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A fully well-balanced scheme for the shallow-water equations with topography

Introduction and motivations

Several kinds of destructive geophysical flows

Dam failure (Malpasset, France, 1959) Tsunami (Tōhoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010) Mudslide (Madeira, Portugal, 2010)
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A fully well-balanced scheme for the shallow-water equations with topography

Introduction and motivations

The shallow-water equations

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
= −gh∂xZ

We can rewrite the equations as ∂tW + ∂xF (W ) = S(W ), with W =

(
h
q

)
.

x

h(x, t)

water surface

channel bottom

u(x, t)

Z(x)

Z(x) is the known
topography
g is the gravitational
constant
we label the water
discharge q := hu
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A fully well-balanced scheme for the shallow-water equations with topography

Introduction and motivations

Steady state solutions
Definition: Steady state solutions

W is a steady state solution iff ∂tW = 0, i.e. ∂xF (W ) = S(W ).

Taking ∂tW = 0 in the shallow-water equations leads to
∂xq = 0

∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ.

The smooth steady state solutions are therefore given by the
following statement of Bernoulli’s principle:

q = cst = q0

q2
0

2
∂x

(
1

h2

)
+ g∂x(h+ Z) = 0.
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A fully well-balanced scheme for the shallow-water equations with topography

Introduction and motivations

Steady state not captured in 1D

The initial condition is at rest; water is injected through the left
boundary.
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Introduction and motivations

Steady state not captured in 1D

The classical HLL numerical scheme converges towards a numerical
steady state which does not correspond to the physical one.
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A fully well-balanced scheme for the shallow-water equations with topography

Introduction and motivations

A real-life simulation:
the 2011 Tōhoku
tsunami. The water is
close to a steady state
at rest far from the
tsunami.
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A fully well-balanced scheme for the shallow-water equations with topography

Introduction and motivations

Objectives

Our goal is to derive a numerical method for the shallow-water
model that exactly preserves its stationary solutions on every mesh.

To that end, we seek a numerical scheme that:

1 is well-balanced for the shallow-water equations with
topography, i.e. it exactly preserves and captures the steady
states without having to solve the governing nonlinear
equation;

2 preserves the non-negativity of the water height;

3 can be easily extended for other source terms of the
shallow-water equations (e.g. friction or breadth).
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Introduction and motivations

Contents
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Brief introduction to Godunov-type schemes

Setting

Objective: Approximate the solution W (x, t) of the hyperbolic
system ∂tW + ∂xF (W ) = S(W ), with suitable initial and
boundary conditions.

We partition [a, b] in cells, of volume ∆x and of evenly spaced
centers xi, and we define:

xi− 1
2
and xi+ 1

2
, the boundaries of the cell i;

Wn
i , an approximation of W (x, t), constant in the cell i and

at time tn, which is defined as Wn
i =

1

∆x

∫ ∆x/2

∆x/2
W (x, tn)dx.

xi

W (x, t)

xi− 1
2

xi+ 1
2

Wn
i

x x
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A fully well-balanced scheme for the shallow-water equations with topography

Brief introduction to Godunov-type schemes

Using an approximate Riemann solver
As a consequence, at time tn, we have a succession of Riemann
problems (Cauchy problems with discontinuous initial data) at the
interfaces between cells:

∂tW + ∂xF (W ) = S(W )

W (x, tn) =

{
Wn

i if x < xi+ 1
2

Wn
i+1 if x > xi+ 1

2

xi xi+1xi+1
2

W n
i W n

i+1

For S(W ) 6= 0, the exact solution to these Riemann problems is
unknown or costly to compute  we require an approximation.
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A fully well-balanced scheme for the shallow-water equations with topography

Brief introduction to Godunov-type schemes

Using an approximate Riemann solver
We choose to use an approximate Riemann solver, as follows.

Wn
i Wn

i+1

Wn
i+ 1

2

λL
i+ 1

2
λR
i+ 1

2

xi+ 1
2

Wn
i+ 1

2

is an approximation of the interaction between Wn
i and

Wn
i+1 (i.e. of the solution to the Riemann problem), possibly

made of several constant states separated by discontinuities.

λL
i+ 1

2

and λR
i+ 1

2

are approximations of the wave speeds.
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Brief introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)

x

t

tn+1

tn
xixi− 1

2
xi+ 1

2

Wn
i

Wn
i− 1

2
Wn

i+ 1
2

λR
i− 1

2

λL
i+ 1

2

︷ ︸︸ ︷W∆(x, tn+1)

Wn
i−1 Wn

i+1

We define the time update as follows :

Wn+1
i :=

1

∆x

∫ x
i+1

2

x
i− 1

2

W∆(x, tn+1)dx.

Since Wn
i− 1

2

and Wn
i+ 1

2

are made of constant states, the above

integral is easy to compute.
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Derivation of a well-balanced scheme

The HLL approximate Riemann solver

To approximate solutions of
∂tW + ∂xF (W ) = 0, the HLL approximate
Riemann solver (Harten, Lax, van Leer
(1983)) may be chosen; it is denoted by
W∆ and displayed on the right.

