Second order Implicit-Explicit Total Variation Diminishing schemes for the Euler system in the low Mach regime

Victor Michel-Dansac

Séminaire EDP, Modélisation, Calcul Scientifique, Lyon, 27/03/2018

Giacomo Dimarco, Univ. of Ferrara, Italy

Raphaël Loubère, Univ. of Bordeaux, CNRS, France

Marie-Hélène Vignal, Univ. of Toulouse, France

Funding: ANR MOONRISE, SHOM

Outline

- 2 An order 1 AP scheme for the Euler system in the low Mach limit
- 3 Second-order schemes in time
- Second-order schemes in space and application to Euler
- 5 Work in progress and perspectives

General context

Multiscale model M_{ϵ} , depending on a parameter ϵ

In the (space-time) domain, $\boldsymbol{\epsilon}$ can

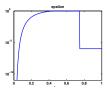
- be of same order as the reference scale;
- be small compared to the reference scale;
- take intermediate values.

When
$$\varepsilon$$
 is small: $M_0 = \lim_{\varepsilon \to 0} M_{\varepsilon}$ asympt. model

Difficulties:

- Classical explicit schemes for M_ε: they are stable and consistent if the mesh resolves all the scales of ε. ⇒ very costly when ε → 0
- Schemes for $M_0 \implies$ the mesh is independent of ϵ

But: M_0 is not valid everywhere, it needs $\varepsilon \ll 1$ the interface may be moving: how to locate it?



Principle of AP schemes

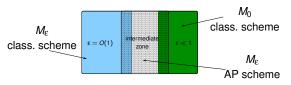
A possible solution: Asymptotic Preserving (AP) schemes

- Use the multi-scale model M_{ε} even for small ε .
- Discretize M_{ϵ} with a scheme preserving the limit $\epsilon \rightarrow 0$.
- The mesh is independent of ϵ : Asymptotic stability.
- Recovery of an approximate solution of M_0 when ε → 0: Asymptotic consistency.
- Asymptotically stable and consistent scheme

 \implies Asymptotic preserving scheme (AP).

([Jin, '99] kinetic \rightarrow hydro)

• The AP scheme may be used only to reconnect M_{ε} and M_0 .



Outline

2 An order 1 AP scheme for the Euler system in the low Mach limit

- 3 Second-order schemes in time
- Second-order schemes in space and application to Euler
- 5 Work in progress and perspectives

The multi-scale model and its asymptotic limit

■ Isentropic Euler system in scaled variables: $x \in \Omega \subset \mathbb{R}^d$, $t \ge 0$

$$(M_{\varepsilon}) \begin{cases} \partial_t \rho + \nabla \cdot (\rho \, u) = 0 & (1)_{\varepsilon} \\ \partial_t (\rho \, u) + \nabla \cdot (\rho \, u \otimes u) + \frac{1}{\varepsilon} \nabla \rho(\rho) = 0 & (2)_{\varepsilon} \end{cases} \quad (\text{with } \rho(\rho) = \rho^{\gamma})$$

3/26

Parameter: $\boldsymbol{\varepsilon} = M^2 = |\overline{u}|^2 / (\gamma p(\overline{\rho})/\overline{\rho}), \qquad M = \text{Mach number}$

Boundary and initial conditions:

$$u \cdot n = 0 \text{ on } \partial \Omega$$
 and
$$\begin{cases} \rho(x,0) = \rho_0 + \varepsilon \tilde{\rho}_0(x) \\ u(x,0) = u_0(x) + \varepsilon \tilde{u}_0(x), \text{ with } \nabla \cdot u_0 = 0 \end{cases}$$

The formal low Mach number limit $\epsilon \to 0$:

$$(2)_{\varepsilon} \Rightarrow \nabla \rho(\rho) = 0 \Rightarrow \rho(x,t) = \rho(t)$$

$$(1)_{\varepsilon} \Rightarrow |\Omega| \rho'(t) + \rho(t) \int_{\partial \Omega} u \cdot n = 0 \Rightarrow \rho(t) = \rho(0) = \rho_0 \Rightarrow \nabla \cdot u = 0$$

