C. Berthon¹, S. Clain², F. Foucher^{1,3}, V. Michel-Dansac⁴

¹Laboratoire de Mathématiques Jean Leray, Université de Nantes ²Centre of Mathematics, Minho University ³École Centrale de Nantes ⁴INSA Toulouse

Monday, September 25th, 2017

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES TOULOUSE

Introduction and motivations

Several kinds of destructive geophysical flows

Dam failure (Malpasset, France, 1959)

Tsunami (Tōhoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010)

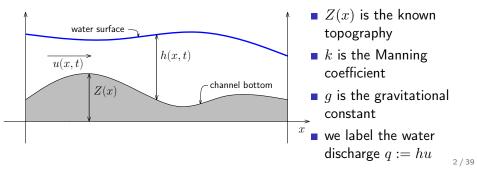
Mudslide (Madeira, Portugal, 2010)

Introduction and motivations

The shallow-water equations and their source terms

$$\begin{cases} \partial_t h + \partial_x (hu) = 0\\ \partial_t (hu) + \partial_x \left(hu^2 + \frac{1}{2}gh^2 \right) = -gh\partial_x Z - \frac{kq|q|}{h^{\frac{7}{3}}} \text{ (with } q = hu) \end{cases}$$

We can rewrite the equations as $\partial_t W + \partial_x F(W) = S(W)$, with $W = \binom{h}{q}$.



Introduction and motivations

Steady state solutions

Definition: Steady state solutions

W is a steady state solution iff $\partial_t W = 0$, i.e. $\partial_x F(W) = S(W)$.

Taking $\partial_t W = 0$ in the shallow-water equations leads to

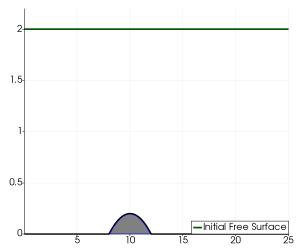
$$\begin{cases} \partial_x q = 0\\ \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) = -gh\partial_x Z - \frac{kq|q|}{h^{\frac{7}{3}}}\end{cases}$$

The steady state solutions are therefore given by

$$\begin{cases} q = \operatorname{cst} = q_0 \\ \partial_x \left(\frac{q_0^2}{h} + \frac{1}{2}gh^2 \right) = -gh\partial_x Z - \frac{kq_0|q_0}{h^{\frac{7}{3}}} \end{cases}$$

Introduction and motivations

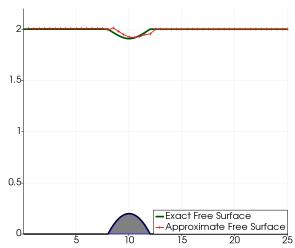
Topography steady state not captured in 1D



The initial condition is at rest; water is injected through the left boundary.

Introduction and motivations

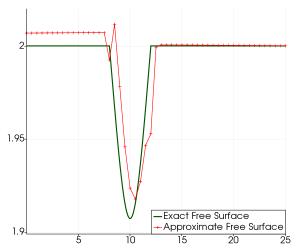
Topography steady state not captured in 1D



The classical HLL numerical scheme converges towards a numerical steady state which does not correspond to the physical one.

Introduction and motivations

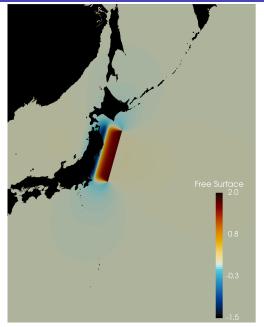
Topography steady state not captured in 1D



The classical HLL numerical scheme converges towards a numerical steady state which does not correspond to the physical one.

Introduction and motivations

A real-life simulation: the 2011 Tōhoku tsunami. The water is close to a steady state at rest far from the tsunami.



Introduction and motivations

Objectives

Our goal is to derive a numerical method for the shallow-water model with topography and Manning friction that exactly preserves its stationary solutions on every mesh.

To that end, we seek a numerical scheme that:

- is well-balanced for the shallow-water equations with topography and friction, i.e. it exactly preserves and captures the steady states without having to solve the governing nonlinear differential equation;
- 2 preserves the non-negativity of the water height;
- **3** can be easily extended for other source terms of the shallow-water equations (e.g. breadth).

Introduction and motivations

Contents

- 1 Brief introduction to Godunov-type schemes
- 2 Derivation of a generic first-order well-balanced scheme
- 3 Second-order extension
- 4 Numerical simulations
- 5 Conclusion and perspectives

1 Brief introduction to Godunov-type schemes

2 Derivation of a generic first-order well-balanced scheme

3 Second-order extension

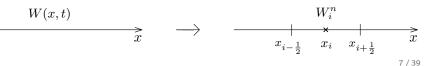
- 4 Numerical simulations
- 5 Conclusion and perspectives

Setting

Objective: Approximate the solution W(x,t) of the system $\partial_t W + \partial_x F(W) = S(W)$, with suitable initial and boundary conditions.

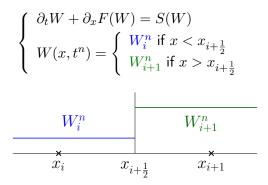
We partition [a, b] in *cells*, of volume Δx and of evenly spaced centers x_i , and we define:

•
$$x_{i-\frac{1}{2}}$$
 and $x_{i+\frac{1}{2}}$, the boundaries of the cell i ;
• W_i^n , an approximation of $W(x,t)$, constant in the cell i and
at time t^n , which is defined as $W_i^n = \frac{1}{\Delta x} \int_{\Delta x/2}^{\Delta x/2} W(x,t^n) dx$.



