C. Berthon¹, S. Clain², F. Foucher^{1,3}, <u>V. Michel-Dansac⁴</u>

¹Laboratoire de Mathématiques Jean Leray, Université de Nantes ²Centre of Mathematics, Minho University ³École Centrale de Nantes ⁴Institut de Mathématiques de Toulouse

Tuesday, January 10th, 2016

Introduction and motivations

Several kinds of destructive geophysical flows

Dam failure (Malpasset, France, 1959)

Tsunami (Tōhoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010)

Mudslide (Madeira, Portugal, 2010)

The shallow-water equations

$$\begin{cases} \partial_t h + \partial_x (hu) = 0\\ \partial_t (hu) + \partial_x \left(hu^2 + \frac{1}{2}gh^2 \right) = -gh\partial_x Z \end{cases}$$

We can rewrite the equations as $\partial_t W + \partial_x F(W) = S(W)$, with $W = \binom{h}{q}$.

Steady state solutions

Definition: Steady state solutions

W is a steady state solution iff $\partial_t W = 0$, i.e. $\partial_x F(W) = S(W)$.

Taking $\partial_t W = 0$ in the shallow-water equations leads to

$$\begin{cases} \partial_x q = 0\\ \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) = -gh\partial_x Z. \end{cases}$$

The smooth steady state solutions are therefore given by the following statement of Bernoulli's principle:

$$\begin{cases} q = \operatorname{cst} = q_0 \\ \frac{q_0^2}{2} \partial_x \left(\frac{1}{h^2}\right) + g \partial_x (h + Z) = 0. \end{cases}$$

Introduction and motivations

Steady state not captured in 1D

The initial condition is at rest; water is injected through the left boundary.

Introduction and motivations

Steady state not captured in 1D

The classical HLL numerical scheme converges towards a numerical steady state which does not correspond to the physical one.

Introduction and motivations

Steady state not captured in 1D

The classical HLL numerical scheme converges towards a numerical steady state which does not correspond to the physical one.

A real-life simulation: the 2011 Tōhoku tsunami. The water is close to a steady state at rest far from the tsunami.

Objectives

Our goal is to derive a numerical method for the shallow-water model that exactly preserves its stationary solutions on every mesh.

To that end, we seek a numerical scheme that:

- is well-balanced for the shallow-water equations with topography, i.e. it exactly preserves and captures the steady states without having to solve the governing nonlinear equation;
- **2** preserves the non-negativity of the water height;
- **3** can be easily extended for other source terms of the shallow-water equations (e.g. friction or breadth).

Contents

1 Brief introduction to Godunov-type schemes

2 Derivation of a well-balanced scheme

- 3 Numerical simulations
- 4 Conclusion and perspectives

1 Brief introduction to Godunov-type schemes

2 Derivation of a well-balanced scheme

3 Numerical simulations

4 Conclusion and perspectives

Setting

Objective: Approximate the solution W(x,t) of the hyperbolic system $\partial_t W + \partial_x F(W) = S(W)$, with suitable initial and boundary conditions.

We partition [a, b] in *cells*, of volume Δx and of evenly spaced centers x_i , and we define:

•
$$x_{i-\frac{1}{2}}$$
 and $x_{i+\frac{1}{2}}$, the boundaries of the cell i ;
• W_i^n , an approximation of $W(x,t)$, constant in the cell i and
at time t^n , which is defined as $W_i^n = \frac{1}{\Delta x} \int_{\Delta x/2}^{\Delta x/2} W(x,t^n) dx$.

Using an approximate Riemann solver

As a consequence, at time t^n , we have a succession of Riemann problems (Cauchy problems with discontinuous initial data) at the interfaces between cells:

For $S(W) \neq 0$, the exact solution to these Riemann problems is unknown or costly to compute \rightsquigarrow we require an approximation.

Using an approximate Riemann solver

We choose to use an approximate Riemann solver, as follows.

- $W_{i+\frac{1}{2}}^{n}$ is an approximation of the interaction between W_{i}^{n} and W_{i+1}^{n} (i.e. of the solution to the Riemann problem), possibly made of several constant states separated by discontinuities.
- $\lambda_{i+\frac{1}{2}}^L$ and $\lambda_{i+\frac{1}{2}}^R$ are approximations of the wave speeds.

