Victor Michel-Dansac

Thursday, September 29th, 2016

PhD advisors: PhD reviewers: Defense examiners: Christophe Berthon and Françoise Foucher Manuel J. Castro-Díaz and Jean-Paul Vila Christophe Chalons, Stéphane Clain and Fabien Marche







#### Contents

- 1 Introduction and motivations
- 2 A well-balanced scheme
- 3 1D numerical experiments
- 4 Two-dimensional and high-order extensions
- 5 2D numerical experiments
- 6 Conclusion and perspectives

Introduction and motivations

#### 1 Introduction and motivations

- 2 A well-balanced scheme
- 3 1D numerical experiments
- 4 Two-dimensional and high-order extensions
- 5 2D numerical experiments
- 6 Conclusion and perspectives

Introduction and motivations

Geophysical flows

#### Several kinds of destructive geophysical flows



Dam failure (Malpasset, France, 1959)



Tsunami (Tōhoku, Japan, 2011)



Flood (La Faute sur Mer, France, 2010)



Mudslide (Madeira, Portugal, 2010)

- Introduction and motivations
  - └─ The shallow-water equations

#### The shallow-water equations and their source terms

$$\begin{cases} \partial_t h + \partial_x (hu) = 0\\ \partial_t (hu) + \partial_x \left( hu^2 + \frac{1}{2}gh^2 \right) = -gh\partial_x Z - \frac{kq|q|}{h^{\eta}} \text{ (with } q = hu) \end{cases}$$

We can rewrite the equations as  $\partial_t W + \partial_x F(W) = S(W)$ , with  $W = \binom{h}{q}$ .



- η = 7/3 and g is the gravitational constant
   k > 0 is the so-called
  - k ≥ 0 is the so-called Manning coefficient:
     a higher k leads to a stronger Manning friction

Introduction and motivations

└─ Steady state solutions

#### Steady state solutions

#### Definition: Steady state solutions

W is a steady state solution iff  $\partial_t W = 0$ , i.e.  $\partial_x F(W) = S(W)$ .

Taking  $\partial_t W = 0$  in the shallow-water equations leads to

$$\begin{cases} \partial_x q = 0\\ \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) = -gh\partial_x Z - \frac{kq|q|}{h^{\eta}} \end{cases}$$

The steady state solutions are therefore given by

$$\begin{cases} q = \operatorname{cst} = q_0 \\ \partial_x \left( \frac{q_0^2}{h} + \frac{1}{2}gh^2 \right) = -gh\partial_x Z - \frac{kq_0|q_0}{h^{\eta}} \end{cases}$$

Introduction and motivations

└─ Steady state solutions

#### Steady states for the friction source term

Assume a flat bottom ( $Z = \operatorname{cst}$ ): the steady states are given by

$$\partial_x \left(\frac{q_0^2}{h} + \frac{1}{2}gh^2\right) = -\frac{kq_0|q_0|}{h^\eta}$$

Assuming smooth steady state solutions and integrating this relation between some  $x_0 \in \mathbb{R}$  and  $x \in \mathbb{R}$  yields (with h = h(x) and  $h_0 = h(x_0)$ ):

$$-\frac{q_0^2}{\eta-1}\left(h^{\eta-1}-h_0^{\eta-1}\right)+\frac{g}{\eta+2}\left(h^{\eta+2}-h_0^{\eta+2}\right)+kq_0|q_0|(x-x_0)=0.$$

next step: study of the above nonlinear equation, denoted by  $\chi(h;x,h_0,x_0,q_0)=0$ 

Introduction and motivations

└─ Steady state solutions

Steady states for the friction source term

1 We show that  $\frac{\partial \chi}{\partial h}(h; x, h_0, x_0, q_0) < 0$  if and only if  $h < h_c$ , where  $h_c = \left(\frac{q_0^2}{q}\right)^{\frac{1}{3}}$ .