Using an approximate Riemann solver

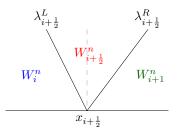
As a consequence, at time t^n , we have a succession of Riemann problems (Cauchy problems with discontinuous initial data) at the interfaces between cells:



For $S(W) \neq 0$, the exact solution to these Riemann problems is unknown or costly to compute \rightsquigarrow we require an approximation.

Using an approximate Riemann solver

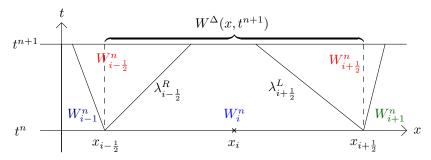
We choose to use an approximate Riemann solver, as follows.



- *Wⁿ*_{i+1/2} is an approximation of the interaction between *Wⁿ*_i and *Wⁿ*_{i+1} (i.e. of the solution to the Riemann problem), possibly made of several constant states separated by discontinuities.
- $\lambda_{i+\frac{1}{2}}^L$ and $\lambda_{i+\frac{1}{2}}^R$ are approximations of the largest wave speeds of the system.

Brief introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)



We define the time update as follows:

$$W_i^{n+1} := \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W^{\Delta}(x, t^{n+1}) dx.$$

Since $W_{i-\frac{1}{2}}^n$ and $W_{i+\frac{1}{2}}^n$ are made of constant states, the above integral is easy to compute.

1 Brief introduction to Godunov-type schemes

2 Derivation of a generic first-order well-balanced scheme

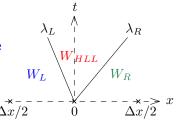
3 Second-order extension

4 Numerical simulations

5 Conclusion and perspectives

The HLL approximate Riemann solver

To approximate solutions of $\partial_t W + \partial_x F(W) = 0$, the HLL approximate Riemann solver (Harten, Lax, van Leer (1983)) may be chosen; it is denoted by W^{Δ} and displayed on the right.



The consistency condition (as per Harten and Lax) holds if:

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W^{\Delta}(\Delta t, x; W_L, W_R) dx = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x; W_L, W_R) dx,$$

which gives
$$W_{HLL} = \frac{\lambda_R W_R - \lambda_L W_L}{\lambda_R - \lambda_L} - \frac{F(W_R) - F(W_L)}{\lambda_R - \lambda_L} = \binom{h_{HLL}}{q_{HLL}}.$$

Note that, if $h_L > 0$ and $h_R > 0$, then $h_{HLL} > 0$ for $|\lambda_L|$ and $|\lambda_R|$ large enough.

Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

The shallow-water equations with the topography and friction source terms read as follows:

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) + gh\partial_x Z + k\frac{q|q|}{h^{\frac{7}{3}}} = 0. \end{cases}$$

Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver With Y(t, x) := x, we can add the equations $\partial_t Z = 0$ and $\partial_t Y = 0$, which correspond to the fixed geometry of the problem:

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) + gh\partial_x Z + k\frac{q|q|}{h^{7/3}}\partial_x Y = 0, \\ \partial_t Z = 0, \\ \partial_t Y = 0. \end{cases}$$

Derivation of a generic first-order well-balanced scheme

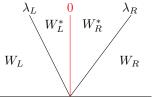
<

Modification of the HLL approximate Riemann solver With Y(t, x) := x, we can add the equations $\partial_t Z = 0$ and $\partial_t Y = 0$, which correspond to the fixed geometry of the problem:

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) + gh\partial_x Z + k\frac{q|q|}{h^{7/3}}\partial_x Y = 0, \\ \partial_t Z = 0, \\ \partial_t Y = 0. \end{cases}$$

The equations $\partial_t Y = 0$ and $\partial_t Z = 0$ induce stationary waves associated to the source term (of which q is a Riemann invariant).

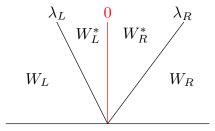
To approximate solutions of $\partial_t W + \partial_x F(W) = S(W)$, we thus use the approximate Riemann solver displayed on the right (assuming $\lambda_L < 0 < \lambda_R$).



Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.



Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

The Harten-Lax consistency gives us the following two relations:

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

The Harten-Lax consistency gives us the following two relations:

•
$$\lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}$$
 (relation 2),

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

The Harten-Lax consistency gives us the following two relations:

$$\lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL} \text{ (relation 2),}$$

$$q^* = q_{HLL} + \frac{\overline{S}\Delta x}{\lambda_R - \lambda_L} \text{ (relation 3),}$$
where $\overline{S} \simeq \frac{1}{\Delta x} \frac{1}{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} \int_0^{\Delta t} S(W_R(x, t)) dt dx.$

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

The Harten-Lax consistency gives us the following two relations:

•
$$\lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}$$
 (relation 2),
• $q^* = q_{HLL} + \frac{\overline{S}\Delta x}{\lambda_R - \lambda_L}$ (relation 3),
where $\overline{S} \simeq \frac{1}{\Delta x} \frac{1}{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} \int_0^{\Delta t} S(W_R(x, t)) dt dx$.

next step: obtain a fourth relation

Obtaining an additional relation

is

Assume that W_L and W_R define a steady state, i.e. that they satisfy the following discrete version of the steady relation $\partial_x F(W) = S(W)$ (where $[X] = X_R - X_L$):

$$\frac{1}{\Delta x} \left(q_0^2 \left[\frac{1}{h} \right] + \frac{g}{2} \left[h^2 \right] \right) = \overline{S}.$$

For the steady state to be preserved, it
is sufficient to have $h_L^* = h_L$, $h_R^* = h_R$ W_L
and $q^* = q_0$.

