathbb{Z}} \omega_i D_h(f)_i = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \omega_i \omega_j (f_j - f_i) W'_{ij}, \text{ with } W' \text{ odd}$$
$$= -2 \sum_{i \in \mathbb{Z}} \left(\omega_i f_i \sum_{j \in \mathbb{Z}} \omega_j W'_{ij} \right) \neq 0$$

General introduction to the SPH method

-Discretization of the SPH equations

Main issue: consistency

Strong formulation

$$\begin{split} D_h^*, & \text{adjoint of } D_h \text{ with respect to } \langle f, g \rangle_h = \sum_{i \in \mathbb{Z}} \omega_i f_i g_i : \\ D_h^* \text{ such that } \forall (f,g), \langle D_h(f), g \rangle = - \langle f, D_h^*(g) \rangle_h \\ & \rightsquigarrow D_h^*(g)_i = \sum_{j \in \mathcal{P}} \omega_j (g_i + g_j) W'_{ij} \simeq g'_i \end{split}$$

this strong formulation is conservative!

General introduction to the SPH method

-Application to shallow-water equations

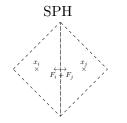
1 General introduction to the SPH method

- Brief history
- Core of the SPH method
- Discretization of the SPH equations
- Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
- 4 Conclusion and perspectives

General introduction to the SPH method

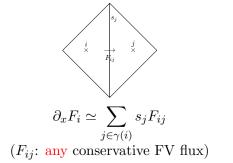
Application to shallow-water equations

Hybridization SPH - Finite Volumes



 $\partial_x F_i \simeq \sum_{j \in \mathcal{P}} \omega_j (F_i + F_j) W'_{ij}$

Finite Volumes



Hybrid formulation FV-SPH

$$\partial_x F_i \simeq \sum_{j \in \mathcal{P}} \omega_j 2F_{ij} W'_{ij}$$

- General introduction to the SPH method
 - -Application to shallow-water equations

Summary

SPH-FV approximation of a PDE

consider a general PDE of the form $\partial_t \Phi + \partial_x F(\Phi) = S(\Phi)$

SPH approximation of
$$\partial_x F(\Phi)$$
: $\sum_{j \in \mathcal{P}} 2\omega_j F_{ij} W'_{ij}$

- F_{ij} : any conservative FV flux from particle *i* to particle *j*
- choice to make to discretize $\partial_t \Phi$ and $S(\Phi)$
- conservative flux discretization

General introduction to the SPH method

-Application to shallow-water equations

The shallow-water equations with topography

$$\begin{cases} \partial_t h + \partial_x (hu) &= 0\\ \partial_t (hu) + \partial_x \left(hu^2 + \frac{1}{2}gh^2 \right) &= -gh\partial_x Z \end{cases}$$

where

- $h \ge 0$: water height
- $u \in \mathbb{R}$: water velocity in the x direction
- g > 0: gravity constant
- Z: smooth topography

they can be rewritten as $\partial_t \Phi + \partial_x F(\Phi) = S(\Phi)$, with

$$\Phi = \begin{pmatrix} h \\ hu \end{pmatrix}, F(\Phi) = \begin{pmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \end{pmatrix}, S(\Phi) = \begin{pmatrix} 0 \\ -gh\partial_x Z \end{pmatrix}$$

- General introduction to the SPH method
 - -Application to shallow-water equations

Discretization

goal: discretize $\partial_t \Phi + \partial_x F(\Phi) = S(\Phi)$

 $(x,t) \in \mathbb{R} \times \mathbb{R}_+ \longrightarrow (x_i,t^n)$, with $(i,n) \in \mathbb{Z} \times \mathbb{N}$ and steps Δx and Δt

$$\begin{aligned}
\Phi(x,t) &\longrightarrow \Phi_i^n \\
\partial_t \Phi &\longrightarrow \frac{\Phi_i^{n+1} - \Phi_i^n}{\Delta t} \text{ (explicit Euler)} \\
\partial_x F(\Phi) &\longrightarrow \sum_{j \in \mathcal{P}} 2\omega_j F_{ij} W_{ij}' \text{ (SPH discretization)} \\
S(\Phi) &\longrightarrow S_i \text{ (any discretization)}
\end{aligned}$$