As a consequence,  $\chi(h)$  is:  $\blacksquare$  decreasing for  $h < h_c$ ;  $\blacksquare$  increasing for  $h > h_c$ .

**2** In the context of a steady state solution, the Froude number is defined, using the sound speed  $c = \sqrt{gh}$ , by:

$$\mathsf{Fr}(h) = \frac{u}{c} = \frac{q_0^2}{\sqrt{gh^3}}.$$

Therefore,  $Fr(h_c) = 1$  and the steady state is: supercritical if  $h < h_c$ ; subcritical if  $h > h_c$ .

Introduction and motivations

└─ Steady state solutions

## Steady states for the friction source term, assuming $q_0 < 0$



Sketches of  $\chi(h; x)$  for  $h \in [0, 0.41]$ , for different values of x, and for  $h_c = 0.25$ . We are interested in the solutions of  $\chi(h) = 0$ .

Introduction and motivations

└─ Steady state solutions



blue curve: subcritical solution; red curve: supercritical

Introduction and motivations

Objectives

## Objectives

- 1 Derive a scheme that:
  - is well-balanced for the shallow-water equations with friction and/or topography, i.e.:
    - $\blacksquare$  preservation of all steady states with k=0 and  $Z\neq {\rm cst},$
    - preservation of all steady states with  $k \neq 0$  and  $Z = \operatorname{cst}$ ,
    - preservation of steady states with  $k \neq 0$  and  $Z \neq \text{cst}$ ;
  - preserves the non-negativity of the water height;
  - is able to deal with wet/dry transitions, where the friction source term is stiff.
- Provide two-dimensional and high-order extensions of this scheme, while keeping the above properties.

A well-balanced scheme



- 2 A well-balanced scheme
- 3 1D numerical experiments
- 4 Two-dimensional and high-order extensions
- 5 2D numerical experiments
- 6 Conclusion and perspectives

- A well-balanced scheme
  - └─Non-e×haustive state of the art

#### Non-exhaustive state of the art

#### Well-balanced schemes for the shallow-water equations

- introduction of the well-balance property: Bermudez-Vazquez (1994), Greenberg-LeRoux (1996)
- preservation of the lake at rest: Audusse et al. (2004), Berthon-Foucher (2012), Audusse et al. (2015)
- 1D fully well-balanced schemes: Gosse (2000), Castro et al. (2007), Fjordholm et al. (2011), Xing et al. (2011), Berthon-Chalons (2016)
- 1D high-order schemes that preserve steady states: *Castro* et al. (2006), *Castro Díaz* et al. (2013)
- 2D schemes preserving the lake at rest on unstructured meshes: Duran et al. (2013), Clain-Figueiredo (2014)
- for the friction source term: Liang-Marche (2009), Chertock et al. (2015)

A well-balanced scheme

Structure of the scheme

## The HLL scheme

To approximate solutions of  $\partial_t W + \partial_x F(W) = 0$ , the HLL scheme (Harten, Lax, van Leer (1983)) may be chosen; it uses the approximate Riemann solver  $\widetilde{W}$ , displayed on the right.



The consistency condition (as per Harten and Lax) holds if:

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \widetilde{W}(\Delta t, x; W_L, W_R) dx = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x; W_L, W_R) dx,$$
  
which gives  $W_{HLL} = \frac{\lambda_R W_R - \lambda_L W_L}{\lambda_R - \lambda_L} - \frac{F(W_R) - F(W_L)}{\lambda_R - \lambda_L} = \binom{h_{HLL}}{q_{HLL}}.$ 

Note that, if  $h_L > 0$  and  $h_R > 0$ , then  $h_{HLL} > 0$  for  $|\lambda_L|$  and  $|\lambda_R|$  large enough.

A well-balanced scheme

-Structure of the scheme

## Modification of the HLL scheme

With Y(t, x) = x, we rewrite the shallow-water equations with a generic source term S as follows:

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) - S\partial_x Y = 0, \\ \partial_t Y = 0. \end{cases}$$

The equation  $\partial_t Y = 0$  induces a stationary wave associated to the source term; we also note that q is a Riemann invariant for this wave.