Assuming a steady state, we show that $q^* = q_0$, as follows:

$$q^* = q_{HLL} + \frac{\bar{S}\Delta x}{\lambda_R - \lambda_L} = q_0 - \frac{1}{\lambda_R - \lambda_L} \left(q_0^2 \left[\frac{1}{h} \right] + \frac{g}{2} \left[h^2 \right] - \bar{S}\Delta x \right) = q_0.$$

Obtaining an additional relation

In order to determine an additional relation, we consider the discrete steady relation, satisfied when W_L and W_R define a steady state:

$$q_0^2 \left(\frac{1}{h_R} - \frac{1}{h_L}\right) + \frac{g}{2} \left((h_R)^2 - (h_L)^2\right) = \overline{S}\Delta x.$$

To ensure that $h_L^* = h_L$ and $h_R^* = h_R$, we impose that h_L^* and h_R^* satisfy the above relation, as follows:

$$q_0^2 \left(\frac{1}{h_R^*} - \frac{1}{h_L^*} \right) + \frac{g}{2} \left((h_R^*)^2 - (h_L^*)^2 \right) = \overline{S} \Delta x.$$

Determination of h_L^* and h_R^*

The intermediate water heights satisfy the following relation:

$$-q_0^2 \left(\frac{h_R^* - h_L^*}{h_L^* h_R^*}\right) + \frac{g}{2}(h_L^* + h_R^*)(h_R^* - h_L^*) = \overline{S}\Delta x.$$

Recall that q^* is known and is equal to q_0 for a steady state. Instead of the above relation, we choose the following linearization:

$$\frac{-(q^*)^2}{h_L h_R} (h_R^* - h_L^*) + \frac{g}{2} (h_L + h_R) (h_R^* - h_L^*) = \overline{S} \Delta x,$$

which can be rewritten as follows:

$$\underbrace{\left(\frac{-(q^*)^2}{h_L h_R} + \frac{g}{2}(h_L + h_R)\right)}_{\alpha}(h_R^* - h_L^*) = \overline{S}\Delta x.$$

Determination of h_L^* and h_R^*

With the consistency relation between h_L^* and h_R^* , the intermediate water heights satisfy the following linear system:

$$\begin{cases} \alpha(h_R^* - h_L^*) = \overline{S}\Delta x, \\ \lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}. \end{cases}$$

Using both relations linking h_L^* and h_R^* , we obtain

$$\begin{cases} h_L^* = h_{HLL} - \frac{\lambda_R \overline{S} \Delta x}{\alpha (\lambda_R - \lambda_L)}, \\ h_R^* = h_{HLL} - \frac{\lambda_L \overline{S} \Delta x}{\alpha (\lambda_R - \lambda_L)}, \end{cases}$$

where $\alpha = \left(\frac{-(q^*)^2}{h_L h_R} + \frac{g}{2}(h_L + h_R)\right)$ with $q^* = q_{HLL} + \frac{\overline{S} \Delta x}{\lambda_R - \lambda_L}.$

Derivation of a generic first-order well-balanced scheme

Correction to ensure non-negative h_L^* and h_R^*

However, these expressions of h_L^* and h_R^* do not guarantee that the intermediate heights are non-negative: instead, we use the following cutoff (see Audusse, Chalons, Ung (2014)):

$$\begin{cases} h_L^* = \min\left(\left(h_{HLL} - \frac{\lambda_R \overline{S} \Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_R}{\lambda_L}\right) h_{HLL}\right), \\ h_R^* = \min\left(\left(h_{HLL} - \frac{\lambda_L \overline{S} \Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_L}{\lambda_R}\right) h_{HLL}\right). \end{cases}$$

Note that this cutoff does not interfere with:

- the consistency condition $\lambda_R h_R^* \lambda_L h_L^* = (\lambda_R \lambda_L) h_{HLL}$;
- the well-balance property, since it is not activated when W_L and W_R define a steady state.

Derivation of a generic first-order well-balanced scheme

Summary

The two-state approximate Riemann solver with intermediate states

$$\begin{split} W_L^* &= \begin{pmatrix} h_L^* \\ q^* \end{pmatrix} \text{ and } W_R^* = \begin{pmatrix} h_R^* \\ q^* \end{pmatrix} \text{ given by} \\ \begin{cases} q^* &= q_{HLL} + \frac{\overline{S}\Delta x}{\lambda_R - \lambda_L}, \\ h_L^* &= \min\left(\left(h_{HLL} - \frac{\lambda_R \overline{S}\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_R}{\lambda_L}\right)h_{HLL}\right), \\ h_R^* &= \min\left(\left(h_{HLL} - \frac{\lambda_L \overline{S}\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_L}{\lambda_R}\right)h_{HLL}\right), \end{split}$$

is consistent, non-negativity-preserving and well-balanced.

next step: determination of \overline{S} according to the source term definition (topography or friction).

The topography source term

We now consider $S(W) = S^t(W) = -gh\partial_x Z$: the smooth steady states are governed by

$$\frac{\partial_x \left(\frac{q_0^2}{h}\right) + \frac{g}{2} \partial_x \left(h^2\right) = -gh \partial_x Z, \\ \frac{q_0^2}{2} \partial_x \left(\frac{1}{h^2}\right) + g \partial_x (h+Z) = 0, \\ \end{bmatrix} \xrightarrow{\text{discretization}} \begin{cases} q_0^2 \left[\frac{1}{h}\right] + \frac{g}{2} \left[h^2\right] = \overline{S}^t \Delta x, \\ \frac{q_0^2}{2} \left[\frac{1}{h^2}\right] + g[h+Z] = 0. \end{cases}$$

We can exhibit an expression of q_0^2 and thus obtain

$$\bar{S}^t = -g \frac{2h_L h_R}{h_L + h_R} \frac{[Z]}{\Delta x} + \frac{g}{2\Delta x} \frac{[h]^3}{h_L + h_R}$$

However, when $Z_L = Z_R$, we have $\overline{S}^t \neq \mathcal{O}(\Delta x)$, i.e. a loss of consistency with S^t (see for instance Berthon, Chalons (2016)).