- General introduction to the SPH method
 - -Application to shallow-water equations

Discretized shallow-water equations

Hybrid scheme applied to the shallow-water equations

$$\begin{pmatrix}
\frac{h_{i}^{n+1} - h_{i}^{n}}{\Delta t} + \sum_{j \in \mathcal{P}} 2\omega_{j}(hu)_{ij}W_{ij}' = 0 \\
\frac{h_{i}^{n+1}u_{i}^{n+1} - h_{i}^{n}u_{i}^{n}}{\Delta t} + \sum_{j \in \mathcal{P}} 2\omega_{j}\left(hu^{2} + \frac{1}{2}gh^{2}\right)_{ij}W_{ij}' = s_{i}$$

• s_i : discretization of $-gh\partial_x Z$

• $F^{\Delta x}(\Phi_i^n, \Phi_j^n)$: numerical flux, such that $F^{\Delta x}(\Phi_i^n, \Phi_j^n) = \begin{pmatrix} (hu)_{ij} \\ (hu^2 + \frac{1}{2}gh^2)_{ij} \end{pmatrix}$ └─A well-balanced scheme

General introduction to the SPH method

- Brief history
- Core of the SPH method
- Discretization of the SPH equations
- Application to shallow-water equations

2 A well-balanced scheme

- Goals
- A change of variables
- Conservative fix
- Main result

3 Numerical results

- Inconsistency and non-well-balancedness
- Validation of the scheme
- 4 Conclusion and perspectives

- └─A well-balanced scheme
 - -Goals
 - General introduction to the SPH method
 - Brief history
 - Core of the SPH method
 - Discretization of the SPH equations
 - Application to shallow-water equations
 - 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result
 - 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
 - 4 Conclusion and perspectives

A conservative well-balanced hybrid SPH scheme for the shallow-water model

└─A well-balanced scheme

-Goals

The lake at rest steady state

Steady states

a solution Φ of a PDE will be a *steady state* iff

$$\partial_t \Phi = 0$$

for the shallow-water equations:

$$\begin{cases} \partial_t h &= 0\\ \partial_t (hu) &= 0 \end{cases} \Rightarrow \begin{cases} \partial_x (hu) &= 0\\ \partial_x \left(hu^2 + \frac{1}{2}gh^2\right) &= -gh\partial_x Z \end{cases}$$

Lake at rest steady state

$$\begin{cases} u = 0 & (\text{lake at } rest) \\ h+Z = cst \end{cases}$$

- A well-balanced scheme
 - -Goals

Well-balanced schemes

Well-balancedness

the scheme will be *well-balanced* for a steady state iff

for Φ^n verifying the steady state, $\forall i \in \mathbb{Z}, \Phi_i^{n+1} = \Phi_i^n$

Properties to be verified by the desired hybrid scheme

- well-balancedness (preservation of the lake at rest steady state)
- conservativity
- based on SPH approximations

- └─A well-balanced scheme
 - -A change of variables
 - **1** General introduction to the SPH method
 - Brief history
 - Core of the SPH method
 - Discretization of the SPH equations
 - Application to shallow-water equations

2 A well-balanced scheme

- Goals
- A change of variables
- Conservative fix
- Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
- 4 Conclusion and perspectives

A conservative well-balanced hybrid SPH scheme for the shallow-water model

└─A well-balanced scheme

-A change of variables

Variables H and X

consider the following variables (Berthon-Foucher, 2012):

from now on,
$$V = \begin{pmatrix} H \\ Hu \end{pmatrix}$$
 is a new set of variables

Case of the lake at rest

for the lake at rest steady state, V is *constant throughout the domain*: indeed,

$$\begin{array}{c} u = 0\\ H = h + Z = cst \end{array} \right\} \Rightarrow V = \begin{pmatrix} H\\ 0 \end{pmatrix} = cst$$