The multi-scale model and its asymptotic limit

The asymptotic model: Rigorous limit [Klainerman & Majda, '81]:

$$(M_0) \begin{cases} \rho = \operatorname{cst} = \rho_0, \\ \rho_0 \nabla \cdot u = 0, \\ \rho_0 \partial_t u + \rho_0 \nabla \cdot (u \otimes u) + \nabla \pi_1 = 0, \\ \pi_1 = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big(\rho(\rho) - \rho(\rho_0) \Big). \end{cases}$$
(1)₀
(1)₀
(2)₀

where

Explicit eq. for π_1 : $\partial_t(1)_0 - \nabla \cdot (2)_0 \implies -\Delta \pi_1 = \rho_0 \nabla^2 : (u \otimes u)$

The pressure wave equation from $M_{\rm F}$:

$$\partial_t(1)_{\varepsilon} - \nabla \cdot (2)_{\varepsilon} \implies \partial_{tt} \rho - \frac{1}{\varepsilon} \Delta \rho(\rho) = \nabla^2 : (\rho \, u \otimes u) \quad (3)_{\varepsilon}$$

From a numerical point of view

• Explicit treatment of $(3)_{\varepsilon} \implies$ conditional stability $\Delta t < \sqrt{\varepsilon} \Delta x$ • Implicit treatment of $(3)_{\epsilon} \implies$ uniform stability with respect to ϵ

An order 1 AP scheme in the low Mach limit

5/26

Time semi-discretization: [Degond, Deluzet, Sangam & Vignal, '09], [Degond & Tang, '11], [Chalons, Girardin & Kokh, '15]

If ρ^n and u^n are known at time t^n :

$$\begin{cases} \frac{\rho^{n+1}-\rho^{n}}{\Delta t}+\nabla\cdot(\rho u)^{n+1}=0, \quad (1) \text{ (AS)}\\ \frac{(\rho u)^{n+1}-(\rho u)^{n}}{\Delta t}+\nabla\cdot(\rho u\otimes u)^{n}+\frac{1}{\varepsilon}\nabla\rho(\rho^{n+1})=0. \quad (2) \text{ (AC)} \end{cases}$$

• $\epsilon \to 0$ gives $\nabla p(\rho^{n+1}) = 0 \implies$ consistency at the limit • implicit treatment of the pressure wave eq. \implies uniform stability in ϵ

$$\frac{\rho^{n+1}-2\rho^n+\rho^{n-1}}{\Delta t^2}-\frac{1}{\varepsilon}\Delta p(\rho^{n+1})=\nabla^2:(\rho U\otimes U)^n$$

 $\nabla \cdot (2)$ inserted into (1): gives an uncoupled formulation

$$\frac{\rho^{n+1}-\rho^n}{\Delta t}+\nabla\cdot(\rho u)^n-\frac{\Delta t}{\varepsilon}\Delta\rho(\rho^{n+1})-\Delta t\nabla^2:(\rho u\otimes u)^n=0$$

An order 1 AP scheme in the low Mach limit

6/26

The scheme proposed in [Dimarco, Loubère & Vignal, '17]:

Framework of IMEX (IMplicit-EXplicit) schemes:

$$\partial_t \underbrace{\begin{pmatrix} \rho \\ \rho u \end{pmatrix}}_{W} + \nabla \cdot \underbrace{\begin{pmatrix} 0 \\ \rho u \otimes u \end{pmatrix}}_{F_e(W)} + \nabla \cdot \underbrace{\begin{pmatrix} \rho u \\ \frac{p(\rho)}{\epsilon} Id \end{pmatrix}}_{F_i(W)} = 0.$$

The CFL condition comes from the explicit flux $F_e(W)$: in 1D, we have

$$\Delta t^{\mathsf{AP}} \leq \frac{\Delta x}{\lambda_j^n} = \frac{\Delta x}{2|u_j^n|}, \qquad \left(\operatorname{recall} \Delta t^{\operatorname{class.}} \leq \frac{\Delta x \sqrt{\epsilon}}{|u_j^n \pm \sqrt{\gamma \rho^{\gamma - 1}}|} \right)$$

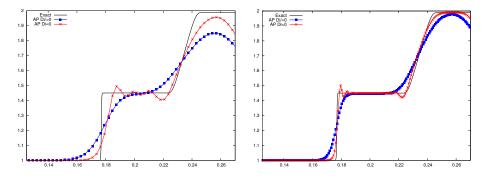
where λ_i^n are the eigenvalues of the explicit Jacobian matrix $DF_e(W_i^n)$.