The topography source term

Instead, we set, for some constant C > 0,

$$\begin{cases} \overline{S}^t = -g \frac{2h_L h_R}{h_L + h_R} \frac{[Z]}{\Delta x} + \frac{g}{2\Delta x} \frac{[h]_c^3}{h_L + h_R}, \\ [h]_c = \begin{cases} h_R - h_L & \text{if } |h_R - h_L| \le C\Delta x, \\ \operatorname{sgn}(h_R - h_L) C\Delta x & \text{otherwise.} \end{cases} \end{cases}$$

Theorem: Well-balance for the topography source term

If W_L and W_R define a smooth steady state, i.e. if they satisfy

$$\frac{q_0^2}{2} \left[\frac{1}{h^2} \right] + g[h+Z] = 0,$$

then we have $W_L^* = W_L$ and $W_R^* = W_R$ and the approximate Riemann solver is well-balanced. By construction, the Godunov-type scheme using this approximate Riemann solver is consistent, fully well-balanced and positivity-preserving.

The friction source term

We consider, in this case, $S(W) = S^f(W) = -kq|q|h^{-\eta}$, where we have set $\eta = \frac{7}{3}$.

The average of S^f we choose is $\overline{S}^f = -k\bar{q}|\bar{q}|\overline{h^{-\eta}}$, with

- \bar{q} the harmonic mean of q_L and q_R (note that $\bar{q} = q_0$ at the equilibrium);
- $\overline{h^{-\eta}}$ a well-chosen discretization of $h^{-\eta}$, depending on h_L and h_R , and ensuring the well-balance property.

We determine $\overline{h^{-\eta}}$ using the same technique (with $\mu_0 = \operatorname{sgn}(q_0)$):

$$\begin{aligned} \partial_x \left(\frac{q_0^2}{h} \right) &+ \frac{g}{2} \partial_x \left(h^2 \right) = -kq_0 |q_0| h^{-\eta}, \\ q_0^2 \frac{\partial_x h^{\eta-1}}{\eta-1} &- g \frac{\partial_x h^{\eta+2}}{\eta+2} = kq_0 |q_0|, \end{aligned} \right\} \xrightarrow{\text{discretization}} \begin{cases} q_0^2 \left[\frac{1}{h} \right] &+ \frac{g}{2} \left[h^2 \right] = -k\mu_0 q_0^2 \overline{h^{-\eta}} \Delta x, \\ q_0^2 \frac{\left[h^{\eta-1} \right]}{\eta-1} &- g \frac{\left[h^{\eta+2} \right]}{\eta+2} = k\mu_0 q_0^2 \Delta x. \end{aligned}$$

The friction source term

The expression for q_0^2 we obtained is now used to get:

$$\overline{h^{-\eta}} = \frac{[h^2]}{2} \frac{\eta + 2}{[h^{\eta+2}]} - \frac{\mu_0}{k\Delta x} \left(\left[\frac{1}{h} \right] + \frac{[h^2]}{2} \frac{[h^{\eta-1}]}{\eta - 1} \frac{\eta + 2}{[h^{\eta+2}]} \right),$$

which gives $\overline{S}^f = -k\bar{q}|\bar{q}|\overline{h^{-\eta}} (\overline{h^{-\eta}} \text{ is consistent with } h^{-\eta} \text{ if a cutoff}$ is applied to the second term of $\overline{h^{-\eta}}$).

Theorem: Well-balance for the friction source term

If W_L and W_R define a smooth steady state, i.e. verify

$$q_0^2 \frac{[h^{\eta-1}]}{\eta-1} + g \frac{[h^{\eta+2}]}{\eta+2} = -kq_0 |q_0| \Delta x,$$

then we have $W_L^* = W_L$ and $W_R^* = W_R$ and the approximate Riemann solver is well-balanced. By construction, the Godunov-type scheme using this approximate Riemann solver is consistent, fully well-balanced and positivity-preserving.

Derivation of a generic first-order well-balanced scheme

Friction and topography source terms

With both source terms, the scheme preserves the following discretization of the steady relation $\partial_x F(W) = S(W)$:

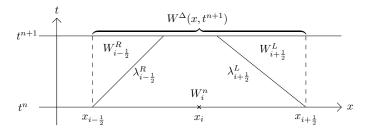
$$q_0^2 \left[\frac{1}{h} \right] + \frac{g}{2} \left[h^2 \right] = \overline{S}^t \Delta x + \overline{S}^f \Delta x.$$

The intermediate states are therefore given by:

$$\begin{cases} q^* = q_{HLL} + \frac{(\bar{S}^t + \bar{S}^f)\Delta x}{\lambda_R - \lambda_L}; \\ h_L^* = \min\left(\left(h_{HLL} - \frac{\lambda_R(\bar{S}^t + \bar{S}^f)\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_R}{\lambda_L}\right)h_{HLL}\right); \\ h_R^* = \min\left(\left(h_{HLL} - \frac{\lambda_L(\bar{S}^t + \bar{S}^f)\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_L}{\lambda_R}\right)h_{HLL}\right). \end{cases}$$