└─A well-balanced scheme

-A change of variables

Variables H and X

rewrite the shallow-water equations for weak solutions:

$$\begin{cases} \partial_t h + \partial_x (X(Hu)) = 0, \\\\ \partial_t (hu) + \partial_x \left(X(Hu^2 + \frac{1}{2}gH^2) \right) = \frac{g}{2} \partial_x (hZ) - gh \partial_x Z \end{cases}$$

this system can be written as

$$\partial_t \Phi + \partial_x (XF(V)) = \tilde{S}(\Phi)$$

with the same flux function F as the original shallow-water equations

A conservative well-balanced hybrid SPH scheme for the shallow-water model

- A well-balanced scheme
 - -A change of variables

Numerical scheme used on for this reformulation

Hybrid scheme applied to the reformulation

$$\begin{cases} \frac{h_i^{n+1} - h_i^n}{\Delta t} + \sum_{j \in \mathcal{P}} 2\omega_j X_{ij} (Hu)_{ij} W'_{ij} = 0\\ \frac{h_i^{n+1} u_i^{n+1} - h_i^n u_i^n}{\Delta t} + \sum_{j \in \mathcal{P}} 2\omega_j X_{ij} \left(Hu^2 + \frac{1}{2}gH^2\right)_{ij} W'_{ij} = \\ \left(\frac{g}{2}\partial_x (hZ) - gh\partial_x Z\right)_i \end{cases}$$

still to be defined:

•
$$X_{ij}$$
, an average of X_i and X_j
• $\left(\frac{g}{2}\partial_x(hZ) - gh\partial_x Z\right)_i$, the source term discretization

- A well-balanced scheme
 - -A change of variables

Source term discretization

What is left to do?

ensuring the well-balance dness by finding a suitable discretization of the source term $\frac{g}{2}\partial_x(hZ)-gh\partial_xZ$

noting that h = HX and Z = H(1 - X) yields

$$\frac{g}{2}\partial_x(hZ) - gh\partial_x Z = \frac{g}{2}\partial_x(XH^2(1-X)) - gXH\partial_x(H(1-X))$$

First naïve approach: brutal SPH discretization

$$\left(\frac{g}{2}\partial_x(hZ) - gh\partial_x Z\right)_i = \frac{g}{2}\sum_{j\in\mathcal{P}} 2\omega_j \left(X_{ij}H_{ij} - 2\bar{X}_i\bar{H}_i\right) \left(H_{ij}(1-X_{ij})\right) W'_{ij}$$

still to determine: the averages X_{ij} , H_{ij} , \bar{X}_i , \bar{H}_i

however, this discretization leads to a non-conservative scheme! $\left(\text{i.e. } \sum_{i \in \mathbb{Z}} \sum_{j \in \mathcal{P}} X_{ij} F^{\Delta x}(V_i^n, V_j^n) \neq \sum_{i \in \mathbb{Z}} \left(\frac{g}{2} \partial_x(hZ) - gh \partial_x Z\right)_i\right)$

- └─A well-balanced scheme
 - -Conservative fix
 - General introduction to the SPH method
 - Brief history
 - Core of the SPH method
 - Discretization of the SPH equations
 - Application to shallow-water equations

2 A well-balanced scheme

- Goals
- A change of variables
- Conservative fix
- Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme
- 4 Conclusion and perspectives

└─A well-balanced scheme

-Conservative fix

Idea behind the fix

main idea: add a term to make the previous naïve discretization conservative

we have
$$\sum_{j\in\mathcal{P}}\omega_j W'_{ij}\simeq 0$$

 \leadsto to add a factor of $\sum_{j\in \mathcal{P}} \omega_j W'_{ij}$ is to add a representation of zero

Second approach

$$\begin{pmatrix} \frac{g}{2}\partial_x(hZ) - gh\partial_x Z \end{pmatrix}_i = \frac{g}{2} \sum_{j \in \mathcal{P}} 2\omega_j \left(X_{ij}H_{ij} - 2\bar{X}_i\bar{H}_i \right) \left(H_{ij}(1 - X_{ij}) \right) W'_{ij}$$
$$+ Y_i \sum_{j \in \mathcal{P}} \omega_j W'_{ij}$$

