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L Introduction and motivations

|—Geophysical flows

Several kinds of destructive geophysical flows

T MRk

Tsunami (Tohoku, Japan, 2011)

B

Flood (La Faute sur Mer, France, 2010) Mudslide (Madeira, Portugal, 2010)
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L Introduction and motivations

I—The shallow-water equations

The shallow-water equations and their source terms

ih + B, (hu) = 0

q

O(hu) + 0y (hu2 + %ghQ) = —gh0,Z — kh—|nq| (with ¢ = hu)

We can rewrite the equations as ;W + 0, F'(W) = S(W), with W = (Z)

water surface )= 7/3 and g is the
gravitational constant

m k£ >0 is the so-called
Z(x) channel bottom Manning coefficient:
a higher k leads to a

— h(x,t)

stronger Manning
friction

x
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L Introduction and motivations

I—Steady state solutions

Steady state solutions

Definition: Steady state solutions

W is a steady state solution iff O,W =0, i.e. 0, F (W) = S(W).

Taking 0;W = 0 in the shallow-water equations leads to

0q=0

By (qhQ + ;gh2> — —ghd, 7 — ki'ﬁq'.
The steady state solutions are therefore given by

q=cst=qo

By (qhg + ;gh2> = —ghd,Z — qu';”'.
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L Introduction and motivations

|—Steady state solutions

Steady states for the friction source term
Assume a flat bottom (Z = cst): the steady states are given by

2
4@ 1 9\ _  kaolgol
8I(h+29h> o

Assuming smooth steady state solutions and integrating this relation
between some zy € R and x € R yields (with & = h(x) and ho = h(xg)):

2
49 n—1 _ pn—1 g n+2 _ pnt2 - _
77—1<h hg ) +7n+2(h hg ) + kqolqo|(z — x¢) = 0.

next step: study of the above nonlinear equation, denoted by
X(ha z, hO) Zo, QO) =0
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L Introduction and motivations

|—Steady state solutions

Steady states for the friction source term

We show that a—X(h;J;,ho,xo,qo) < 0 if and only if h < h,, where

Oh .
v
he = (q3> }
g

As a consequence, x(h) is: m decreasing for h < h,;
m increasing for h > h..

In the context of a steady state solution, the Froude number is
defined, using the sound speed ¢ = v/gh, by:

2
Fr(h) = = = — %0

C 1/gh3‘

Therefore, Fr(h:) = 1 and the steady state is: m supercritical if h < h,;
m subcritical if h > h..
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L Introduction and motivations

|—St:eady state solutions

Steady states for the friction source term, assuming gy < 0

—x(h) forz=0.7
0.03/—x(h) for z=0.75 h<h, h>h,

—x(h) forz=0.8 supercritical | subcritical
—x(h) for z=0.85

solution solution

0 0.1 0.2 h 0.3 0.4

c

Sketches of x(h;x) for h € [0,0.41], for different values of x, and

for he = 0.25. We are interested in the solutions of x(h) = 0. o) a6
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L Introduction and motivations

|—St:eady state solutions

Steady states for the friction source term, assuming gy < 0

Lo Ty,
0.3
he
021 r<zx, T, <x<I, >,
no solution two solutions unique solution

0.14

0 . . .

0.7 0.75 0.8 0.85 0.9

blue curve: subcritical solution; red curve: supercritical e
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L Introduction and motivations

L Objectives

Objectives

Derive a scheme that:
m is well-balanced for the shallow-water equations with friction
and/or topography, i.e.:

m preservation of all steady states with £ = 0 and Z # cst,
m preservation of all steady states with k # 0 and Z = cst,
B preservation of steady states with k £ 0 and Z # cst;

m preserves the non-negativity of the water height;

m is able to deal with wet/dry transitions, where the friction
source term is stiff.