WHLL

WL WR

λL

x

t

λR

0−∆x/2 ∆x/2

The consistency condition (as per Harten and Lax) holds if:

1

∆x

∫ ∆x/2

−∆x/2
W∆(∆t, x;WL,WR)dx =

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x;WL,WR)dx,

which gives WHLL =
λRWR − λLWL

λR − λL
− F (WR)− F (WL)

λR − λL
=

(
hHLL

qHLL

)
.

Note that, if hL > 0 and hR > 0, then hHLL > 0 for |λL| and |λR| large enough.
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Derivation of a well-balanced scheme

Modification of the HLL approximate Riemann solver
The shallow-water equations with the topography source term read
as follows: 

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
+ gh∂xZ = 0.
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Derivation of a well-balanced scheme

Modification of the HLL approximate Riemann solver
We can add the equation ∂tZ = 0, which corresponds to the fixed
geometry of the problem:
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Derivation of a well-balanced scheme

Modification of the HLL approximate Riemann solver
We can add the equation ∂tZ = 0, which corresponds to the fixed
geometry of the problem:

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
+ gh∂xZ = 0,

∂tZ = 0.

The equation ∂tZ = 0 induces a stationary wave associated to the
source term; we also note that q is a Riemann invariant for this wave.

To approximate solutions of
∂tW + ∂xF (W ) = S(W ), we thus use
the approximate Riemann solver
displayed on the right
(assuming λL < 0 < λR).

WL WR

λL λR0

W ∗
L W ∗

R
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A fully well-balanced scheme for the shallow-water equations with topography

Derivation of a well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W ∗L =

(
h∗L
q∗L

)
and W ∗R =

(
h∗R
q∗R

)
.

WL WR

λL λR0

W ∗
L W ∗

R

q is a 0-Riemann invariant  we take q∗L = q∗R = q∗ (relation 1)

Harten-Lax consistency gives us the following two relations:

λRh
∗
R − λLh∗L = (λR − λL)hHLL (relation 2)

q∗ = qHLL +
S∆x

λR − λL
(relation 3),

where S ' 1

∆x

1

∆t

∫ ∆x/2

−∆x/2

∫ ∆t

0

S(WR(x, t)) dt dx

next step: obtain a fourth relation
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A fully well-balanced scheme for the shallow-water equations with topography

Derivation of a well-balanced scheme

Obtaining an additional relation

Assume that WL and WR define a steady state, i.e. that they
satisfy the following discrete version of the steady relation
∂xF (W ) = S(W ) (where [X] = XR −XL):

1

∆x

(
q2

0

[
1

h

]
+
g

2

[
h2
])

= S.

For the steady state to be preserved, it
is sufficient to have h∗L = hL, h∗R = hR
and q∗ = q0.

0

WL WR

Assuming a steady state, we easily show that q∗ = q0. Therefore,
the additional relation should only link h∗L and h∗R.
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A fully well-balanced scheme for the shallow-water equations with topography

Derivation of a well-balanced scheme

Obtaining an additional relation
In order to determine an addition relation, we consider the discrete
steady relation, satisfied when WL and WR define a steady state:

q2
0

(
1

hR
− 1

hL

)
+
g

2

(
(hR)2 − (hL)2

)
= S∆x.

To ensure that h∗L = hL and h∗R = hR, we impose that h∗L and h∗R
satisfy the above relation, as follows:

q2
0

(
1

h∗R
− 1

h∗L

)
+
g

2

(
(h∗R)2 − (h∗L)2

)
= S∆x.

To avoid solving a nonlinear system, we elect to use the following
linearization of this relation:(

−(q∗)2

hLhR
+
g

2
(hL + hR)

)
︸ ︷︷ ︸

α

(h∗R − h∗L) = S∆x.
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A fully well-balanced scheme for the shallow-water equations with topography

Derivation of a well-balanced scheme

Determination of h∗L and h∗R

With the consistency relation between h∗L and h∗R, the intermediate
water heights satisfy the following linear system:{

α(h∗R − h∗L) = S∆x,

λRh
∗
R − λLh∗L = (λR − λL)hHLL.

Using both relations linking h∗L and h∗R, we obtain
h∗L = hHLL −

λRS∆x

α(λR − λL)
,

h∗R = hHLL −
λLS∆x

α(λR − λL)
,

where α =

(
−(q∗)2

hLhR
+
g

2
(hL + hR)

)
with q∗ = qHLL +

S∆x

λR − λL
.
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Derivation of a well-balanced scheme

Correction to ensure non-negative h∗L and h∗R
However, these expressions of h∗L and h∗R do not guarantee that the
intermediate heights are non-negative: instead, we use the following
cutoff (see Audusse, Chalons, Ung (2014)):


h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)
+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)
+

,

(
1− λL

λR

)
hHLL

)
.