A linear stability analysis yields: if the implicit part is

- centered $\implies L^2$ stability;
- upwind \implies TVD and L^{∞} stability. SSP Strong Stability Preserving, [Gottlieb, Shu & Tadmor, '01]

Importance of the upwind implicit viscosity

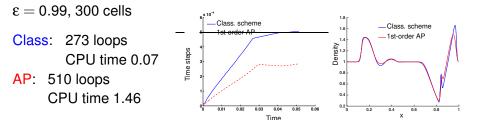
To highlight the relevance of upwinding the implicit viscosity, we display the density ρ in the vicinity of a shock wave and a rarefaction wave ($\epsilon = 0.99$, 45 cells in the left panel, 150 cells in the right panel).

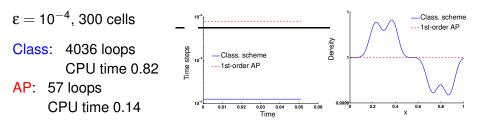


 \times : centered implicit discretization $\implies L^2$ stability and less diffusive

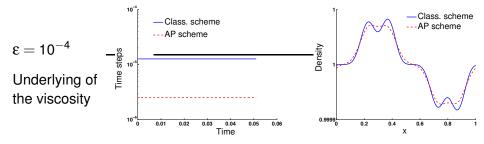
• : upwind implicit discretization $\implies L^{\infty}$ stability but more diffusive

AP but diffusive results, 1D test case





AP but diffusive results, 1D test case



It is necessary to use high order schemes But they must respect the AP properties we also wish to retain the L^{∞} stability

∜

Outline

General context: multi-scale models and principle of AP schemes

2 An order 1 AP scheme for the Euler system in the low Mach limit

Second-order schemes in time

Second-order schemes in space and application to Euler

5 Work in progress and perspectives

Principle of IMEX schemes

Bibliography for stiff source terms or ODE problems: Ascher,

Boscarino, Cafflish, Dimarco, Filbet, Gottlieb, Happenhofer, Higueras, Jin, Koch, Kupka, LeFloch, Pareschi, Russo, Ruuth, Shu, Spiteri, Tadmor...

IMEX division:
$$\partial_t W + \nabla \cdot F_e(W) + \nabla \cdot F_i(W) = 0.$$

General principle: Step n: *Wⁿ* is known

• Quadrature formula with intermediate values:

$$W(t^{n+1}) = W(t^{n}) - \Delta t \underbrace{\int_{t^{n}}^{t^{n+1}} \nabla \cdot F_{e}(W(t)) dt}_{j=1} - \Delta t \underbrace{\int_{t^{n}}^{t^{n+1}} \nabla \cdot F_{i}(W(t)) dt}_{j=1} - \Delta t \underbrace{\sum_{j=1}^{s} \tilde{b}_{j} \nabla \cdot F_{e}(W^{n,j})}_{j=1} - \Delta t \underbrace{\sum_{j=1}^{s} b_{j} \nabla \cdot F_{i}(W^{n,j})}_{j=1}$$
Quadratures exact on the constants: $\sum_{j=1}^{s} \tilde{b}_{j} = \sum_{j=1}^{s} b_{j} = 1$
Intermediate values at times $t^{n,j} = t^{n} + c_{j} \Delta t$:

$$W^{n,j} \approx W(t^{n,j}) = W(t^n) + \int_{t^n}^{t^{n,j}} \partial_t W(t) dt = W^n + \Delta t \int_0^{c_j} \partial_t W(t^n + s\Delta t)$$

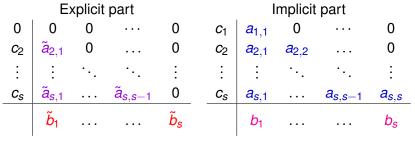
Principle of IMEX schemes

• Quadrature formula for intermediate values: $i = 1, \dots, s$

$$W^{n,j} = W^n - \Delta t \sum_{k < j} \tilde{a}_{j,k} \nabla \cdot F_e(W^{n,k}) - \Delta t \sum_{k \leq j} a_{j,k} \nabla \cdot F_i(W^{n,k}),$$

Quadratures exact on the constants: $\sum_{k=1}^s \tilde{a}_{j,k} = \tilde{c}_j, \sum_{k=1}^s a_{j,k} = c_j$
• $W^{n+1} = W^n - \Delta t \sum_{j=1}^s \tilde{b}_j \nabla \cdot F_e(W^{n,j}) - \Delta t \sum_{j=1}^s b_j \nabla \cdot F_i(W^{n,j})$

Butcher tableaux:



Conditions for 2nd order: $\sum b_j c_j = \sum b_j \tilde{c}_j = \sum \tilde{b}_j c_j = \sum \tilde{b}_j \tilde{c}_j = 1/2$

AP Order 2 scheme for Euler

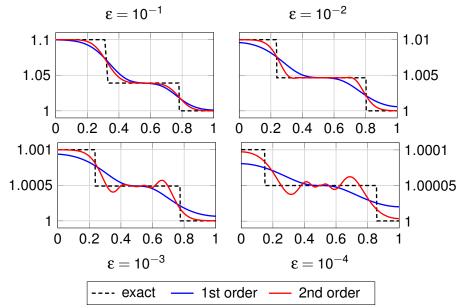
ARS discretization [Ascher, Ruuth & Spiteri, '97]: "only one" intermediate step

 $W^{n,1} = W^n$

$$W^{n,2} = W^* = W^n - \Delta t \beta \nabla \cdot F_e(W^n) - \Delta t \beta \nabla \cdot F_i(W^*)$$
$$W^{n,3} = W^{n+1} = W^n - \Delta t (\beta - 1) \nabla \cdot F_e(W^n) - \Delta t (2 - \beta) \nabla \cdot F_e(W^*)$$
$$- \Delta t (1 - \beta) \nabla \cdot F_i(W^*) - \Delta t \beta \nabla \cdot F_i(W^{n+1})$$

AP Order 2 scheme for Euler

Density ρ for the ARS time discretization: (1st order in space)



Better understand the oscillations

Consider the scalar hyperbolic equation $\partial_t w + \partial_x f(w) = 0$.

• Oscillations measured by the Total Variation and the L^{∞} norm:

$$TV(w^n) = \sum_j |w_{j+1}^n - w_j^n|$$
 and $||w^n||_{\infty} = \max_j |w_j^n|.$

• TVD (Total Variation Diminishing) property and L^{∞} stability:

$$\left\{\begin{array}{ll} TV(w^{n+1}) \leq TV(w^n) \\ \|w^{n+1}\|_{\infty} \leq \|w^n\|_{\infty} \end{array} \quad \iff \quad \text{no oscillations} \end{array}\right.$$

First idea: Find an AP order 2 scheme which satisfies these properties.

Impossible

Theorem (Gottlieb, Shu & Tadmor, '01): There are no implicit Runge-Kutta schemes of order higher than one which preserves the TVD property.

A limiting procedure

Another idea: use a limited scheme.

$$W^{n+1} = \theta W^{n+1,O2} + (1-\theta) W^{n+1,O1}$$

W^{n+1,Oj} = order *j* AP approximation
 θ ∈ [0,1] largest value such that *W*ⁿ⁺¹ does not oscillate

Toy scalar equation: $\partial_t w + c_e \partial_x w + \frac{c_i}{\sqrt{\epsilon}} \partial_x w = 0$

• Order 1 AP scheme with upwind space discretizations ($c_e, c_i > 0$): $w_j^{n+1,O1} = w_j^n - c_e(w_j^n - w_{j-1}^n) - \frac{c_i}{\sqrt{\epsilon}}(w_j^{n+1,O1} - w_{j-1}^{n+1,O1}).$

• Order 2 AP scheme: ARS with the parameter $\beta = 1 - 1/\sqrt{2}$.

Theorem (Dimarco, Loubère, M.-D., Vignal): Under the CFL condition $\Delta t \leq \Delta x/c_e$,

$$\theta = \frac{\beta}{1-\beta} \simeq 0.41 \quad \Longrightarrow \begin{cases} TV(w^{n+1}) \le TV(w^n), \\ \|w^{n+1}\|_{\infty} \le \|w^n\|_{\infty}. \end{cases}$$

A MOOD procedure

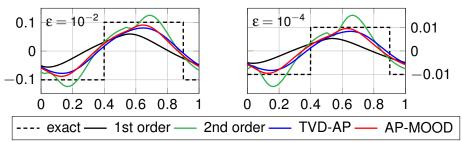
Limited AP scheme:

$$w^{n+1,lim} = \theta w^{n+1,O2} + (1-\theta) w^{n+1,O1}$$
 with $\theta = \frac{p}{1-\theta}$

Problem: More accurate than order 1 but not order 2 **Solution:** MOOD procedure: see [Clain, Diot & Loubère, '11]

On the toy equation: w^{n+1} MOOD AP scheme, CFL $\Delta t \leq \Delta x/c_e$

- Compute the order 2 approximation $w^{n+1,O2}$.
- Detect if the max. principle is satisfied: $\|w^{n+1,O2}\|_{\infty} \le \|w^n\|_{\infty}$?
- If not, compute the limited AP approximation w^{n+1,lim}.