Provide two-dimensional and high-order extensions of this
scheme, while keeping the above properties.
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LA well-balanced scheme

L Non-exhaustive state of the art

Non-exhaustive state of the art

Well-balanced schemes for the shallow-water equations

introduction of the well-balance property:
Bermudez-Vazquez (1994), Greenberg-LeRoux (1996)

preservation of the lake at rest:
Audusse et al. (2004), Berthon-Foucher (2012), Audusse et al. (2015)

1D fully well-balanced schemes:
Gosse (2000), Castro et al. (2007), Fjordholm et al. (2011),
Xing et al. (2011), Berthon-Chalons (2016)

1D high-order schemes that preserve steady states:
Castro et al. (2006), Castro Diaz et al. (2013)

2D schemes preserving the lake at rest on unstructured meshes:
Duran et al. (2013), Clain-Figueiredo (2014)

for the friction source term:
Liang-Marche (2009), Chertock et al. (2015)
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LA well-balanced scheme

L Structure of the scheme
The HLL scheme

To approximate solutions of

W + 0, F(W) =0, the HLL scheme
(Harten, Lax, van Leer (1983)) may be
chosen; it uses the approximate Riemann
solver W, displayed on the right.

The consistency condition (as per Harten and Lax) holds if:

1 [Az/2 __ 1 A2
o W(At, z; W, Wr)dz = — Wr(At, z; Wi, Wg)dz,
Az —Az/2 Az —A$/2

- F —F
which gives Wy = ARWR = AWp  F(WR) (W) _ (hHLL>_
AR — AL AR — AL qHLL

Note that, if Ay, > 0 and hg > 0, then hy; > 0 for |[A\L| and |Ag| large enough.
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme
With Y (¢, x) = x, we rewrite the shallow-water equations with a
generic source term S as follows:

Oth + 0:q =0,

¢ 1
Oy + Oy (ﬁ i 59}12) ~ 80, =0,

oY =0.

The equation 9;Y = 0 induces a stationary wave associated to the
source term; we also note that ¢ is a Riemann invariant for this wave.

To approximate solutions of AL 0 AR
OW + 8,F(W) = S(W), we thus use Wi | Wk

the approximate Riemann solver
displayed on the right
(assuming A\r, < 0 < AR).

143 Wr
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme

We now wish to apply the Harten-Lax consistency condition to
OW + 0, F(W) = S(W). Recall this condition:

A . W(At,ﬁﬂ,WL,WR)d’L’ = A WR(At,ZE;WL,WR)dIL’,
Az —Az/2 Az —Az/2
first step: compute / W (At, z)dz (straightforward)

Ax —Az/2

1 [Ae2 Wi+Wkg At . At .
W(At, x)dx = T - )\RA_{L'(WR_WR> + ALA_:I,'(WL_WL)

E —Az/2
second step: compute / Wr(At, x)dx
Ax —Az/2
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme

At (Az)2
F =
At - / / o, VR OF (V) ) dzdt = 0
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme

At (Az)2
F =
At - / / o, VR OF (V) ) dzdt = 0

1 1 Ax/2 Ax/2
= — Wr(At, x)dr — W d
At Az </—Am/2 R( ,x) v /—Aa:/Q R(va) x>+

éﬁ(omnwﬁ)(t, Am)dt /OAtF(WR)(t,%ylt)

t

—Az/2 0 Ax/2
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme

At (Az)2
F =
At - / / o, VR OF (V) ) dzdt = 0

1 1 Ax/2 Ax/2
= — Wr(At, x)dr — W d
At Az </—Am/2 R( ,x) v /—Aa:/Q R(va) x>+

A%ﬁ( OAtF(WR)(t, Am)dt /OAtF(WR)( Ax)dt)
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme

At pAz/2
At Az / /Agc/2 (OWR + 0, F(Wr) — S(Wr)) dvdt =0
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme

At pAz/2
At Az / /M/Q (0:Wr + 0. F(Wr) — S(Wr)) dxdt =0

1 1 Ax/2 Ax/2
= Wr(At, x)dx — W d
At Az </_Am/2 R(Al,z)de /—Aa:/2 =(0,2) x)—i—
1 1 At Ax At Az
KtA_x< : F(Wgr) (t, )dt /0 (WR)( 3 >dt>