Derivation of a generic first-order well-balanced scheme

The full Godunov-type scheme



We recall
$$W_i^{n+1} = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W^{\Delta}(x, t^{n+1}) dx$$
: then
 $W_i^{n+1} = W_i^n - \frac{\Delta t}{\Delta x} \Big[\lambda_{i+\frac{1}{2}}^L \Big(W_{i+\frac{1}{2}}^L - W_i^n \Big) - \lambda_{i-\frac{1}{2}}^R \Big(W_{i-\frac{1}{2}}^R - W_i^n \Big) \Big],$

which can be rewritten, after straightforward computations,

$$W_i^{n+1} = W_i^n - \frac{\Delta t}{\Delta x} \left(\mathcal{F}_{i+\frac{1}{2}}^n - \mathcal{F}_{i-\frac{1}{2}}^n \right) + \Delta t \left(\left(\underbrace{\frac{(\mathcal{S}^t)_{i-\frac{1}{2}}^n + (\mathcal{S}^t)_{i+\frac{1}{2}}^n}{2}}_{2} \right) + \underbrace{\frac{(\mathcal{S}^f)_{i-\frac{1}{2}}^n + (\mathcal{S}^f)_{i+\frac{1}{2}}^n}{2}}_{25} \right) \right).$$

Derivation of a generic first-order well-balanced scheme

Summary

We have presented a scheme that:

- is consistent with the shallow-water equations with friction and topography;
- is well-balanced for friction and topography steady states;
- preserves the non-negativity of the water height;
- is not able to correctly approximate wet/dry interfaces due to the stiffness of the friction: the friction term should be treated implicitly.

next step: introduction of this semi-implicit scheme

Derivation of a generic first-order well-balanced scheme

Semi-implicit finite volume scheme

We use a splitting method with an explicit treatment of the flux and the topography and an implicit treatment of the friction.

1 explicitly solve $\partial_t W + \partial_x F(W) = S^t(W)$ as follows:

$$W_{i}^{n+\frac{1}{2}} = W_{i}^{n} - \frac{\Delta t}{\Delta x} \Big(\mathcal{F}_{i+\frac{1}{2}}^{n} - \mathcal{F}_{i-\frac{1}{2}}^{n} \Big) + \Delta t \left(\frac{1}{2} \Big((\mathcal{S}^{t})_{i-\frac{1}{2}}^{n} + (\mathcal{S}^{t})_{i+\frac{1}{2}}^{n} \Big) \right)$$

2 implicitly solve $\partial_t W = S^f(W)$ as follows:

$$\begin{cases} h_i^{n+1} = h_i^{n+\frac{1}{2}} \\ \text{IVP:} \begin{cases} \partial_t q = -kq |q| (h_i^{n+1})^{-\eta} \\ q(x_i, t^n) = q_i^{n+\frac{1}{2}} \end{cases} \rightsquigarrow q_i^{n+1} \end{cases}$$

Derivation of a generic first-order well-balanced scheme

Semi-implicit finite volume scheme

Solving the IVP yields:

$$q_i^{n+1} = \frac{(h_i^{n+1})^{\eta} q_i^{n+\frac{1}{2}}}{(h_i^{n+1})^{\eta} + k \,\Delta t \left| q_i^{n+\frac{1}{2}} \right|}.$$

We use the following approximation of $(h_i^{n+1})^{\eta}$, which provides us with an expression of q_i^{n+1} that is equal to q_0 at the equilibrium:

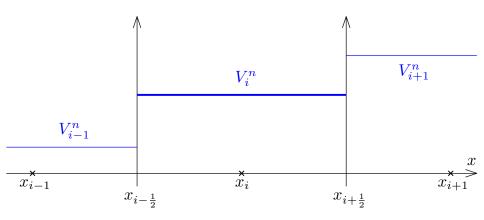
$$(\overline{h^{\eta}})_{i}^{n+1} = \frac{2\mu_{i}^{n+\frac{1}{2}}\mu_{i}^{n}}{\left(\overline{h^{-\eta}}\right)_{i-\frac{1}{2}}^{n+1} + \left(\overline{h^{-\eta}}\right)_{i+\frac{1}{2}}^{n+1}} + k\,\Delta t\,\mu_{i}^{n+\frac{1}{2}}q_{i}^{n}.$$

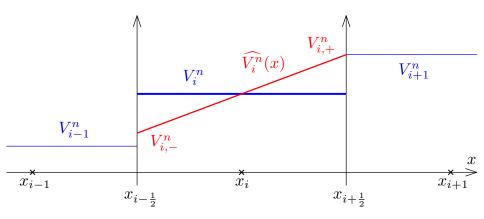
- semi-implicit treatment of the friction source term ~→ scheme able to model wet/dry transitions
- scheme still well-balanced and non-negativity-preserving

1 Brief introduction to Godunov-type schemes

2 Derivation of a generic first-order well-balanced scheme

- 4 Numerical simulations
- 5 Conclusion and perspectives





Second-order extension

For the second-order MUSCL procedure, we introduce the vector

$$V = {}^t(h, q, h + Z)$$

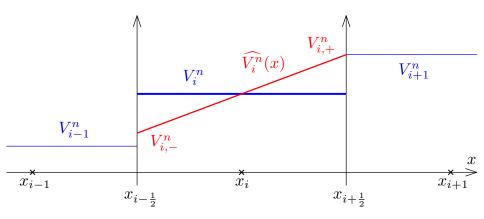
of reconstructed variables. Then, with σ_i^n a limited slope, a linear reconstruction of the constant state V_i^n in each cell *i* is given by:

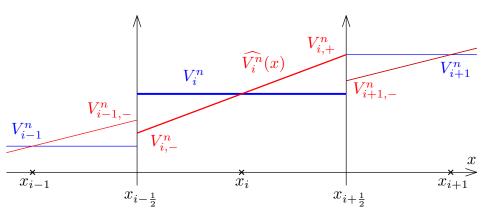
$$V_{i,\pm}^n = \widehat{V_i^n} \left(x_i \pm \frac{\Delta x}{2} \right) = V_i^n \pm \frac{\Delta x}{2} \sigma_i^n.$$

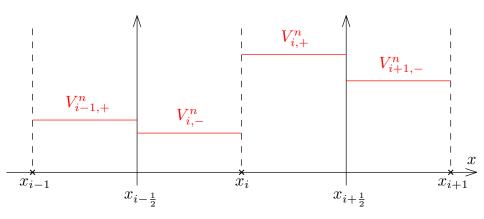
Two remarks follow from this definition:

1 If q = 0 and h + Z is constant in the cells i - 1, i and i + 1, they remain constant after the reconstruction: the lake at rest steady state is naturally preserved.