O

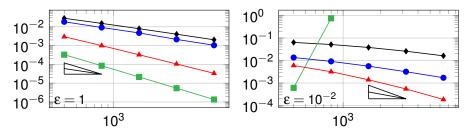
Outline

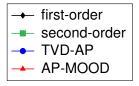
General context: multi-scale models and principle of AP schemes

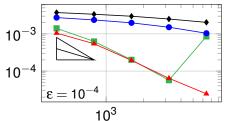
- 2 An order 1 AP scheme for the Euler system in the low Mach limit
- 3 Second-order schemes in time
- Second-order schemes in space and application to Euler
- 5 Work in progress and perspectives

Error curves for the toy scalar equation

- Order 2 in space: MUSCL (with the MC limiter) with explicit slopes for implicit fluxes.
- Error curves on a smooth solution for the toy scalar equation:







Second-order scheme for the Euler equations 18/26

Recall the first-order IMEX scheme for the Euler system:

$$\begin{cases} \frac{\rho^{n+1} - \rho^n}{\Delta t} + \nabla \cdot (\rho u)^{n+1} = 0, \qquad (1)\\ \frac{(\rho u)^{n+1} - (\rho u)^n}{\Delta t} + \nabla \cdot (\rho u \otimes u)^n + \frac{1}{\varepsilon} \nabla \rho(\rho^{n+1}) = 0. \qquad (2) \end{cases}$$

We apply the same convex combination procedure:

$$W^{n+1,lim} = \theta W^{n+1,O2} + (1-\theta) W^{n+1,O1}$$
, with $\theta = \frac{\beta}{1-\beta}$.

 \sim

 \rightsquigarrow We use the value of θ given by the study of the toy scalar equation.

→ But how can we detect oscillations for the MOOD procedure?

Euler equations: MOOD procedure

The previous detector (L^{∞} criterion on the solution) is irrelevant for the Euler equations, since ρ and u do not satisfy a maximum principle.

 \leadsto we need another detection criterion

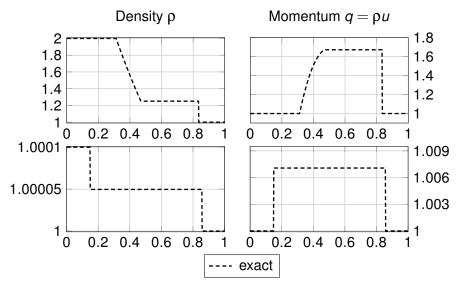
We pick the Riemann invariants
$$\Phi_{\pm} = u \mp \frac{2}{\gamma - 1} \sqrt{\frac{1}{\epsilon} \frac{\partial p(\rho)}{\partial \rho}}$$
: in a

Riemann problem, at least one of them satisfies a maximum principle. [Smoller & Johnson, '69]

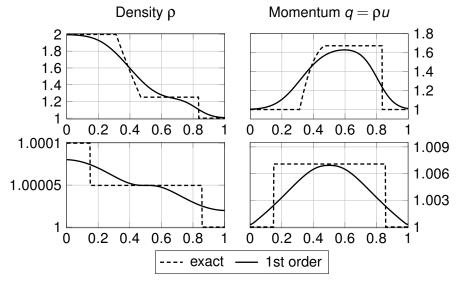
On the Euler equations: W^{n+1} MOOD AP scheme, CFL $\Delta t \leq \Delta x/\lambda$

- Compute the order 2 approximation $W^{n+1,O2}$.
- Detect if both Riemann invariants break the maximum principle at the same time.
- If so, compute the limited AP approximation $W^{n+1,lim}$.

