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General context 1/26

Multiscale model Mε, depending on a parameter ε

In the (space-time) domain, ε can
be of same order as the reference scale;
be small compared to the reference scale;
take intermediate values.
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When ε is small: M0 = lim
ε→0

Mε asympt. model

Difficulties:

Classical explicit schemes for Mε: they are stable and consistent if
the mesh resolves all the scales of ε. =⇒ very costly when ε→ 0

Schemes for M0 =⇒ the mesh is independent of ε
But: à M0 is not valid everywhere, it needs ε� 1

à the interface may be moving: how to locate it?



Principle of AP schemes 2/26

A possible solution: Asymptotic Preserving (AP) schemes

Use the multi-scale model Mε even for small ε.

Discretize Mε with a scheme preserving the limit ε→ 0.

à The mesh is independent of ε: Asymptotic stability.

à Recovery of an approximate solution of M0 when ε→ 0:
Asymptotic consistency.

à Asymptotically stable and consistent scheme
=⇒ Asymptotic preserving scheme (AP).

([Jin, ’99] kinetic→ hydro)

The AP scheme may be used only to reconnect Mε and M0.

Principle of AP schemes

A possible solution : AP schemes
Use the multi-scale model Mε where you want.

Discretize it with a scheme preserving the limit ε→ 0
➠ The mesh is independent of ε : Asymptotic stability.

➠ You recover an approximate solution of M0 when ε→ 0 :
Asymptotic consistency

Asymptotically stable and consistent scheme
⇒ Asymptotic preserving scheme (AP)

([S.Jin] kinetic→ hydro)

You can use the AP scheme only to reconnect Mε and M0

ε = O(1)
intermediate

zone
ε≪ 1

Mε
class. scheme

M0

class. scheme

Mε
AP scheme
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The multi-scale model and its asymptotic limit 3/26

à Isentropic Euler system in scaled variables: x ∈ Ω⊂ IRd , t ≥ 0

(Mε)

{
∂tρ + ∇ · (ρu) = 0 (1)ε

∂t(ρu) + ∇ · (ρu⊗u) +
1
ε

∇p(ρ) = 0 (2)ε
(with p(ρ) = ργ)

Parameter: ε = M2 = |u|2/(γp(ρ)/ρ), M = Mach number

Boundary and initial conditions:

u ·n = 0 on ∂Ω and

{
ρ(x ,0) = ρ0 + ε ρ̃0(x)

u(x ,0) = u0(x) + ε ũ0(x), with ∇ ·u0 = 0

The formal low Mach number limit ε→ 0:

(2)ε ⇒ ∇p(ρ) = 0 ⇒ ρ(x , t) = ρ(t)

(1)ε ⇒ |Ω|ρ′(t)+ρ(t)
∫

∂Ω
u ·n = 0 ⇒ ρ(t) = ρ(0) = ρ0 ⇒ ∇ ·u = 0



The multi-scale model and its asymptotic limit 4/26

The asymptotic model: Rigorous limit [Klainerman & Majda, ’81]:

(M0)


ρ = cst = ρ0,

ρ0∇ ·u = 0, (1)0

ρ0 ∂tu + ρ0 ∇ · (u⊗u) + ∇π1 = 0, (2)0

where
π1 = lim

ε→0

1
ε

(
p(ρ)−p(ρ0)

)
.

Explicit eq. for π1: ∂t(1)0−∇ · (2)0 =⇒ −∆π1 = ρ0 ∇2 : (u⊗u)

The pressure wave equation from Mε:

∂t(1)ε−∇ · (2)ε =⇒ ∂ttρ−
1
ε

∆p(ρ) = ∇2 : (ρu⊗u) (3)ε

From a numerical point of view

Explicit treatment of (3)ε =⇒ conditional stability ∆t ≤√ε∆x
Implicit treatment of (3)ε =⇒ uniform stability with respect to ε



An order 1 AP scheme in the low Mach limit 5/26

Time semi-discretization: [Degond, Deluzet, Sangam & Vignal, ’09],
[Degond & Tang, ’11], [Chalons, Girardin & Kokh, ’15]

If ρn and un are known at time tn:
ρn+1−ρn

∆t
+ ∇ · (ρu)n+1 = 0, (1) (AS)

(ρu)n+1− (ρu)n

∆t
+ ∇ · (ρu⊗u)n +

1
ε

∇p(ρn+1) = 0. (2) (AC)

ε→ 0 gives ∇p(ρn+1) = 0 =⇒ consistency at the limit
implicit treatment of the pressure wave eq. =⇒ uniform stability in ε

