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A fully well-balanced scheme for the shallow-water equations with topography
L Introduction and motivations

Several kinds of destructive geophysical flows
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Tsunami (Tohoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010) Mudslide (Madeira, Portugal, 2010)
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L Introduction and motivations

The shallow-water equations

uh + Oy (hu) = 0

Or(hu) + 0, (hu2 + %gh2) = —ghd, Z

We can rewrite the equations as O,V + 0, F' (W) = S(W), with W = <Z>

water surface ™ Z(CL’) is the known
W hiz, 1) topography

m ¢ is the gravitational
channel bottom
Z(z) constant

m we label the water
discharge ¢ := hu

x
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Steady state solutions

Definition: Steady state solutions

W is a steady state solution iff O,WW =0, i.e. 0, F(W) = S(W).

Taking 0;W = 0 in the shallow-water equations leads to
0zq=0

2
q Ly
x| 1 a - - T
6<h—|—2gh> gh0. Z

The smooth steady state solutions are therefore given by the
following statement of Bernoulli's principle:

q = cst = qo
a5 (1
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Steady state not captured in 1D
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The initial condition is at rest; water is injected through the left
boundary.
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Steady state not captured in 1D
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1.5
1
0.5
—Exact Free Surface
0 - Approximate Free Surface
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The classical HLL numerical scheme converges towards a numerical

steady state which does not correspond to the physical one.
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Steady state not captured in 1D

T
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—Exact Free Surface
1.9 - Approximate Free Surface
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The classical HLL numerical scheme converges towards a numerical

steady state which does not correspond to the physical one.
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A real-life simulation:
the 2011 Tohoku
tsunami. The water is
close to a steady state
at rest far from the
tsunami.
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L Introduction and motivations
Objectives

Our goal is to derive a numerical method for the shallow-water
model that exactly preserves its stationary solutions on every mesh.

To that end, we seek a numerical scheme that:

is well-balanced for the shallow-water equations with
topography, i.e. it exactly preserves and captures the steady
states without having to solve the governing nonlinear
equation;

preserves the non-negativity of the water height;

can be easily extended for other source terms of the
shallow-water equations (e.g. friction or breadth).
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L Brief introduction to Godunov-type schemes

Setting

Objective: Approximate the solution W (x,t) of the hyperbolic
system O;W + 0, F (W) = S(W), with suitable initial and
boundary conditions.

We partition [a, b] in cells, of volume Az and of evenly spaced
centers z;, and we define:

mz, 1 and T, the boundaries of the cell 7;
2 2

m W, an approximation of W (z,t), constant in the cell ¢ and

1 Ax/2
at time ", which is defined as W" = / W(z,t")dx.

- E Ax/2

— | |
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L Brief introduction to Godunov-type schemes

Using an approximate Riemann solver

As a consequence, at time t™, we have a succession of Riemann
problems (Cauchy problems with discontinuous initial data) at the
interfaces between cells:

W + 0, F(W) =S(W)
Wrifx < T
2

2

W(z,t") =
L
Wi if © > JU,H_%
n n
Wi i+1
Z; T, 1 Tit1

1+5

For S(W) # 0, the exact solution to these Riemann problems is

unknown or costly to compute ~» we require an approximation.
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L Brief introduction to Godunov-type schemes

Using an approximate Riemann solver

We choose to use an approximate Riemann solver, as follows.

L R
A1 A
n
Wi,
wy Wi
Tit}

n W;’;l is an approximation of the interaction between W/ and

2
/1 (i.e. of the solution to the Riemann problem), possibly

made of several constant states separated by discontinuities.

[ /\L+1 and )\R , are approximations of the wave speeds.
2 2
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L Brief introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)

t
WA (.’13, tn+1)
tn—‘,—l
W
1
t" T
Ti—1 T;

We define the time update as follows :

wntl .= ! /xH% WA (2, ") dae
7 * Aﬂ'; . ) .
-2

Since W , and W , are made of constant states, the above
2 2
integral is easy to compute.
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L Derivation of a well-balanced scheme
The HLL approximate Riemann solver

To approximate solutions of

W + 0, F (W) = 0, the HLL approximate
Riemann solver (Harten, Lax, van Leer
(1983)) may be chosen; it is denoted by

W2 and displayed on the right. -

The consistency condition (as per Harten and Lax) holds if:

1 Az/2 1 Az/2
/ WA (AL, z; W, Wg)da = / Wr(At, z; Wr, Wg)dz,
A$ *A:E/Q Aﬂ? fo/Q
Wthh giVGS WHLL = )\RWR — )\LWL _ F(WR) — F(WL) _ (hHLL> .
AR = AL AR — AL qHLL

Note that, if hy, > 0 and hg > 0, then hyyrr > 0 for |Ar| and |Ag| large enough.
11/24
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Modification of the HLL approximate Riemann solver

The shallow-water equations with the topography source term read
as follows:

0rq + 0% ( + gh2>—|—gh8 Z =0.