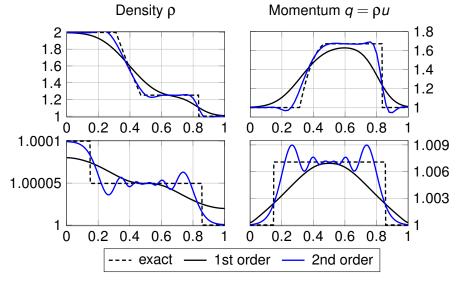
Riemann problem: left rarefaction wave, right shock ; top curves: $\varepsilon = 1$ (50 pts) ; bottom curves: $\varepsilon = 10^{-4}$ (500 pts)



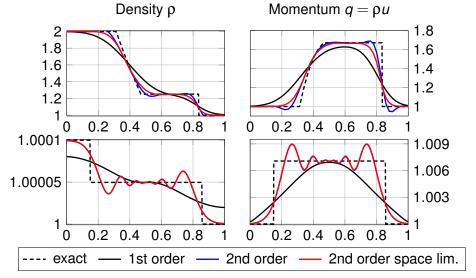
Riemann problem: left rarefaction wave, right shock ; top curves: $\varepsilon = 1$ (50 pts) ; bottom curves: $\varepsilon = 10^{-4}$ (500 pts)



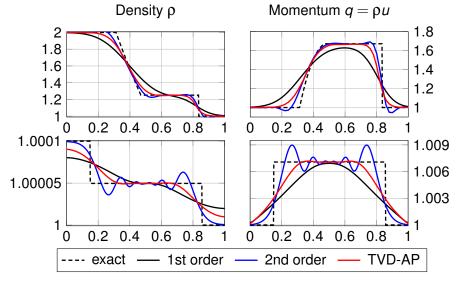
Riemann problem: left rarefaction wave, right shock ; top curves: $\epsilon = 1$ (50 pts) ; bottom curves: $\epsilon = 10^{-4}$ (500 pts)



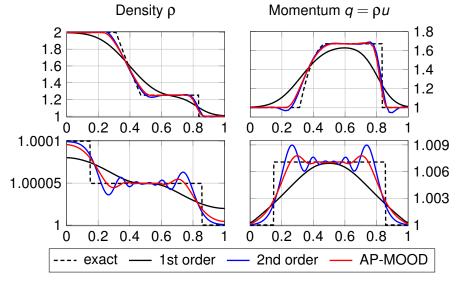
Riemann problem: left rarefaction wave, right shock ; top curves: $\varepsilon = 1$ (50 pts) ; bottom curves: $\varepsilon = 10^{-4}$ (500 pts)



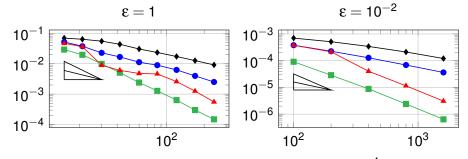
Riemann problem: left rarefaction wave, right shock ; top curves: $\varepsilon = 1$ (50 pts) ; bottom curves: $\varepsilon = 10^{-4}$ (500 pts)

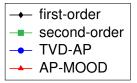


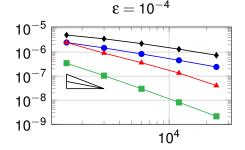
Riemann problem: left rarefaction wave, right shock ; top curves: $\epsilon = 1$ (50 pts) ; bottom curves: $\epsilon = 10^{-4}$ (500 pts)



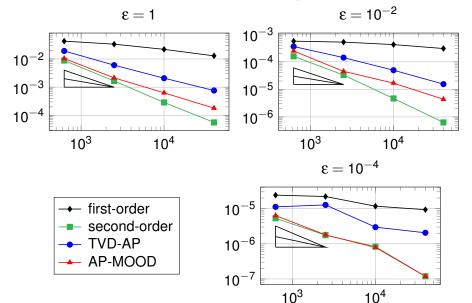
Error curves in L^{∞} norm, smooth 1D solution





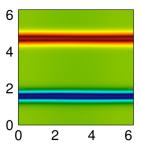


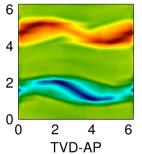
Error curves in L^{∞} norm, smooth 2D traveling vortex (Cartesian mesh)



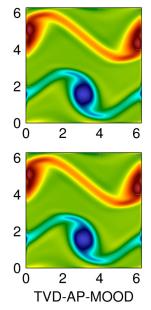
Euler equations: 2D Numerical results $\begin{cases} 200 \times 200 \text{ cells} \\ \epsilon = 10^{-5} \end{cases}$

1st-order AP





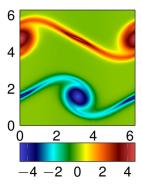
2nd-order AP



reference solution obtained solving the vorticity formulation $\partial_t \omega + U \cdot \nabla \omega = 0,$ with $\omega = \partial_x v - \partial_y u$