Brief introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)

We define the time update as follows :

$$W_i^{n+1} := \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W^{\Delta}(x, t^{n+1}) dx.$$

Since $W_{i-\frac{1}{2}}^n$ and $W_{i+\frac{1}{2}}^n$ are made of constant states, the above integral is easy to compute.

1 Brief introduction to Godunov-type schemes

2 Derivation of a well-balanced scheme

3 Numerical simulations

4 Conclusion and perspectives

The HLL approximate Riemann solver

To approximate solutions of $\partial_t W + \partial_x F(W) = 0$, the HLL approximate Riemann solver (Harten, Lax, van Leer (1983)) may be chosen; it is denoted by W^{Δ} and displayed on the right.

The consistency condition (as per Harten and Lax) holds if:

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W^{\Delta}(\Delta t, x; W_L, W_R) dx = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x; W_L, W_R) dx,$$

which gives
$$W_{HLL} = \frac{\lambda_R W_R - \lambda_L W_L}{\lambda_R - \lambda_L} - \frac{F(W_R) - F(W_L)}{\lambda_R - \lambda_L} = \binom{h_{HLL}}{q_{HLL}}.$$

Note that, if $h_L > 0$ and $h_R > 0$, then $h_{HLL} > 0$ for $|\lambda_L|$ and $|\lambda_R|$ large enough.

Derivation of a well-balanced scheme

Modification of the HLL approximate Riemann solver

The shallow-water equations with the topography source term read as follows:

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2 \right) + gh\partial_x Z = 0. \end{cases}$$

Modification of the HLL approximate Riemann solver

We can add the equation $\partial_t Z = 0$, which corresponds to the fixed geometry of the problem:

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) + gh\partial_x Z = 0, \\ \partial_t Z = 0. \end{cases}$$

Modification of the HLL approximate Riemann solver

We can add the equation $\partial_t Z = 0$, which corresponds to the fixed geometry of the problem:

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) + gh\partial_x Z = 0, \\ \partial_t Z = 0. \end{cases}$$

The equation $\partial_t Z = 0$ induces a stationary wave associated to the source term; we also note that q is a Riemann invariant for this wave.

To approximate solutions of $\partial_t W + \partial_x F(W) = S(W)$, we thus use the approximate Riemann solver displayed on the right (assuming $\lambda_L < 0 < \lambda_R$).

Derivation of a well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

Harten-Lax consistency gives us the following two relations:

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

Harten-Lax consistency gives us the following two relations:

•
$$\lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}$$
 (relation 2)

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

Harten-Lax consistency gives us the following two relations:

•
$$\lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}$$
 (relation 2)
• $q^* = q_{HLL} + \frac{\overline{S}\Delta x}{\lambda_R - \lambda_L}$ (relation 3),
where $\overline{S} \simeq \frac{1}{\Delta x} \frac{1}{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} \int_0^{\Delta t} S(W_R(x, t)) dt dx$

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$ and $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$.

• q is a 0-Riemann invariant \rightsquigarrow we take $q_L^* = q_R^* = q^*$ (relation 1)

Harten-Lax consistency gives us the following two relations:

•
$$\lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}$$
 (relation 2)
• $q^* = q_{HLL} + \frac{\overline{S}\Delta x}{\lambda_R - \lambda_L}$ (relation 3),
where $\overline{S} \simeq \frac{1}{\Delta x} \frac{1}{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} \int_0^{\Delta t} S(W_R(x, t)) dt dx$

next step: obtain a fourth relation

Obtaining an additional relation

Assume that W_L and W_R define a steady state, i.e. that they satisfy the following discrete version of the steady relation $\partial_x F(W) = S(W)$ (where $[X] = X_R - X_L$):

$$\frac{1}{\Delta x} \left(q_0^2 \left[\frac{1}{h} \right] + \frac{g}{2} \left[h^2 \right] \right) = \overline{S}.$$

For the steady state to be preserved, it is sufficient to have $h_L^* = h_L$, $h_R^* = h_R$ W_L and $q^* = q_0$.