2 We have
$$V_i^n = rac{V_{i,-}^n + V_{i,+}^n}{2}$$

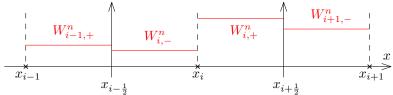






Second-order extension

Second-order extension



For simplicity, we rewrite the first-order scheme:

$$W_i^{n+1} = \mathcal{H}(W_{i-1}^n, W_i^n, W_{i+1}^n).$$

The MUSCL update, in the subcells $(x_{i-\frac{1}{2}},x_i)$ and $(x_i,x_{i+\frac{1}{2}}),$ reads:

 $W_{i,-}^{n+1} = \mathcal{H}(W_{i-1,+}^n, W_{i,-}^n, W_{i,+}^n) \quad \text{and} \quad W_{i,+}^{n+1} = \mathcal{H}(W_{i,-}^n, W_{i,+}^n, W_{i+1,-}^n).$

We then take $W_i^{n+1} = (W_{i,-}^{n+1} + W_{i,+}^{n+1})/2$. This update is a convex combination: we exhibit the same robustness results as the first-order scheme as soon as the CFL constraint is halved.

Second-order extension

Second-order extension: well-balance recovery

reconstruction procedure \rightsquigarrow scheme no longer preserves steady states with $q_0 \neq 0$

Well-balance recovery

We suggest a convex combination between the second-order scheme W_{HO} and the well-balanced scheme W_{WB} :

$$W_{i}^{n+1} = \theta_{i}^{n} (W_{HO})_{i}^{n+1} + (1 - \theta_{i}^{n}) (W_{WB})_{i}^{n+1},$$

with θ_i^n the parameter of the convex combination, such that:

- if $\theta_i^n = 0$, then the well-balanced scheme is used;
- if $\theta_i^n = 1$, then the second-order scheme is used.

next step: derive a suitable expression for θ_i^n

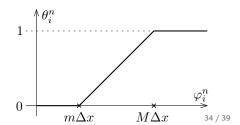
Second-order extension

Second-order extension: well-balance recovery

Steady state detector

Steady state solution:
$$\begin{cases} q_L = q_R = q_0, \\ \mathcal{E} := \frac{q_0^2}{h_R} - \frac{q_0^2}{h_L} + \frac{g}{2} \left(h_R^2 - h_L^2\right) - (\overline{S}^t + \overline{S}^f) \Delta x = 0 \\ \end{cases}$$
steady state detector: $\varphi_i^n = \left\| \begin{pmatrix} q_i^n - q_{i-1}^n \\ [\mathcal{E}]_{i-\frac{1}{2}}^n \end{pmatrix} \right\|_2 + \left\| \begin{pmatrix} q_{i+1}^n - q_i^n \\ [\mathcal{E}]_{i+\frac{1}{2}}^n \end{pmatrix} \right\|_2$

$$\begin{split} \varphi_i^n &= 0 \text{ if there is a steady state} \\ \text{between } W_{i-1}^n, \ W_i^n \text{ and } W_{i+1}^n \\ & \rightsquigarrow \text{ in this case, we take } \theta_i^n = 0 \\ & \rightsquigarrow \text{ otherwise, we take } 0 < \theta_i^n \leq 1 \end{split}$$

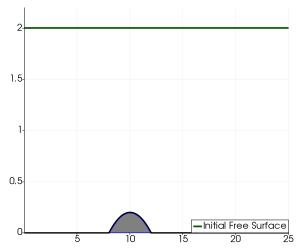


1 Brief introduction to Godunov-type schemes

- 2 Derivation of a generic first-order well-balanced scheme
- 3 Second-order extension
- 4 Numerical simulations
- 5 Conclusion and perspectives

-Numerical simulations

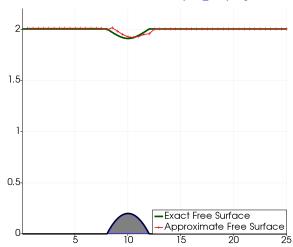
Verification of the well-balance: topography



The initial condition is at rest; water is injected through the left boundary.

-Numerical simulations

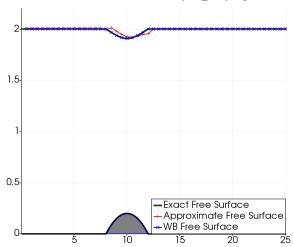
Verification of the well-balance: topography



The non-well-balanced HLL scheme converges towards a numerical steady state which does not correspond to the physical one.