ρn+1−2ρn + ρn−1

∆t2 − 1
ε

∆p(ρn+1) = ∇2 : (ρU⊗U)n

∇ · (2) inserted into (1): gives an uncoupled formulation

ρn+1−ρn

∆t
+ ∇ · (ρu)n−∆t

ε
∆p(ρn+1)−∆t ∇2 : (ρu⊗u)n = 0



An order 1 AP scheme in the low Mach limit 6/26

The scheme proposed in [Dimarco, Loubère & Vignal, ’17]:

à Framework of IMEX (IMplicit-EXplicit) schemes:

∂t

(
ρ

ρu

)
︸ ︷︷ ︸

W

+∇ ·
(

0
ρu⊗u

)
︸ ︷︷ ︸

Fe(W )

+∇ ·
(

ρu
p(ρ)

ε Id

)
︸ ︷︷ ︸

Fi (W )

= 0.

à The CFL condition comes from the explicit flux Fe(W ): in 1D, we have

∆tAP ≤ ∆x
λn

j
=

∆x
2 |un

j |
,

(
recall ∆tclass. ≤ ∆x

√
ε

|un
i ±
√

γργ−1|

)
where λn

j are the eigenvalues of the explicit Jacobian matrix DFe(W n
j ).

à A linear stability analysis yields: if the implicit part is

• centered =⇒ L2 stability;

• upwind =⇒ TVD and L∞ stability.
SSP Strong Stability Preserving, [Gottlieb, Shu & Tadmor, ’01]



Importance of the upwind implicit viscosity 7/26

To highlight the relevance of upwinding the implicit viscosity, we display
the density ρ in the vicinity of a shock wave and a rarefaction wave
(ε = 0.99, 45 cells in the left panel, 150 cells in the right panel).
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ε = 0.99, 300 cells

Class: 273 loops
CPU time 0.07

AP: 510 loops
CPU time 1.46
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⇓
It is necessary to use high order schemes

But they must respect the AP properties

we also wish to retain the L∞ stability
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Principle of IMEX schemes 10/26

Bibliography for stiff source terms or ODE problems: Ascher,
Boscarino, Cafflish, Dimarco, Filbet, Gottlieb, Happenhofer, Higueras, Jin,
Koch, Kupka, LeFloch, Pareschi, Russo, Ruuth, Shu, Spiteri, Tadmor...

IMEX division: ∂tW + ∇ ·Fe(W ) + ∇ ·Fi(W ) = 0.

General principle: Step n: W n is known

Quadrature formula with intermediate values:

W (tn+1) = W (tn)−∆t
∫ tn+1

tn
∇ ·Fe(W (t))dt︸ ︷︷ ︸−∆t

∫ tn+1

tn
∇ ·Fi(W (t))dt︸ ︷︷ ︸

W n+1 = W n −∆t
s

∑
j=1

b̃j ∇ ·Fe(W n,j) −∆t
s

∑
j=1

bj ∇ ·Fi(W n,j)

Quadratures exact on the constants: ∑s
j=1 b̃j = ∑s

j=1 bj = 1

Intermediate values at times tn,j = tn + cj ∆t :

W n,j ≈W (tn,j) = W (tn) +
∫ tn,j

tn
∂tW (t) dt = W n + ∆t

∫ cj

0
∂tW (tn + s ∆t)ds



Principle of IMEX schemes 11/26

Quadrature formula for intermediate values: i = 1, · · · ,s
W n,j = W n−∆t ∑

k<j
ãj,k ∇ ·Fe(W n,k )−∆t ∑

k≤j
aj,k ∇ ·Fi(W n,k ),

Quadratures exact on the constants:
s

∑
k=1

ãj,k = c̃j ,
s

∑
k=1

aj,k = cj

W n+1 = W n−∆t
s

∑
j=1

b̃j ∇ ·Fe(W n,j)−∆t
s

∑
j=1

bj ∇ ·Fi(W n,j)

Butcher tableaux:
Explicit part Implicit part

0 0 0 · · · 0
c2 ã2,1 0 . . . 0
...

...
. . . . . .

...
cs ãs,1 . . . ãs,s−1 0

b̃1 . . . . . . b̃s

c1 a1,1 0 · · · 0
c2 a2,1 a2,2 . . . 0
...

...
. . . . . .