Assuming a steady state, we easily show that $q^* = q_0$. Therefore, the additional relation should only link h_L^* and h_R^* .

Obtaining an additional relation

In order to determine an addition relation, we consider the discrete steady relation, satisfied when W_L and W_R define a steady state:

$$q_0^2 \left(\frac{1}{h_R} - \frac{1}{h_L} \right) + \frac{g}{2} \left((h_R)^2 - (h_L)^2 \right) = \overline{S} \Delta x.$$

To ensure that $h_L^* = h_L$ and $h_R^* = h_R$, we impose that h_L^* and h_R^* satisfy the above relation, as follows:

$$q_0^2 \left(\frac{1}{h_R^*} - \frac{1}{h_L^*}\right) + \frac{g}{2} \left((h_R^*)^2 - (h_L^*)^2\right) = \overline{S} \Delta x.$$

To avoid solving a nonlinear system, we elect to use the following linearization of this relation:

$$\underbrace{\left(\frac{-(q^*)^2}{h_L h_R} + \frac{g}{2}(h_L + h_R)\right)}_{\alpha}(h_R^* - h_L^*) = \overline{S}\Delta x.$$

/ 24

Determination of h_L^* and h_R^*

With the consistency relation between h_L^* and h_R^* , the intermediate water heights satisfy the following linear system:

$$\begin{cases} \alpha(h_R^* - h_L^*) = \overline{S}\Delta x, \\ \lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}. \end{cases}$$

Using both relations linking h_L^* and h_R^* , we obtain

$$\begin{cases} h_L^* = h_{HLL} - \frac{\lambda_R \overline{S} \Delta x}{\alpha (\lambda_R - \lambda_L)}, \\ h_R^* = h_{HLL} - \frac{\lambda_L \overline{S} \Delta x}{\alpha (\lambda_R - \lambda_L)}, \end{cases}$$

where $\alpha = \left(\frac{-(q^*)^2}{h_L h_R} + \frac{g}{2}(h_L + h_R)\right)$ with $q^* = q_{HLL} + \frac{\overline{S} \Delta x}{\lambda_R - \lambda_R}$

Derivation of a well-balanced scheme

Correction to ensure non-negative h_L^* and h_R^*

However, these expressions of h_L^* and h_R^* do not guarantee that the intermediate heights are non-negative: instead, we use the following cutoff (see Audusse, Chalons, Ung (2014)):

$$\begin{cases} h_L^* = \min\left(\left(h_{HLL} - \frac{\lambda_R \overline{S} \Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_R}{\lambda_L}\right) h_{HLL}\right), \\ h_R^* = \min\left(\left(h_{HLL} - \frac{\lambda_L \overline{S} \Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_L}{\lambda_R}\right) h_{HLL}\right). \end{cases}$$

Note that this cutoff does not interfere with:

- the consistency condition $\lambda_R h_R^* \lambda_L h_L^* = (\lambda_R \lambda_L) h_{HLL}$;
- the well-balance property, since it is not activated when W_L and W_R define a steady state.

Summary

The two-state approximate Riemann solver with intermediate states

$$\begin{split} W_L^* &= \begin{pmatrix} h_L^* \\ q^* \end{pmatrix} \text{ and } W_R^* = \begin{pmatrix} h_R^* \\ q^* \end{pmatrix} \text{ given by} \\ \begin{cases} q^* &= q_{HLL} + \frac{\overline{S}\Delta x}{\lambda_R - \lambda_L}, \\ h_L^* &= \min\left(\left(h_{HLL} - \frac{\lambda_R \overline{S}\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_R}{\lambda_L}\right)h_{HLL}\right), \\ h_R^* &= \min\left(\left(h_{HLL} - \frac{\lambda_L \overline{S}\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_L}{\lambda_R}\right)h_{HLL}\right), \end{split}$$

is consistent, non-negativity-preserving and well-balanced.

next step: determination of \overline{S} according to the source term definition (topography).