At Az/2
AtAa:/ /M/Q ta)dvdt \ T

—Az/2 0 Ax/2
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme

At pAz/2
At Az / /Az/z (0:Wr + 0. F(Wr) — S(Wr)) dxdt =0

1 1 Ax/2 Ax/2
= — Wr(At, x)dr — W d
At Az </—Aac/2 R( ,x) v /—Aa:/Z R(O,:E) x>+

A%ﬁ( AtF(WR)(t, Am)dt /OAtF(WR)( Ax)dt)

At pAz/2
At Az / /A:c/Q @) o d
1 Aw/2 Wi + WR At —
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LA well-balanced scheme

L Structure of the scheme

Modification of the HLL scheme

We have 4 unknowns to determine: W; = (hf> and Wj, = <hf).
ay, qr

m ¢ is a 0-Riemann invariant ~~ we take q; = ¢ = ¢* (relation 1)
m Harten-Lax consistency gives us the following two relations:
] )\Rhﬁ — /\Lh*L = ()\R — AL)hHLL (relation 2)

m ¢ =qyLr + (relation 3)

SAx
AR — AL

m next step: obtain a fourth relation
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LA well-balanced scheme

L The full scheme for a general source term

Obtaining an additional relation

Assume that Wy, and Wg define a steady state, i.e. that they
satisfy the following discrete version of the steady relation
O, F(W) = S(W) (where [X] = Xr — X):

6l -

For the steady state to be preserved, it
is sufficient to have hj = hp, h}, = hpr W, Wr
and ¢* = qo.

Assuming a steady state, we show that ¢* = g, as follows:

N SAx 1 9|1 '
= _— = e ——————— — — — A = .
(U2 R S v wiak Ul v w (qo [h] +35 (n?] -8 fv> 9
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LA well-balanced scheme

L The full scheme for a general source term

Obtaining an additional relation

In order to determine an addition relation, we consider the discrete
steady relation, satisfied when 1/, and Wy define a steady state:

1 1

% (hR - hL) g((hz?) — (hr)?) = 5Ax.

To ensure that h} = hy and h}; = hg, we impose that h} and hj;
satisfy the above relation, as follows:

a4 (th - h1L> g(m* )2 — (h})?) = SAx.
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LA well-balanced scheme

L The full scheme for a general source term

Determination of h} and hj

The intermediate water heights satisfy the following relation:

B — B _
@ (ZE L) It 4 m)(RY — k) = SA.
Wk 2

Recall that ¢* is known and is equal to g for a steady state.
Instead of the above relation, we choose the following linearization:

_(q*)2(h*—h*) (h hg)(h SA
hihg BT L+ hgr)(hk — hy) = SAx,

which can be rewritten as follows:

_((]*)2 * * <
( e 9 hy + hR)> (h% — h%) = SAz.

3
&
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LA well-balanced scheme

L The full scheme for a general source term

Determination of h} and hj

With the consistency relation between h} and h}, the intermediate
water heights satisfy the following linear system:

a(hl — hi) = SAx,
ArhG — ALl = (Ar — Ap)hrLr.

Using both relations linking A} and h},, we obtain

ArSAz
h* = h B ———
L= = TR
AL SAz
h* = h _—
—(¢)? | g . SAx
h = =(h h th ¢* = —_—
where o (thR+2(L+ Rr) | with ¢ qHLL+ 3
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LA well-balanced scheme

L The full scheme for a general source term

Correction to ensure non-negative h; and hj

However, these expressions of 2} and h}, do not guarantee that the
intermediate heights are non-negative: instead, we use the following
cutoff (see Audusse, Chalons, Ung (2014)):

. ,XJQE;ZXJT A}{
hy = h - 1——h
L mln(( HLL a(}\R_)\L)>+,< )\L) HLL>7

. A1j§zlw AL
hy = h - 1——1)h .
R mln(( HLL a()\R_)\L))+’< /\R> HLL)