23/26

reference



Outline

General context: multi-scale models and principle of AP schemes

- 2 An order 1 AP scheme for the Euler system in the low Mach limit
- 3 Second-order schemes in time
- Second-order schemes in space and application to Euler

Work in progress and perspectives: the system 24/26

Extension to the full Euler system:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho U) = 0, \\ \partial_t (\rho U) + \nabla \cdot (\rho U \otimes U) + \frac{1}{\epsilon} \nabla \rho = 0, & \text{with} \quad \rho = (\gamma - 1) \left(E - \epsilon \frac{\rho |U|^2}{2} \right). \\ \partial_t E + \nabla \cdot (U(E + \rho)) = 0, \end{cases}$$

In 1D, to get an AP scheme ensuring that both the explicit and the implicit parts are hyperbolic, we take:

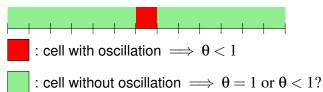
$$\frac{W^{n+1}-W^n}{\Delta t}+A_e^{n,n+1}\partial_XW^n+A_i^{n,n+1}\partial_XW^{n+1}=0.$$

The scheme no longer takes the conservative IMEX form

$$\frac{W^{n+1}-W^n}{\Delta t}+\partial_x F_{\theta}(W^n)+\partial_x F_i(W^n)=0.$$

Work in progress and perspectives: IMEX

- 25/26
- Study a local value of θ, depending on the presence of oscillations in a given cell: how to reconcile the locality of θ with the nonlocality of the implicitation?



- 2 Compute optimal values of θ for other IMEX discretizations:
 - SSPRK explicit part?
 - custom-made second-order IMEX discretization to ensure θ as close to 1 as possible?
 - higher-order discretizations?

Work in progress and perspectives: DD

Domain decomposition with respect to ε :

Compressible Euler
$$(M_{\epsilon})$$
Incompressible Euler (M_0) $\epsilon = O(1)$ intermediate $\epsilon \ll 1$ exp. scheme for M_{ϵ} AP scheme for M_{ϵ} discretization of M_0

- How to define the boundaries of the intermediate zones?
- How to handle interfaces in 1D with first-order schemes?
- How to extend to higher dimensions and higher-order schemes?

Thanks for your attention!

To obtain a 2D reference incompressible solution, set $\omega = \partial_x v - \partial_y u$ and consider the vorticity formulation of the incompressible Euler equations:

$$\partial_t \omega + U \cdot \nabla \omega = 0,$$

 $abla \cdot U = 0 \implies \exists \text{ stream function } \Psi \text{ such that } \begin{cases} U = {}^t(\partial_y \Psi, -\partial_x \Psi), \\ -\Delta \Psi = \omega. \end{cases}$

To get the time evolution of the vorticity from ω^n :

• solve $-\Delta \Psi^n = \omega^n$ for Ψ^n (with periodic BC and assuming that the average of Ψ vanishes);

2 get
$$U^n$$
 from $U^n = {}^t(\partial_y \Psi^n, -\partial_x \Psi^n);$

Solve $\partial_t \omega + U^n \cdot \nabla \omega^n = 0$ to get ω^{n+1} .

We get a reference incompressible vorticity $\omega(x, t)$, to be compared to the vorticity of the solution given by the compressible scheme with small ε (we take $\varepsilon = M^2 = 10^{-5}$).

Bibliography

All speed schemes

- Preconditioning methods: [Chorin, '65], [Choi, Merkle, '85], [Turkel, '87], [Van Leer, Lee & Roe, '91], [Li & Gu '08, '10], ...
- Splitting and pressure correction: [Harlow & Amsden, '68, '71], [Karki & Patankar, '89], [Bijl & Wesseling, '98], [Sewall & Tafti, '08],
 [Klein, Botta, Schneider, Munz & Roller '08],
 [Guillard, Murrone & Viozat '99, '04, '06]
 [Herbin, Kheriji & Latché '12, '13], ...
 - Asymptotic preserving schemes

[Degond, Deluzet, Sangam & Vignal, '09], [Degond & Tang, '11], [Cordier, Degond & Kumbaro, '12], [Grenier, Vila & Villedieu, '13] [Dellacherie, Omnès & Raviart, '13], [Noelle, Bispen, Arun, Lukáčová & Munz, '14], [Chalons, Girardin & Kokh, '15] [Dimarco, Loubère & Vignal, '17]