The topography source term

We now consider $S(W) = S^t(W) = -gh\partial_x Z$: the smooth steady states are governed by

$$\frac{\partial_x \left(\frac{q_0^2}{h}\right) + \frac{g}{2} \partial_x \left(h^2\right) = -gh \partial_x Z, \\ \frac{q_0^2}{2} \partial_x \left(\frac{1}{h^2}\right) + g \partial_x (h+Z) = 0, \\ \end{bmatrix} \xrightarrow{\text{discretization}} \begin{cases} q_0^2 \left[\frac{1}{h}\right] + \frac{g}{2} \left[h^2\right] = \overline{S}^t \Delta x, \\ \frac{q_0^2}{2} \left[\frac{1}{h^2}\right] + g[h+Z] = 0. \end{cases}$$

We can exhibit an expression of q_0^2 and thus obtain

$$\bar{S}^t = -g \frac{2h_L h_R}{h_L + h_R} \frac{[Z]}{\Delta x} + \frac{g}{2\Delta x} \frac{[h]^3}{h_L + h_R}$$

However, when $Z_L = Z_R$, we have $\overline{S}^t \neq \mathcal{O}(\Delta x)$, i.e. a loss of consistency with S^t (see for instance Berthon, Chalons (2016)).

The topography source term

Instead, we set, for some constant C > 0,

$$\begin{cases} \overline{S}^t = -g \frac{2h_L h_R}{h_L + h_R} \frac{[Z]}{\Delta x} + \frac{g}{2\Delta x} \frac{[h]_c^3}{h_L + h_R}, \\ [h]_c = \begin{cases} h_R - h_L & \text{if } |h_R - h_L| \le C\Delta x, \\ \operatorname{sgn}(h_R - h_L) C\Delta x & \text{otherwise.} \end{cases} \end{cases}$$

Theorem: Well-balance for the topography source term

If W_L and W_R define a smooth steady state, i.e. if they satisfy

$$\frac{q_0^2}{2} \left[\frac{1}{h^2} \right] + g[h+Z] = 0,$$

then we have $W_L^* = W_L$ and $W_R^* = W_R$ and the approximate Riemann solver is well-balanced. By construction, the Godunov-type scheme using this approximate Riemann solver is consistent, fully well-balanced and positivity-preserving.

1 Brief introduction to Godunov-type schemes

2 Derivation of a well-balanced scheme

3 Numerical simulations

4 Conclusion and perspectives

-Numerical simulations

Verification of the well-balance: topography

The initial condition is at rest; water is injected through the left boundary.

-Numerical simulations

Verification of the well-balance: topography

The non-well-balanced HLL scheme converges towards a numerical steady state which does not correspond to the physical one.

-Numerical simulations

Verification of the well-balance: topography

The non-well-balanced HLL scheme converges towards a numerical steady state which does not correspond to the physical one. The well-balanced scheme converges towards the physical steady state. 21/24

-Numerical simulations

Verification of the well-balance: topography

The non-well-balanced HLL scheme converges towards a numerical steady state which does not correspond to the physical one. The well-balanced scheme converges towards the physical steady state. ^{21/24}

-Numerical simulations

Verification of the well-balance: topography

The non-well-balanced HLL scheme converges towards a numerical steady state which does not correspond to the physical one. The well-balanced scheme converges towards the physical steady state. ^{21/24}

Simulation of the 2011 Tōhoku tsunami

Simulation of the 2011 Tōhoku tsunami

Simulation of the 2011 Tōhoku tsunami

Conclusion and perspectives

1 Brief introduction to Godunov-type schemes

2 Derivation of a well-balanced scheme

3 Numerical simulations

Conclusion and perspectives

Conclusion

- We have presented a well-balanced and non-negativity-preserving numerical scheme, able to be applied to other source terms or combinations of source terms.
- We have also displayed results from a 2D well-balanced numerical method, coded in Fortran and parallelized.