-Numerical simulations

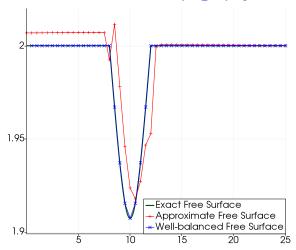
Verification of the well-balance: topography



The non-well-balanced HLL scheme converges towards a numerical steady state which does not correspond to the physical one. The well-balanced scheme converges towards the physical steady state. ^{35/39}

-Numerical simulations

Verification of the well-balance: topography



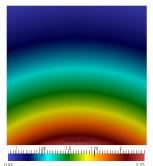
The non-well-balanced HLL scheme converges towards a numerical steady state which does not correspond to the physical one. The well-balanced scheme converges towards the physical steady state. ^{35/39}

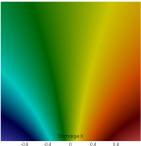
Order of accuracy assessment

To assess the order of accuracy, we take the following exact steady solution of the 2D shallow-water system, where $r = {}^{t}(x, y)$:

$$h = 1 \; ; \; \boldsymbol{q} = rac{\boldsymbol{r}}{\|\boldsymbol{r}\|} \; ; \; Z = rac{2k\|\boldsymbol{r}\| - 1}{2g\|\boldsymbol{r}\|^2}.$$

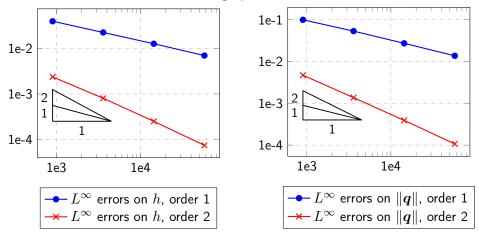
With k = 10, this solution is depicted below on the space domain $[-0.3, 0.3] \times [0.4, 1]$.





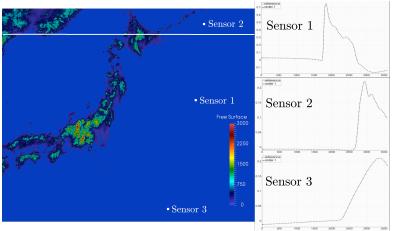
Order of accuracy assessment

The errors are collected in the graphs below.



We note that the first-order scheme is first-order accurate, while the second-order scheme is second-order accurate.

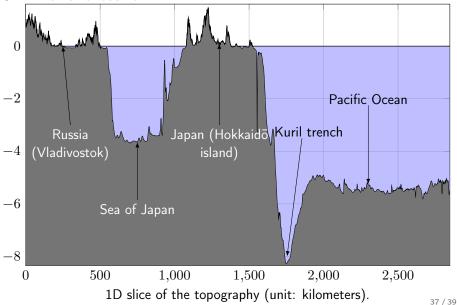
2011 Tōhoku tsunami



2D Cartesian scheme obtained from using the 1D scheme at each interface. Tsunami simulation on a Cartesian mesh: 13 million cells, Fortran code parallelized with OpenMP, run on 48 cores.

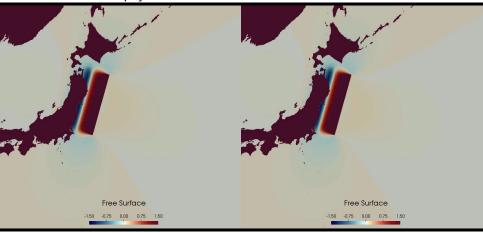
-Numerical simulations

2011 Tōhoku tsunami



2011 Tōhoku tsunami

physical time of the simulation: 1 hour

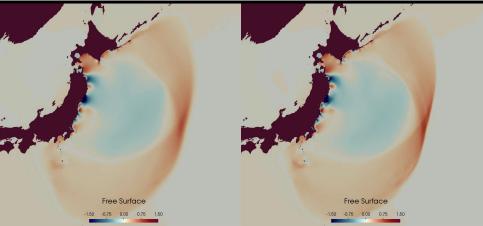


first-order scheme CPU time: $\sim 1.1~{\rm hour}$

second-order scheme CPU time: $\sim 2.7~{\rm hours}$

2011 Tōhoku tsunami

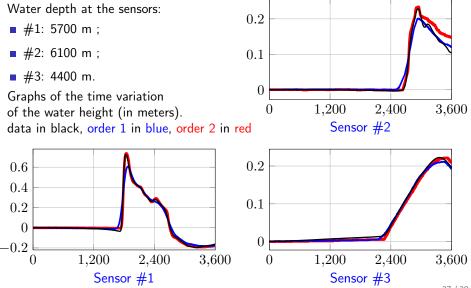
physical time of the simulation: 1 hour



first-order scheme CPU time: $\sim 1.1~{\rm hour}$

second-order scheme CPU time: $\sim 2.7~{\rm hours}$

2011 Tōhoku tsunami



Conclusion and perspectives

1 Brief introduction to Godunov-type schemes

- 2 Derivation of a generic first-order well-balanced scheme
- 3 Second-order extension
- 4 Numerical simulations
- 5 Conclusion and perspectives

Conclusion and perspectives

Conclusion

- We have presented a well-balanced and non-negativity-preserving numerical scheme for the shallow-water equations with topography and Manning friction, able to be applied to other source terms or combinations of source terms.
- We have also displayed results from a 2D well-balanced numerical method, coded in Fortran and parallelized with OpenMP.

This work has been published:

V. M.-D., C. Berthon, S. Clain and F. Foucher. "A well-balanced scheme for the shallow-water equations with topography". *Comput. Math. Appl.* 72(3):568–593, 2016.

V. M.-D., C. Berthon, S. Clain and F. Foucher. "A well-balanced scheme for the shallow-water equations with topography or Manning friction". *J. Comput. Phys.* 335:115–154, 2017.

C. Berthon, R. Loubère, and V. M.-D.

"A second-order well-balanced scheme for the shallow-water equations with topography". Accepted in *Springer Proc. Math. Stat.*, 2017.