- A well-balanced scheme
 - -Conservative fix

The correction term

How to choose Y_i ?

such that the additional term *corrects* the non-conservativity \rightsquigarrow add what was missing for the naïve approach to be conservative

Final form of the discretization

$$\left(\frac{g}{2}\partial_x(hZ) - gh\partial_x Z\right)_i = \frac{g}{2} \sum_{j \in \mathcal{P}} 2\omega_j \left(X_{ij}H_{ij} - 2\bar{X}_i\bar{H}_i\right) \left(H_{ij}(1 - X_{ij})\right) W'_{ij}$$
$$+ g \sum_{j \in \mathcal{P}} 2\omega_j \bar{H}_i^2 \bar{X}_i (1 - \tilde{X}_i) W'_{ij}$$

averages \bar{X}_i , \bar{H}_i , \bar{X}_i , X_{ij} and H_{ij} still to be determined \rightsquigarrow whatever the averages, the scheme will be conservative!

- └─A well-balanced scheme
 - -Main result
 - General introduction to the SPH method
 - Brief history
 - Core of the SPH method
 - Discretization of the SPH equations
 - Application to shallow-water equations

2 A well-balanced scheme

- Goals
- A change of variables
- Conservative fix

Main result

3 Numerical results

- Inconsistency and non-well-balancedness
- Validation of the scheme
- 4 Conclusion and perspectives

- └─A well-balanced scheme
 - -Main result

The theorem

Well-balancedness of the scheme

Assume both free surface averages to satisfy:

$$H_{ij} = \bar{H}_i = H$$
, as soon as $H_i = H_j = H$.

Assume \bar{X}_i is defined by

$$\bar{X}_{i} = \frac{1}{2} \frac{\sum_{j} \omega_{j} X_{ij}^{2} W_{ij}'}{\sum_{j} \omega_{j} (X_{ij} - 1) W_{ij}' + (\tilde{X}_{i} - 1) \sum_{j} \omega_{j} W_{ij}'}.$$

Then the scheme defined by the SPH hybridization and source term discretization preserves the lake at rest.

- └─A well-balanced scheme
 - -Main result

Outline of the proof

What to prove? Preservation of the lake at rest

assume
$$\Phi^n$$
 at rest, i.e. $\forall i \in \mathbb{Z}, \begin{cases} h_i^n + Z_i = H \ge 0\\ u_i^n = 0 \end{cases}$

$$\rightsquigarrow$$
 prove that $\forall i \in \mathbb{Z}, \ \Phi_i^{n+1} = \Phi_i^n$

An important property of numerical fluxes

recall
$$F^{\Delta x}(\Phi_i^n, \Phi_j^n) = \begin{pmatrix} (hu)_{ij} \\ \left(hu^2 + \frac{1}{2}gh^2\right)_{ij} \end{pmatrix}$$

 $\forall \Phi, F^{\Delta x}(\Phi, \Phi) = F(\Phi) \ (consistency)$

- └─A well-balanced scheme
 - -Main result

Outline of the proof

use the consistency: we have, $\forall i \in \mathbb{Z}, V_i^n = \begin{pmatrix} H \\ 0 \end{pmatrix}$

therefore, $\forall (i, j) \in \mathbb{Z}^2$,

$$F^{\Delta x}(V_i^n, V_j^n) = F^{\Delta x} \left(\begin{pmatrix} H\\0 \end{pmatrix}, \begin{pmatrix} H\\0 \end{pmatrix} \right) = F \begin{pmatrix} H\\0 \end{pmatrix} = \begin{pmatrix} 0\\\frac{1}{2}gH^2 \end{pmatrix}$$
$$\begin{pmatrix} (Hu)_{ij}\\Hu^2 + \frac{1}{2}gH^2 \end{pmatrix}_{ij} = \begin{pmatrix} 0\\\frac{1}{2}gH^2 \end{pmatrix}$$