Note that this cutoff does not interfere with:
m the consistency condition Agphy — Aphy = (AR — AL)hHLL;

m the well-balance property, since it is not activated when W, and
Wr define a steady state.
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LA well-balanced scheme

L The full scheme for a general source term

Summary

The two-state approximate Riemann solver with intermediate states
h3 hy\ .
Wi = (qf) and W}, = <qf> given by
SAzx
AR — AL’

o ARSAZ AR
= B L 128
hy mm<<hHLL o — )\L))+, < )\L>hHLL>7

. ALSYA.’L‘ )\L
Bt = harn — —L22T ) (AL,
| mm(( fLt a()\R—)\L))-;-’( AR) HLL)7

is consistent, non-negativity-preserving and well-balanced.

¢ =qurL +

next step: determination of S according to the source term
definition (topography and/or friction).
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LA well-balanced scheme

|—The cases of the topography and friction source terms

The topography source term

We now consider S(W) = SYW) = —gh0,Z:
the smooth steady states are governed by

2
0, (‘%0) +20:(h?) = —ghd. Z, a@ H +9[n?) = S'ax,

discretization

qoa (1>+98 (h+ 2Z) =0, q0|:hl2:|+g[h+Z]—0

We can exhibit an expression of g3 and thus obtain

Gt — 2hphr [Z] 9 [h]3

Y.+ hpAx " 2Az hy + he

However, when Z;, = Zr, we have S # O(Ax), i.e. a loss of
consistency with S (see for instance Berthon, Chalons (2016)).
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LA well-balanced scheme

I—The cases of the topography and friction source terms

The topography source term

Instead, we set, for some constant C > 0,

ot _,2hehe 2] g [
ghL+JU{A$ 2Ax hy, + hg’
[h} hR—hL if‘hR—hL’ SCA:L‘,
“ " \sgn(hg — hy)CAz  otherwise.

Theorem: Well-balance for the topography source term

If Wi, and Wg define a smooth steady state, i.e. if they satisfy
%[ 1
== h+ Z] =0,
8| 5| a2
then we have W} = Wy, and Wj = Wg and the approximate
Riemann solver is well-balanced.
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LA well-balanced scheme

|—The cases of the topography and friction source terms

The friction source term
We consider, in this case, S(IW) = S/(W) = —kq|q|h".
The average of S/ we choose is S¥ = —kq|g|h—", with

m ( the harmonic mean of ¢, and gg (note that ¢ = qo at the
equilibrium);

m 1~ a well-chosen discretization of h™", depending on hj and
hg, and ensuring the well-balance property.

We determine /" using the same technique (with o = sgn(qo)):

2 1 o
Oy <_q;;) + gax (h2) = _kq0|q0|h*n7 Q(Z) [ﬁ] + g[hz] = —kuoqgh*"Ax,
8. hpn—1 8. hnt2 discretization [hn_l] [h"7+2
2 Uz T 2 2
e qolqo| W7 9 HemAT
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LA well-balanced scheme

I—The cases of the topography and friction source terms

The friction source term

The expression for g3 we obtained is now used to get:

o [0 +2 m([lh[hz][h"l]mz)?

2 [WF?] kA

h

2 n—1[h2

which gives S/ = —kq|g|h—" (h=" is consistent with h~").

Theorem: Well-balance for the friction source term

If Wi, and Wg define a smooth steady state, i.e. verify

o[P1] [
W=7 T9 e T kqo|qolAz,

then we have W; = Wy and W, = Wg and the approximate
Riemann solver is well-balanced.
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LA well-balanced scheme

|—The cases of the topography and friction source terms

Friction and topography source terms

With both source terms, the scheme preserves the following
discretization of the steady relation 0, F(W) = S(W):

¥ H + 4[17] = 5'Aw + 5/ Aa.