12 /24
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Modification of the HLL approximate Riemann solver

We can add the equation 0;Z = 0, which corresponds to the fixed
geometry of the problem:

ath + al‘q = 07

2 1
0rq + 0y (qh + 2gh2> +ghd,Z =0,

oz = 0.
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L Derivation of a well-balanced scheme

Modification of the HLL approximate Riemann solver
We can add the equation 0,7 = 0, which corresponds to the fixed

geometry of the problem:
ath + axq = 07

21
g + 0y (qh + 29h2) + ghd.Z =0,

oz = 0.

The equation 9;Z = 0 induces a stationary wave associated to the
source term; we also note that ¢ is a Riemann invariant for this wave.

To approximate solutions of AL 0 AR
W + 0, F (W) = S(W), we thus use Wp| Wg

the approximate Riemann solver
displayed on the right
(assuming A\, < 0 < AR).

WL WR
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Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W; = (Zf) and W}, = (Zf)
L R

WL WR
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m ¢ is a 0-Riemann invariant ~» we take ¢j = ¢ = ¢* (relation 1)
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Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W} = <h*L> and W}, = <h§>.
qr, 4r

m ¢ is a 0-Riemann invariant ~» we take ¢j = ¢ = ¢* (relation 1)
m Harten-Lax consistency gives us the following two relations:

m A\phj, — Aph] = (Ar — Ap)hmrr (relation 2)

SA
B¢ =qHLL + ——— (relation 3),

B Az/2 At
whereSN/ / S(Wx(x,t))dtdz
BBt gy fy SR
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L Derivation of a well-balanced scheme
Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W} = <h*L> and W}, = <h§>.
qr, 4r

m ¢ is a 0-Riemann invariant ~» we take ¢j = ¢ = ¢* (relation 1)

m Harten-Lax consistency gives us the following two relations:

m A\phj, — Aph] = (Ar — Ap)hmrr (relation 2)

B¢ =qyrr + )\L (relation 3),
Ax/2 At
h ~ L Vi (z, tdx
where S ~ Az AL /Ar/2 /0 S(Wg(x,t))dt da

m next step: obtain a fourth relation
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Obtaining an additional relation

Assume that W, and Wg define a steady state, i.e. that they

satisfy the following discrete version of the steady relation
O, F (W) =S(W) (where [X] = Xr — X1):

(el 4)->

For the steady state to be preserved, it
is sufficient to have h} = hr, h}, = hr W, W
and ¢* = qo.

Assuming a steady state, we easily show that ¢* = ¢o. Therefore,
the additional relation should only link A} and h7,.
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Obtaining an additional relation

In order to determine an addition relation, we consider the discrete
steady relation, satisfied when 17/, and W define a steady state:

1 1 g . _
¢ (hR - hL) + 5((hR)2 — (h1)?) = SAz.

To ensure that 4} = hr and h}, = hg, we impose that A} and A},
satisfy the above relation, as follows:

G (hl - hl> + g((hjig)2 — (h})?) = SAz.

To avoid solving a nonlinear system, we elect to use the following
linearization of this relation:

_(q*)2 g . ey T

o 15 /24
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. . * *
Determination of h} and h%

With the consistency relation between h} and h}, the intermediate
water heights satisfy the following linear system:

a(hf — h}) = SAw,
ArNp — Aphy = (Ar — Ap)hHLL-

Using both relations linking A} and h},, we obtain

A}{?Z&%
W = hypy — 28T
EETE T am = Ay
AlAglﬁl
W = hypy, — —E20T
r=huorr o —A0)’
—(¢)? | g : SAx
h = =(h h th ¢* = .
where « <thR+2(L+ r) | with ¢ CJHLL—i—)\R_)\L
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Correction to ensure non-negative h} and hj

However, these expressions of 2} and h}, do not guarantee that the
intermediate heights are non-negative: instead, we use the following
cutoff (see Audusse, Chalons, Ung (2014)):

. ARSAz AR
(o 2225) ().

. A];E;ZXJ? A];
hy = h - 1——)h .
R mln(( HLL a()\R_)\L)>+,< /\R> HLL)

Note that this cutoff does not interfere with:
m the consistency condition Aghy, — ALh} = (Ar — AL)hurr;

m the well-balance property, since it is not activated when W, and
Wk define a steady state.
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L Derivation of a well-balanced scheme
Summary

The two-state approximate Riemann solver with intermediate states
Wi = <hf> and W§ = <hf> given by
q q
SAx
AR — AL’

. ArSAz ) < )\R> >
hy = h - 1= )h ,
L mln<< HLL a(r — A1) . AL HLL

. ALSA.%‘ )\L
hy = h - 1——1h
R mln(( HLL a()\R_)\L)>+,< /\R> HLL)a

is consistent, non-negativity-preserving and well-balanced.