A well-balanced scheme

-Main result

Outline of the proof

recall the scheme:

$$\left(\begin{array}{c}
\frac{h_i^{n+1} - h_i^n}{\Delta t} + \sum_{j \in \mathcal{P}} 2\omega_j X_{ij} (Hu)_{ij} W'_{ij} = 0\\
\frac{h_i^{n+1} u_i^{n+1} - h_i^n u_i^n}{\Delta t} + \sum_{j \in \mathcal{P}} 2\omega_j X_{ij} \left(Hu^2 + \frac{1}{2}gH^2\right)_{ij} W'_{ij} = \\
\left(\frac{g}{2}\partial_x (hZ) - gh\partial_x Z\right)_i
\end{array}\right)$$

 \rightsquigarrow the scheme is well-balanced!

- └─A well-balanced scheme
 - -Main result

An important remark: consistency of the average

recall that
$$\bar{X}_i = \frac{1}{2} \frac{\sum_j \omega_j X_{ij}^2 W_{ij}'}{\sum_j \omega_j (X_{ij} - 1) W_{ij}' + (\tilde{X}_i - 1) \sum_j \omega_j W_{ij}'}$$

is \bar{X}_i consistent with X?

$$\sum_{j} \omega_{j} X_{ij}^{2} W_{ij}' \text{ is consistent with } \partial_{x} X^{2}$$

$$\sum_{j} \omega_{j} (X_{ij} - 1) W_{ij}' \text{ is consistent with } \partial_{x} (X - 1)$$

$$\sum_{j} \omega_{j} W_{ij}' \text{ is consistent with } 0$$

 \rightsquigarrow therefore \bar{X}_i is consistent with $\frac{1}{2} \frac{\partial_x X^2}{\partial_x (X-1)} = X$

A conservative well-balanced hybrid SPH scheme for the shallow-water model

A well-balanced scheme

-Main result

Definitions of the other averages

the well-balancedness is *independent from the definitions of the* 4 other averages: some usual expressions can be used

$$\begin{split} & \bar{H}_i = H_i^n = h_i^n + Z_i \\ & \tilde{X}_i = X_i^n = \frac{h_i^n}{h_i^n + Z_i} \\ & H_{ij} = \begin{cases} H_i^n \text{ if } (Hu)_{ij} > 0 \\ H_j^n \text{ otherwise} \end{cases} \quad (upwind \text{ expression}) \\ & X_{ij} = \begin{cases} X_i^n \text{ if } (Hu)_{ij} > 0 \\ X_j^n \text{ otherwise} \end{cases} \end{split}$$

└─Numerical results

General introduction to the SPH method

- Brief history
- Core of the SPH method
- Discretization of the SPH equations
- Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result

3 Numerical results

- Inconsistency and non-well-balancedness
- Validation of the scheme
- 4 Conclusion and perspectives

- └─Numerical results
 - -Inconsistency and non-well-balancedness

1 General introduction to the SPH method

- Brief history
- Core of the SPH method
- Discretization of the SPH equations
- Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result

3 Numerical results

- Inconsistency and non-well-balancedness
- Validation of the scheme
- 4 Conclusion and perspectives

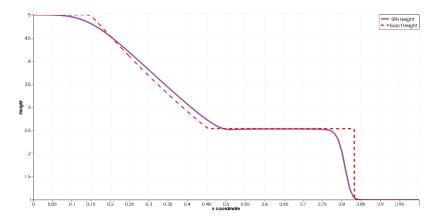
A conservative well-balanced hybrid SPH scheme for the shallow-water model

└─Numerical results

-Inconsistency and non-well-balancedness

Inconsistency of the SPH method

consider the dam-break defined by $\Phi = \Phi_L$ if x < 0.5, Φ_R otherwise $\Phi_L = \begin{pmatrix} h_L \\ h_L u_L \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$ and $\Phi_R = \begin{pmatrix} h_R \\ h_R u_R \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$



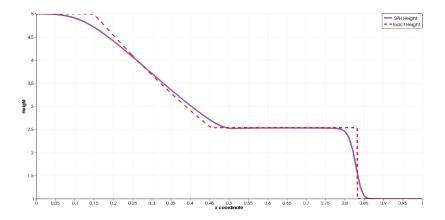
A conservative well-balanced hybrid SPH scheme for the shallow-water model