The intermediate states are therefore given by:

( * +(S’t+§f)ACL'.
A P v

- Ar(S'+ ST Az AR
hy = hurr — 1— 2 )h ;
L mln(( HLL CY()\R_/\L) +’ )\L HLL |5
, AL(St+ ST Az AL
R = huLr — 1— == )h .
\ R mln(( HLL a(hr — A1) +, An HLL
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LA well-balanced scheme

|—The cases of the topography and friction source terms

The full Godunov—type scheme

WA(J) tn+1)

tn+1 ! . -

W L |

S Wiis

| |

R L

: Ai—% )\z+1 :

| n |

| VVl |
t" €z

.I‘,L,% ZT; $Z+%

: 1 [Tird
We define W't = —/ - WA (z, " 1)dz: then
Ax T

Wit = g [ (Wl ) oy (- ),

which can be rewritten, after straightforward computations,

0 0
At , ,
n+1l__ n __ =2t n _n t\n t\n fyn
Wi = W= S (Fry = Fy )+ A S 8y |+ D+ (SN
2 2
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L_A well-balanced scheme

|—The cases of the topography and friction source terms

Summary

We have presented a scheme that:

m is consistent with the shallow-water equations with friction and
topography;

m is well-balanced for friction and topography steady states;
m preserves the non-negativity of the water height;

m is not able to correctly approximate wet/dry interfaces due to the
stiffness of the friction: we require a semi-implicitation of the
friction source term.

next step: introduction of this semi-implicitation
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LA well-balanced scheme

|—Source terms contribution to the finite volume scheme

Semi-implicit finite volume scheme

We use a splitting method with an explicit treatment of the flux
and the topography and an implicit treatment of the friction.

explicitly solve ;W + 0, F(W) = St(W) to get

0
n+% n At n n
Wi i T Az (F F%%) - ( ((St) : (St)y+l)>
2 2
implicitly solve 9;W = S7 (W) to get
Rl — vt
n+1

U {8tq = —kqlq| (R 7"
: +1 g
q(xi’tn) = q? 2
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LA well-balanced scheme

|—Source terms contribution to the finite volume scheme

Semi-implicit finite volume scheme
Solving the IVP yields:

1y 3
n+1l _ (h;H— )nqi ’
q; =

Bt g A T2
(RPN + kAt |g; 2|

We use the following approximation of (h?“)”, which provides us

with an expression of q;‘“ that is equal to ¢g at the equilibrium:
nti
— 20, Zul n+i
1
(hn);’H— R — n+1l Z_ n+1 + k’At,U,Z 2q1721'
(), + (7).,
i—1 i+3

m semi-implicit treatment of the friction source term
~» scheme able to model wet/dry transitions

m scheme still well-balanced and non-negativity-preserving
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L 1D numerical experiments

Verification of the well-balance: friction

0.94
'I,
0.8 0.9
0.8
0.74
0.74
0.61
0.61
0.5 : ; ; : 0.5 : . ! . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

left panel: water height for the subcritical steady state solution

right panel: water height for the perturbed steady state solution
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L 1D numerical experiments

Verification of the well-balance: friction

0.91 9e-16 ;
n
n
0.8
6e-161
0.71
3e-16{:
0.6
055 02 04 0.6 0.8 i 0

left panel: convergence to the unperturbed steady state

right panel: errors to the steady state (solid: h, dashed: ¢)
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L 1D numerical experiments

Verification of the well-balance: topography
subcritical flow test case (see Goutal, Maurel (1997))

2 2
1.5 1.5
1 1
0.5 0.5
00 5 10 15 20 25 00 5 10 15 20 25

left panel: initial free surface at rest; water is injected from the left boundary

right panel: free surface for the steady state solution, after a transient state

L L? L*>

U2 errorson ¢  6.65e-14  6.99e-14 8.26e-14
&= 5 +g(h+Z) errorson & 1.18e-13 1.25e-13 1.53e-13
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L 1D numerical experiments

Verification of the well-balance: topography
transcritical flow test case (see Goutal, Maurel (1997))