This work has been published:

V. Michel-Dansac et al. "A well-balanced scheme for the shallow-water equations with topography". In: *Comput. Math. Appl.* 72.3 (2016), pp. 568–593

V. Michel-Dansac et al. "A well-balanced scheme for the shallow-water equations with topography or Manning friction". In: *J. Comput. Phys. (accepted)* (2017)

Conclusion and perspectives

Perspectives

Work in progress or completed

- application to other source terms:
 - friction source term (completed, article accepted)
 - Coriolis force source term (work in progress)
 - breadth variation source term (work in progress)
- high-order and 2D extensions (work in progress, collaboration with R. Loubère)

Long-term perspectives

- stability of the scheme: values of C, λ_L and λ_R to ensure the entropy preservation
- ensure the entropy preservation for the high-order scheme (use of a MOOD method)

-Thanks!

Thank you for your attention!

A fully well-balanced scheme for the shallow-water equations with topography

Appendices

Verification of the well-balance: topography

transcritical flow test case (see Goutal, Maurel (1997))

left panel: initial free surface at rest; water is injected from the left boundary right panel: free surface for the steady state solution, after a transient state

		L^1	L^2	L^{∞}
$\Phi = \frac{u^2}{2} + g(h+Z)$	errors on q errors on Φ	1.47e-14 1.67e-14	1.58e-14 2.13e-14	2.04e-14 4.26e-14

- Appendices

Riemann problems between two wet areas

left: k = 0 left: k = 10

both Riemann problems have initial data $W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$ and

 $W_R = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, on [0, 5], with 200 points, and final time 0.2s

Appendices

Riemann problems with a wet/dry transition

left: k = 0 left: k = 10

both Riemann problems have initial data $W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$ and

 $W_R = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, on [0, 5], with 200 points, and final time 0.15s

Appendices

Double dry dam-break on a sinusoidal bottom

Appendices

Bibliography

Preservation of the lake at rest

A. Bermudez and M. E. Vazquez. "Upwind methods for hyperbolic conservation laws with source terms". In: *Comput. & Fluids* 23.8 (1994), pp. 1049–1071

J. M. Greenberg and A.-Y. LeRoux. "A well-balanced scheme for the numerical processing of source terms in hyperbolic equations". In: *SIAM J. Numer. Anal.* 33.1 (1996), pp. 1–16

E. Audusse et al. "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows". In: *SIAM J. Sci. Comput.* 25.6 (2004), pp. 2050–2065

C. Berthon and F. Foucher. "Efficient well-balanced hydrostatic upwind schemes for shallow-water equations". In: *J. Comput. Phys.* 231.15 (2012), pp. 4993–5015

E. Audusse et al. "A simple well-balanced and positive numerical scheme for the shallow-water system". In: *Commun. Math. Sci.* 13.5 (2015), pp. 1317–1332

Bibliography

Fully well-balanced schemes

L. Gosse. "A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms". In: *Comput. Math. Appl.* 39.9-10 (2000), pp. 135–159

M. J. Castro et al. "Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique". In: *Math. Models Methods Appl. Sci.* 17.12 (2007), pp. 2055–2113

U. S. Fjordholm et al. "Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography". In: *J. Comput. Phys.* 230.14 (2011), pp. 5587–5609

Y. Xing et al. "On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations". In: *J. Sci. Comput.* 48.1-3 (2011), pp. 339–349

C. Berthon and C. Chalons. "A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations". In: *Math. Comp.* 85.299 (2016), pp. 1281–1307

V. Michel-Dansac et al. "A well-balanced scheme for the shallow-water equations with topography". In: *Comput. Math. Appl.* 72.3 (2016), pp. 568–593

Bibliography

High-order well-balanced schemes and friction

M. Castro et al. "High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems". In: *Math. Comp.* 75.255 (2006), pp. 1103–1134

M. J. Castro Díaz et al. "High order exactly well-balanced numerical methods for shallow water systems". In: J. Comput. Phys. 246 (2013), pp. 242–264

S. Clain and J. Figueiredo. "The MOOD method for the non-conservative shallow-water system". working paper or preprint. 2014

Q. Liang and F. Marche. "Numerical resolution of well-balanced shallow water equations with complex source terms". In: *Adv. Water Resour.* 32.6 (2009), pp. 873–884

A. Chertock et al. "Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms". In: *Internat. J. Numer. Methods Fluids* 78.6 (2015), pp. 355–383