└─Numerical results

Inconsistency and non-well-balancedness

Inconsistency of the SPH method

renormalization: $D_{h,r}(f)_i = B_i^{-1} \sum_{j \in \mathcal{P}} \omega_j (f_j - f_i) W'_{ij}$, with $B_i = \sum_{j \in \mathcal{P}} \omega_j (x_j - x_i) W'_{ij}$



-Numerical results

└─Inconsistency and non-well-balancedness

Non-well-balancedness in 2D

- -Numerical results
 - -Validation of the scheme
 - **1** General introduction to the SPH method
 - Brief history
 - Core of the SPH method
 - Discretization of the SPH equations
 - Application to shallow-water equations
 - 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result

3 Numerical results

- Inconsistency and non-well-balancedness
- Validation of the scheme

4 Conclusion and perspectives

A conservative well-balanced hybrid SPH scheme for the shallow-water model

-Numerical results

-Validation of the scheme

Steady test cases

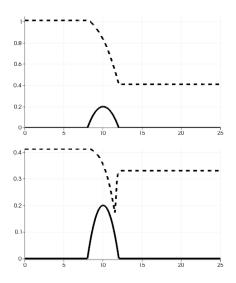
Three steady test cases (Goutal - Maurel, 1997)

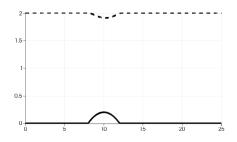
- \blacksquare computational domain: $x \in [0,25]$
- topography: $Z(x) = \begin{cases} 0.2 0.05(x 10)^2 & \text{if } 8 < x < 12, \\ 0 & \text{otherwise} \end{cases}$
- boundary conditions: $h(0,t)u(0,t) = q_L$ and $h(25,t) = h_R$
- initial conditions: h(x,0)u(x,0) = 0 and $h(x,0) + Z(x) = h_R$
- individual values:
 - transcritical flow without shock (TF): q_L = 1.53; h_R = 0.66
 transcritical flow with shock: (TFS) q_L = 0.18; h_R = 0.33
 subcritical flow (SF): q_L = 4.42; h_R = 2

steady test cases: a $steady\ state$ (i.e. constant discharge) is obtained after a transition period

- └─Numerical results
 - └─Validation of the <u>scheme</u>

Steady test cases





full line: topography dashed line: free surface results shown after 600s top left: TF; bottom left: TFS; right: SF

└─Numerical results

-Validation of the scheme

Steady test cases: discharge error

Test case	Hydrostatic upwind		SPH scheme	
	L^2 error	L^{∞} error	L^2 error	L^{∞} error
TF TFS	5.98E-2 4.68E-2	1.87E-2 2.85E-2	5.67E-2 5.50E-2	1.85E-2 4.02E-2
\mathbf{SF}	9.78E-2	2.70E-2	9.83E-2	2.74E-2

comparison between the hydrostatic upwind scheme (Berthon - Foucher, 2012) and the SPH scheme (both well-balanced)

└─Numerical results

-Validation of the scheme

Lake at rest without well-balanced SPH scheme

-Numerical results

-Validation of the scheme

Lake at rest with well-balanced SPH scheme

Conclusion and perspectives

General introduction to the SPH method

- Brief history
- Core of the SPH method
- Discretization of the SPH equations
- Application to shallow-water equations
- 2 A well-balanced scheme
 - Goals
 - A change of variables
 - Conservative fix
 - Main result
- 3 Numerical results
 - Inconsistency and non-well-balancedness
 - Validation of the scheme

4 Conclusion and perspectives

Conclusion and perspectives

Conclusion

- SPH hybrid scheme for a reformulation of the shallow-water equations
- suitable discretization of the topography source term
- scheme still conservative
- well-balancedness confirmed

Conclusion and perspectives

• multiple dimensions: easy (replace W'_{ij} with ∇W_{ij})

well-balanced SPH scheme for Euler equations with gravity

Thanks for your attention!