1 1
0.8 0.8
0.6 0.6
04 04
02 0.2
0O 5 10 15 20 25 00 5 10 15 20 25

left panel: initial free surface at rest; water is injected from the left boundary

right panel: free surface for the steady state solution, after a transient state

L L? L*>

U2 errors on ¢ 1.47e-14 1.58e-14 2.04e-14
&= 5 +gh+Z) errorson & 1.67e-14 2.13e-14 4.26e-14

31/46



Development of high-order well-balanced schemes for geophysical flows

L 1D numerical experiments

Dry dam-break: Hunt's asymptotic solution

Jwater surface ES —Implicit scheme
8e-3 A ‘\ - -Hunt's solution
! . X Experimental data
T 6e-3 E
T :
initial condition for the dry dam-
break on a sloping channel
4e-3 '
water height with respect to the 263
. . .. — '
time at a fixed position :
: X
0 ;
(] P 1 ) 8 0 72 T4

See Hunt (1984) for the experimental points and the solution, valid far enough

away from the initial dam.
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L Two-dimensional and high-order extensions

L Two-dimensional extension

Two-dimensional extension
2D shallow-water model: 9,1V + V - F(W) = SY(W) 4+ ST (W)

8th+V-q:O
k
Ohq+ V- (qi’q+ Z gh2T, ) — _ghVZ — qh”nq”

L

to the right: simulation
of the 2011 Japan
tsunami
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L Two-dimensional and high-order extensions

L Two-dimensional extension

Two-dimensional extension

C; Cj

space discretization: Cartesian mesh & [ M

With Fli = F(W]", Wi'in;;), the scheme reads:

n+3 o n ‘eij‘ n At t\n

JjEVY; Mz

n+1 - . ntl | . .
W/ is obtained from W, " * with a splitting strategy:

i

1
"tz
i

Wit =h
dih =0 z

PUNN
drq = —kqllq|[h™" gt =

1
ntd

(hMitg;
() 4k atq)
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L Two-dimensional and high-order extensions

L Two-dimensional extension

Two-dimensional extension

The 2D scheme is:
m non-negativity-preserving for the water height:
Vi€ Z,h > 0= Vi€ Z,h" >0
m able to deal with wet/dry transitions thanks to the
semi-implicitation with the splitting method,;
m well-balanced by direction for the shallow-water equations with
friction and/or topography, i.e.:

m it preserves all steady states at rest,

m it preserves friction and/or topography steady states in the
x-direction and the y-direction,

m it does not preserve the fully 2D steady states.

next step: high-order extension of this 2D scheme
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[ High-order extension

High-order extension: the polynomial reconstruction

polynomial reconstruction (see Diot, Clain, Loubére (2012)):

d
WH(z) =W+ Z af {(J, — Lz)k — ]V[ﬂ
k=1

m The polynomial coefficients af are chosen to minimize the least
squares error between the reconstruction and W, for all j in the

stencil Szd.

1
= We have MF = m/ (x — 2;)*da such that
C; ci

. 1 =
the conservation property is verified: l / Wi (x)dx = W),
C; ¢
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L High-order extension

High-order extension: the scheme

leas| R Q
W = Wr-ar S S e +atY g (D7 + (ST
=0 q=0

JEV;

u Fii = FW(0r), W) (o) mig)

n (SH7, =8 (Wp(zy)  and (8P, = 8T (Wi(zy))

We have set:
m (&, 04)r, a quadrature rule on the edge e;;;
® (7)4,%q)q, @ quadrature rule on the cell ¢;.

The high-order time accuracy is achieved by the use of SSPRK
methods (see Gottlieb, Shu (1998)).
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L High-order extension

MOOD method

High-order schemes induce oscillations: we use the MOOD method
to get rid of the oscillations and to restore the non-negativity
preservation (see Clain, Diot, Loubére (2011)).