Note that this cutoff does not interfere with:
the consistency condition λRh∗R − λLh∗L = (λR − λL)hHLL;

the well-balance property, since it is not activated when WL and
WR define a steady state.
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A fully well-balanced scheme for the shallow-water equations with topography

Derivation of a well-balanced scheme

Summary
The two-state approximate Riemann solver with intermediate states

W ∗L =

(
h∗L
q∗

)
and W ∗R =

(
h∗R
q∗

)
given by

q∗ = qHLL +
S∆x

λR − λL
,

h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)
+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)
+

,

(
1− λL

λR

)
hHLL

)
,

is consistent, non-negativity-preserving and well-balanced.

next step: determination of S according to the source term
definition (topography).
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Derivation of a well-balanced scheme

The topography source term

We now consider S(W ) = St(W ) = −gh∂xZ:
the smooth steady states are governed by

∂x

(
q2

0

h

)
+
g

2
∂x
(
h2
)

= −gh∂xZ,

q2
0

2
∂x

(
1

h2

)
+ g∂x(h+ Z) = 0,

−−−−−−−→discretization


q2

0

[
1

h

]
+
g

2

[
h2
]

= St∆x,

q2
0

2

[
1

h2

]
+ g[h+ Z] = 0.

We can exhibit an expression of q2
0 and thus obtain

St = −g 2hLhR
hL + hR

[Z]

∆x
+

g

2∆x

[h]3

hL + hR
.

However, when ZL = ZR, we have St 6= O(∆x), i.e. a loss of
consistency with St (see for instance Berthon, Chalons (2016)).
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Derivation of a well-balanced scheme

The topography source term
Instead, we set, for some constant C > 0,

St = −g 2hLhR
hL + hR

[Z]

∆x
+

g

2∆x

[h]3c
hL + hR

,

[h]c =

{
hR − hL if |hR − hL| ≤ C∆x,

sgn(hR − hL)C∆x otherwise.

Theorem: Well-balance for the topography source term

If WL and WR define a smooth steady state, i.e. if they satisfy

q2
0

2

[
1

h2

]
+ g[h+ Z] = 0,

then we have W ∗L = WL and W ∗R = WR and the approximate
Riemann solver is well-balanced. By construction, the Godunov-type
scheme using this approximate Riemann solver is consistent, fully
well-balanced and positivity-preserving.
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Numerical simulations
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Numerical simulations

Verification of the well-balance: topography

The initial condition is at rest; water is injected through the left
boundary.
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Numerical simulations

Verification of the well-balance: topography

The non-well-balanced HLL scheme converges towards a numerical
steady state which does not correspond to the physical one.
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Numerical simulations

Simulation of the 2011 Tōhoku tsunami
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Conclusion and perspectives

Conclusion

We have presented a well-balanced and non-negativity-preserving
numerical scheme, able to be applied to other source terms or
combinations of source terms.

We have also displayed results from a 2D well-balanced numerical
method, coded in Fortran and parallelized.

This work has been published:

V. Michel-Dansac et al. “A well-balanced scheme for the shallow-water
equations with topography”. In: Comput. Math. Appl. 72.3 (2016),
pp. 568–593

V. Michel-Dansac et al. “A well-balanced scheme for the shallow-water
equations with topography or Manning friction”. In: J. Comput. Phys.
(accepted) (2017)
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Conclusion and perspectives

Perspectives
Work in progress or completed

application to other source terms:

friction source term (completed, article accepted)
Coriolis force source term (work in progress)
breadth variation source term (work in progress)

high-order and 2D extensions (work in progress, collaboration
with R. Loubère)

Long-term perspectives

stability of the scheme: values of C, λL and λR to ensure the
entropy preservation

ensure the entropy preservation for the high-order scheme (use of
a MOOD method)
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Thanks!

Thank you for your attention!
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Appendices

Verification of the well-balance: topography
transcritical flow test case (see Goutal, Maurel (1997))

left panel: initial free surface at rest; water is injected from the left boundary
right panel: free surface for the steady state solution, after a transient state

Φ =
u2

2
+ g(h+ Z)

L1 L2 L∞

errors on q 1.47e-14 1.58e-14 2.04e-14
errors on Φ 1.67e-14 2.13e-14 4.26e-14
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Appendices

Riemann problems between two wet areas

left: k = 0 left: k = 10

both Riemann problems have initial data WL =

(
6

0

)
and

WR =

(
1

0

)
, on [0, 5], with 200 points, and final time 0.2s
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Appendices

Riemann problems with a wet/dry transition

left: k = 0 left: k = 10

both Riemann problems have initial data WL =

(
6

0

)
and

WR =

(
0

0

)
, on [0, 5], with 200 points, and final time 0.15s
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Appendices

Double dry dam-break on a sinusoidal bottom
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Japan tsunami: 1D slice
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