...
cs as,1 . . . as,s−1 as,s

b1 . . . . . . bs

Conditions for 2nd order: ∑bj cj = ∑bj c̃j = ∑ b̃j cj = ∑ b̃j c̃j = 1/2



AP Order 2 scheme for Euler 12/26

ARS discretization [Ascher, Ruuth & Spiteri, ’97]:
“only one” intermediate step

0 0 0 0
β β 0 0
1 β−1 2−β 0

β−1 2−β 0

0 0 0 0
β 0 β 0
1 0 1−β β

0 1−β β

β = 1− 1√
2

W n,1 = W n

W n,2 = W ? = W n−∆t β∇ ·Fe(W n)−∆t β∇ ·Fi(W ?)

W n,3 = W n+1 = W n−∆t(β−1)∇ ·Fe(W n)−∆t(2−β)∇ ·Fe(W ?)

−∆t(1−β)∇ ·Fi(W ?) −∆tβ∇ ·Fi(W n+1)
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Density ρ for the ARS time discretization: (1st order in space)
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Better understand the oscillations 14/26

Consider the scalar hyperbolic equation ∂tw + ∂x f (w) = 0.

Oscillations measured by the Total Variation and the L∞ norm:

TV (wn) = ∑
j
|wn

j+1−wn
j | and ‖wn‖∞ = max

j
|wn

j |.

TVD (Total Variation Diminishing) property and L∞ stability:{
TV (wn+1)≤ TV (wn)
‖wn+1‖∞ ≤ ‖wn‖∞

⇐⇒ no oscillations

First idea: Find an AP order 2 scheme which satisfies these properties.

Impossible

Theorem (Gottlieb, Shu & Tadmor, ’01): There are no implicit Runge-Kutta
schemes of order higher than one which preserves the TVD property.



A limiting procedure 15/26

Another idea: use a limited scheme.

W n+1 = θW n+1,O2 + (1−θ)W n+1,O1

W n+1,Oj = order j AP approximation
θ ∈ [0,1] largest value such that W n+1 does not oscillate

Toy scalar equation: ∂tw + ce ∂xw +
ci√

ε
∂xw = 0

Order 1 AP scheme with upwind space discretizations (ce,ci > 0):

wn+1,O1
j = wn

j − ce (wn
j −wn

j−1)− ci√
ε

(wn+1,O1
j −wn+1,O1

j−1 ).

Order 2 AP scheme: ARS with the parameter β = 1−1/
√

2.

Theorem (Dimarco, Loubère, M.-D., Vignal):
Under the CFL condition ∆t ≤∆x/ce,

θ =
β

1−β
' 0.41 =⇒

{
TV (wn+1)≤ TV (wn),
‖wn+1‖∞ ≤ ‖wn‖∞.



A MOOD procedure 16/26

Limited AP scheme:

wn+1,lim = θwn+1,O2 + (1−θ)wn+1,O1 with θ =
β

1−β
Problem: More accurate than order 1 but not order 2

Solution: MOOD procedure: see [Clain, Diot & Loubère, ’11]

On the toy equation: wn+1 MOOD AP scheme, CFL ∆t ≤∆x/ce

Compute the order 2 approximation wn+1,O2.
Detect if the max. principle is satisfied: ‖wn+1,O2‖∞ ≤ ‖wn‖∞ ?
If not, compute the limited AP approximation wn+1,lim.
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Error curves for the toy scalar equation 17/26

Order 2 in space: MUSCL (with the MC limiter) with explicit slopes
for implicit fluxes.
Error curves on a smooth solution for the toy scalar equation:
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Second-order scheme for the Euler equations 18/26

Recall the first-order IMEX scheme for the Euler system:
ρn+1−ρn

∆t
+ ∇ · (ρu)n+1 = 0, (1)

(ρu)n+1− (ρu)n

∆t
+ ∇ · (ρu⊗u)n +

1
ε

∇p(ρn+1) = 0. (2)

We apply the same convex combination procedure:

W n+1,lim = θW n+1,O2 + (1−θ)W n+1,O1, with θ =
β

1−β
.

 We use the value of θ given by the study of the toy scalar equation.

 But how can we detect oscillations for the MOOD procedure?



Euler equations: MOOD procedure 19/26

The previous detector (L∞ criterion on the solution) is irrelevant for the
Euler equations, since ρ and u do not satisfy a maximum principle.

 we need another detection criterion

We pick the Riemann invariants Φ± = u∓ 2
γ−1

√
1
ε

∂p(ρ)

∂ρ
: in a

Riemann problem, at least one of them satisfies a maximum principle.
[Smoller & Johnson, ’69]

On the Euler equations: W n+1 MOOD AP scheme, CFL ∆t ≤∆x/λ

Compute the order 2 approximation W n+1,O2.

Detect if both Riemann invariants break the maximum principle at
the same time.