Conclusion and perspectives

Perspectives

Work in progress or completed

- application to other source terms:
 - Coriolis force source term (work in progress)
 - breadth variation source term (work in progress)
- high-order extensions (order 6 achieved, application to large-scale phenomena in progress)

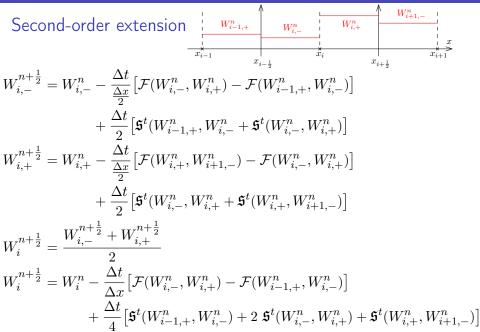
Long-term perspectives

- stability of the scheme: values of C, λ_L and λ_R to ensure the entropy preservation
- ensure the entropy preservation for the high-order scheme (use of a MOOD method)

└─ Thanks!

Thank you for your attention!

A well-balanced scheme for the shallow-water equations with topography and Manning friction



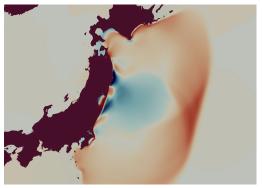
Appendices

Two-dimensional extension

2D shallow-water model: $\partial_t W + \boldsymbol{\nabla} \cdot \boldsymbol{F}(W) = \boldsymbol{S}^t(W) + \boldsymbol{S}^f(W)$

$$\begin{cases} \partial_t h + \boldsymbol{\nabla} \cdot \boldsymbol{q} = 0\\ \partial_t \boldsymbol{q} + \boldsymbol{\nabla} \cdot \left(\frac{\boldsymbol{q} \otimes \boldsymbol{q}}{h} + \frac{1}{2}gh^2 \mathbb{I}_2\right) = -gh\boldsymbol{\nabla} Z - \frac{k\boldsymbol{q} \|\boldsymbol{q}\|}{h^{\eta}} \end{cases}$$

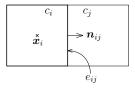
to the right: simulation of the 2011 Japan tsunami



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Two-dimensional extension

space discretization: Cartesian mesh



With $\mathcal{F}_{ij}^n = \mathcal{F}(W_i^n, W_j^n; n_{ij})$, the scheme reads:

$$W_i^{n+\frac{1}{2}} = W_i^n - \Delta t \sum_{j \in \nu_i} \frac{|e_{ij}|}{|c_i|} \mathcal{F}_{ij}^n + \frac{\Delta t}{2} \sum_{j \in \nu_i} (\mathcal{S}^t)_{ij}^n.$$

 W_i^{n+1} is obtained from $W_i^{n+\frac{1}{2}}$ with a splitting strategy:

$$\begin{cases} \partial_t h = 0\\ \partial_t q = -k \, q \| q \| h^{-\eta} & \rightsquigarrow \end{cases} \begin{cases} h_i^{n+1} = h_i^{n+\frac{1}{2}}\\ q_i^{n+1} = \frac{(\overline{h^{\eta}})_i^{n+1} q_i^{n+\frac{1}{2}}}{(\overline{h^{\eta}})_i^{n+1} + k \, \Delta t \, \left\| q_i^{n+\frac{1}{2}} \right\| \end{cases}$$

Two-dimensional extension

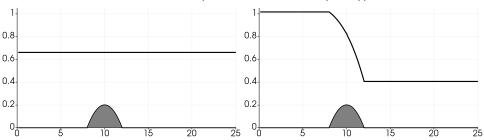
The 2D scheme is:

- non-negativity-preserving for the water height: $\forall i \in \mathbb{Z}, h_i^n \ge 0 \Longrightarrow \forall i \in \mathbb{Z}, h_i^{n+1} \ge 0;$
- able to deal with wet/dry transitions thanks to the semi-implicitation with the splitting method;
- well-balanced by direction for the shallow-water equations with friction and/or topography, i.e.:
 - it preserves all steady states at rest,
 - it preserves friction and/or topography steady states in the *x*-direction and the *y*-direction,
 - it does not preserve the fully 2D steady states.

A well-balanced scheme for the shallow-water equations with topography and Manning friction

Verification of the well-balance: topography

transcritical flow test case (see Goutal, Maurel (1997))

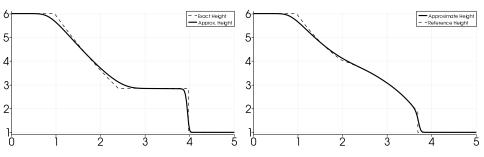


left panel: initial free surface at rest; water is injected from the left boundary right panel: free surface for the steady state solution, after a transient state

		L^1	L^2	L^{∞}
$\Phi = \frac{u^2}{2} + g(h+Z)$	errors on q errors on Φ	1.47e-14 1.67e-14	1.58e-14 2.13e-14	2.04e-14 4.26e-14

- Appendices

Riemann problems between two wet areas



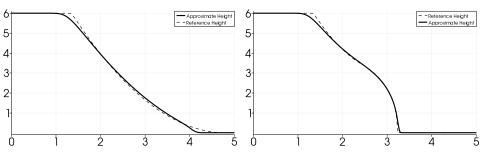
left: k = 0 left: k = 10

both Riemann problems have initial data $W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$ and

 $W_R = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, on [0, 5], with 200 points, and final time 0.2s

- Appendices

Riemann problems with a wet/dry transition



left: k = 0 left: k = 10

both Riemann problems have initial data $W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$ and

 $W_R = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, on [0, 5], with 200 points, and final time 0.15s

Appendices

Double dry dam-break on a sinusoidal bottom