¢ =quLL +

next step: determination of S according to the source term
definition (topography).
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The topography source term

We now consider S(W) = SYW) = —ghd, Z:
the smooth steady states are governed by

2
X <q}‘;> +20,(h?) = —gh0.2, 0@ m + 27 = S'ax,

discretization

qDa <1>+g€)(h+2)—0 qo[;2]+g[h+2]—0

We can exhibit an expression of g3 and thus obtain

ot _  2hihe 2] g [h)3

Y, +hp Az " 2Azhy + hp'

However, when Z; = Zr, we have S* # O(Ax), i.e. a loss of
consistency with S (see for instance Berthon, Chalons (2016)).
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The topography source term

Instead, we set, for some constant C > 0,

S g 2hphr (Z) | g [N}
hr +hp Az 2Az hr + hp’

. = {hR—hL if |hg — hi| < CAz,
sgn(hgp — hr) CAx  otherwise.

Theorem: Well-balance for the topography source term

If Wi, and Wg define a smooth steady state, i.e. if they satisfy

2 |2
then we have W; = Wy, and W, = Wg and the approximate
Riemann solver is well-balanced. By construction, the Godunov-type
scheme using this approximate Riemann solver is consistent, fully
well-balanced and positivity-preserving.

% [1} +glh+2] =0,
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Verification of the well-balance: topography

0.5

0 ‘ |—Initial Free Surface|

5 10 15 20 25

The initial condition is at rest; water is injected through the left
boundary.

21/24



A fully well-balanced scheme for the shallow-water equations with topography
L Numerical simulations

Verification of the well-balance: topography

2 v
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The non-well-balanced HLL scheme converges towards a numerical
steady state which does not correspond to the physical one.
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Verification of the well-balance: topography

2 .
et™
1.5
1
0.5
—Exact Free Surface
- Approximate Free Surface
0 -WB Free Surface

5 10 15 20 25

The non-well-balanced HLL scheme converges towards a numerical
steady state which does not correspond to the physical one. The
well-balanced scheme converges towards the physical steady state. 2124



A fully well-balanced scheme for the shallow-water equations with topography
L Numerical simulations

Verification of the well-balance: topography
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The non-well-balanced HLL scheme converges towards a numerical
steady state which does not correspond to the physical one. The
well-balanced scheme converges towards the physical steady state. 2124



A fully well-balanced scheme for the shallow-water equations with topography
L Numerical simulations

Verification of the well-balance: topography

2
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The non-well-balanced HLL scheme converges towards a numerical
steady state which does not correspond to the physical one. The
well-balanced scheme converges towards the physical steady state. 2124
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L Numerical simulations

Simulation of the 2011 Tohoku tsunami
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L Numerical simulations

Simulation of the 2011 Tohoku tsunami
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Initial = Sensor 2
free surface

FreeSurface
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Simulation of the 2011 Tohoku tsunami
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Conclusion

m We have presented a well-balanced and non-negativity-preserving
numerical scheme, able to be applied to other source terms or
combinations of source terms.

m We have also displayed results from a 2D well-balanced numerical
method, coded in Fortran and parallelized.

This work has been published:

V. Michel-Dansac et al. “A well-balanced scheme for the shallow-water

equations with topography”. In: Comput. Math. Appl. 72.3 (2016),
pp. 568-593

V. Michel-Dansac et al. “A well-balanced scheme for the shallow-water

equations with topography or Manning friction”. In: J. Comput. Phys.
(accepted) (2017)
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Perspectives

Work in progress or completed

m application to other source terms:

m friction source term (completed, article accepted)
m Coriolis force source term (work in progress)
m breadth variation source term (work in progress)

m high-order and 2D extensions (work in progress, collaboration
with R. Loubére)

Long-term perspectives

m stability of the scheme: values of C', A1, and AR to ensure the
entropy preservation

m ensure the entropy preservation for the high-order scheme (use of
a MOOD method)
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Thank you for your attention!
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Verification of the well-balance: topography

transcritical flow test case (see Goutal, Maurel (1997))

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 l 0.2
0U 5 10 15 20 25 OU 5 10 15 20 25

left panel: initial free surface at rest; water is injected from the left boundary

right panel: free surface for the steady state solution, after a transient state

L' L? L™

u2 errors on ¢q 1.47e-14 1.58e-14 2.04e-14
b = 5 +9g(h+Z) errorson ® 167e-14 2.13e-14 4.26e-14
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Riemann problems between two wet areas

| i

5 5|

44 4

3] N

2 ol

5 i 2 3 4 5 i 2 3 2 5
left: k=0 left: & =10

both Riemann problems have initial data Wy, = (g) and

Wg = (é) on [0, 5], with 200 points, and final time 0.2s
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Riemann problems with a wet/dry transition

6’ = Approximate Height = =Reference Height
51

4

31

2,

N

0 i 2 3 4 5 4 5

left: k=0 left: k=10

both Riemann problems have initial data Wy, = (g) and

Wgr = (8) on [0, 5], with 200 points, and final time 0.15s
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Double dry dam-break on a sinusoidal bottom
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Japan tsunami: 1D slice
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