If so, compute the limited AP approximation W n+1,lim.
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Riemann problem: left rarefaction wave, right shock ;
top curves: ε = 1 (50 pts) ; bottom curves: ε = 10−4 (500 pts)
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Riemann problem: left rarefaction wave, right shock ;
top curves: ε = 1 (50 pts) ; bottom curves: ε = 10−4 (500 pts)
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Riemann problem: left rarefaction wave, right shock ;
top curves: ε = 1 (50 pts) ; bottom curves: ε = 10−4 (500 pts)
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Euler equations: 1D Numerical results 21/26

Error curves in L∞ norm, smooth 1D solution
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Euler equations: 2D Numerical results 22/26

Error curves in L∞ norm, smooth 2D traveling vortex (Cartesian mesh)
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Euler equations: 2D Numerical results
{

200×200 cells
ε = 10−5 23/26

reference solution
obtained solving

the vorticity formulation
∂tω + U ·∇ω = 0,

with ω = ∂xv−∂y u
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Work in progress and perspectives: the system 24/26

Extension to the full Euler system:
∂tρ + ∇ · (ρU) = 0,

∂t(ρU) + ∇ · (ρU⊗U) +
1
ε

∇p = 0,

∂tE + ∇ · (U(E + p)) = 0,

with p = (γ−1)

(
E− ε

ρ|U|2
2

)
.

In 1D, to get an AP scheme ensuring that both the explicit and the
implicit parts are hyperbolic, we take:

W n+1−W n

∆t
+ An,n+1

e ∂xW n + An,n+1
i ∂xW n+1 = 0.

The scheme no longer takes the conservative IMEX form

W n+1−W n

∆t
+ ∂xFe(W n) + ∂xFi(W n) = 0.



Work in progress and perspectives: IMEX 25/26

1 Study a local value of θ, depending on the presence of oscilla-
tions in a given cell: how to reconcile the locality of θ with the non-
locality of the implicitation?

: cell with oscillation =⇒ θ < 1

: cell without oscillation =⇒ θ = 1 or θ < 1?

2 Compute optimal values of θ for other IMEX discretizations:
SSPRK explicit part?
custom-made second-order IMEX discretization to ensure θ
as close to 1 as possible?
higher-order discretizations?
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Domain decomposition with respect to ε:

intermediate
zone

ε = O(1) ε� 1

exp. scheme for Mε discretization of M0

Compressible Euler (Mε) Incompressible Euler (M0)
ε−→ 0

AP scheme for Mε

How to define the boundaries of the intermediate zones?

How to handle interfaces in 1D with first-order schemes?

How to extend to higher dimensions and higher-order schemes?



Thanks for your attention!



Euler equations: 2D Numerical results

To obtain a 2D reference incompressible solution, set ω = ∂xv−∂y u and
consider the vorticity formulation of the incompressible Euler equations:

∂tω + U ·∇ω = 0,

∇ ·U = 0 =⇒ ∃ stream function Ψ such that

{
U = t(∂y Ψ,−∂x Ψ),

−∆Ψ = ω.

To get the time evolution of the vorticity from ωn:

1 solve −∆Ψn = ωn for Ψn (with periodic BC and assuming that the
average of Ψ vanishes);

2 get Un from Un = t(∂y Ψn,−∂x Ψn);
3 solve ∂tω + Un ·∇ωn = 0 to get ωn+1.

We get a reference incompressible vorticity ω(x , t), to be compared
to the vorticity of the solution given by the compressible scheme with
small ε (we take ε = M2 = 10−5).



Bibliography
All speed schemes

Preconditioning methods: [Chorin, ’65], [Choi, Merkle, ’85],

[Turkel, ’87], [Van Leer, Lee & Roe, ’91], [Li & Gu ’08, ’10], . . .

Splitting and pressure correction: [Harlow & Amsden, ’68, ’71],

[Karki & Patankar, ’89], [Bijl & Wesseling, ’98], [Sewall & Tafti, ’08],

[Klein, Botta, Schneider, Munz & Roller ’08],

[Guillard, Murrone & Viozat ’99, ’04, ’06]

[Herbin, Kheriji & Latché ’12, ’13], . . .

à Asymptotic preserving schemes
[Degond, Deluzet, Sangam & Vignal, ’09], [Degond & Tang, ’11],
[Cordier, Degond & Kumbaro, ’12], [Grenier, Vila & Villedieu, ’13]
[Dellacherie, Omnès & Raviart, ’13],
[Noelle, Bispen, Arun, Lukáčová & Munz, ’14],
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