MOOD loop

compute a candidate solution W ¢ with the high-order scheme
determine whether W€ is admissible, i.e.

m if h¢ is non-negative (PAD criterion)

m if W does not present spurious oscillations (DMP and u2 criteria)

where necessary, decrease the degree of the reconstruction

compute a new candidate solution
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L High-order extension

Well-balance recovery (1D)

reconstruction procedure ~» scheme no longer well-balanced

Well-balance recovery

We suggest a convex combination between the high-order scheme
Wio and the well-balanced scheme Wy 5:

Wit = 02 (Wro)it + (1 — 07) (W )P,

with 0" the parameter of the convex combination, such that:
m if 07 = 0, then the well-balanced scheme is used;

m if 07" =1, then the high-order scheme is used.

next step: derive a suitable expression for ¢!
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L High-order extension
Choice of 67

Steady state detector

4L = qRr = 40,
steady state solution: 2 _,
a5 _ 9% +g(h —h2) = (5" +5)Az
hr hr
—q* Q= q?
steady state detector: ¢}’ = £ 21 + ZE;]n ’
i—% . i+3 5
on
@ = 0 if there is a steady state S D
between W, W/ and W |
~> in this case, we take 0" =0
~> otherwise, we take 0 < 0 <1 0 o
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Order of accuracy assessment

L? errors with
respect to the
number of cells

top graphs:
2D steady
solution with
topography

bottom graphs:
2D steady
solution with
friction and
topography
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Perturbed pseudo-1D steady state

% 02 0.4 0.6 0.8 i % 0.2
| h | lal
| L! L? L~ | L? L>

Py | 1.22e-15 1.71e-15 6.27¢-15 | 2.34e-15 3.02e-15 9.10e-15
P; | 5.01e-05 1.47e-04 1.16e-03 | 2.32e-04 2.63e-04 1.18e-03
PYB | 8.50e-14 1.05e-13 3.35e-13 | 2.82e-13 3.37e-13  6.76e-13
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Double dry dam-break on a sinusoidal bottom

- -Theta
—Topography
—FreeSurface

m near the edges, steady state at rest ~~ well-balanced scheme

m away from the edges, far from steady state ~> high-order scheme

m center, dry area ~» well-balanced scheme
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Simulation of the 2011 Tohoku tsunami

= Sensor 2 Sensor 1

= Sensor 1 -~ Sensor 2

Free Surface
3000

=-2250

I— 1500

| 998 Sensor 3

= Sensor 3
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Simulation of the 2011 Tohoku tsunami

Initial
free surface
Freesurfﬁgoe
I 0.75
0.00

I-O 75
-1.50

Sensor 1

Sensor 2

" Sensor 3
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Conclusion

1D scheme:  m well-balanced for the shallow-water equations with
friction and topography

m non-negativity-preserving for the water height

m provides a suitable approximation of interfaces
between wet and dry areas

m able to be applied to other source terms or
combinations of source terms

2D scheme:  m well-balanced by direction

m non-negativity-preserving, handles wet/dry
transitions

m high-order accurate in space and time
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m application to other source terms:

m Coriolis force source term
m breadth variation source term

m stability of the scheme:

m values of C, A\f, and Ag to ensure the entropy preservation
m entropy criterion in the MOOD method

m high-order accuracy:

m rigorous proof of the order of the convex combination
m reconstruction based on the moving steady states

46 / 46



Development of high-order well-balanced schemes for geophysical flows
L Thanks!

Thank you for your attention!
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Riemann problems between two wet areas

o 6 < R
5, \\ 5,
44 A
3] 3]
2 2|
9 i 2 3 4 5 0
left: k=0 left: k=10

both Riemann problems have initial data Wy, = (g) and

Wgr = (é) on [0, 5], with 200 points, and final time 0.2s
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Riemann problems with a wet/dry transition

= Approximate Height 6’ N = -Reference Height
— -Reference Height

— Approximate Height

M @ & o

left: k=0 left: kK =10

both Riemann problems have initial data Wy, = (g) and

Wg = (8) on [0, 5], with 200 points, and final time 0.15s
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Double dry dam-break on a sinusoidal bottom

(- .+"]--Order 1
e ..Order 6
4 —Reference
—Topography

0.8

0.6

04

02
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Japan tsunami: 1D slice

le+3

0
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