To approximate solutions of  $\partial_t W + \partial_x F(W) = S(W)$ , we thus use the approximate Riemann solver displayed on the right (assuming  $\lambda_L < 0 < \lambda_R$ ).



- A well-balanced scheme
  - Structure of the scheme

## Modification of the HLL scheme

We now wish to apply the Harten-Lax consistency condition to  $\partial_t W + \partial_x F(W) = S(W)$ . Recall this condition:

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \widetilde{W}(\Delta t, x; W_L, W_R) dx = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x; W_L, W_R) dx,$$

first step: compute 
$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \widetilde{W}(\Delta t, x) dx$$
 (straightforward)

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \widetilde{W}(\Delta t, x) dx = \frac{W_L + W_R}{2} - \lambda_R \frac{\Delta t}{\Delta x} (W_R - W_R^*) + \lambda_L \frac{\Delta t}{\Delta x} (W_L - W_L^*)$$

second step: compute 
$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x) dx$$

- A well-balanced scheme
  - Structure of the scheme

$$\frac{1}{\Delta t} \frac{1}{\Delta x} \int_0^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} (\partial_t W_{\mathcal{R}} + \partial_x F(W_{\mathcal{R}}) \qquad ) \, dx \, dt = 0$$

- A well-balanced scheme
  - Structure of the scheme

$$\frac{1}{\Delta t} \frac{1}{\Delta x} \int_0^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} (\partial_t W_{\mathcal{R}} + \partial_x F(W_{\mathcal{R}})) dx dt = 0$$

$$0 = \frac{1}{\Delta t} \frac{1}{\Delta x} \left( \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x) dx - \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(0, x) dx \right) + \frac{1}{\Delta t} \frac{1}{\Delta t} \frac{1}{\Delta x} \left( \int_{0}^{\Delta t} F(W_{\mathcal{R}}) \left( t, -\frac{\Delta x}{2} \right) dt - \int_{0}^{\Delta t} F(W_{\mathcal{R}}) \left( t, \frac{\Delta x}{2} \right) dt \right)$$

- A well-balanced scheme
  - Structure of the scheme

$$\frac{1}{\Delta t} \frac{1}{\Delta x} \int_0^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} (\partial_t W_{\mathcal{R}} + \partial_x F(W_{\mathcal{R}})) dx dt = 0$$

$$0 = \frac{1}{\Delta t} \frac{1}{\Delta x} \left( \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x) dx - \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(0, x) dx \right) + \frac{1}{\Delta t} \frac{1}{\Delta x} \left( \int_{0}^{\Delta t} F(W_{\mathcal{R}}) \left( t, -\frac{\Delta x}{2} \right) dt - \int_{0}^{\Delta t} F(W_{\mathcal{R}}) \left( t, \frac{\Delta x}{2} \right) dt \right)$$

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x) dx = \frac{W_L + W_R}{2} - \frac{\Delta t}{\Delta x} (F(W_R) - F(W_L))$$

- A well-balanced scheme
  - Structure of the scheme

$$\frac{1}{\Delta t} \frac{1}{\Delta x} \int_0^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} (\partial_t W_{\mathcal{R}} + \partial_x F(W_{\mathcal{R}}) - S(W_{\mathcal{R}})) \, dx \, dt = 0$$

- A well-balanced scheme
  - Structure of the scheme

$$\frac{1}{\Delta t} \frac{1}{\Delta x} \int_0^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} (\partial_t W_{\mathcal{R}} + \partial_x F(W_{\mathcal{R}}) - S(W_{\mathcal{R}})) \, dx \, dt = 0$$

$$0 = \frac{1}{\Delta t} \frac{1}{\Delta x} \left( \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x) dx - \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(0, x) dx \right) + \frac{1}{\Delta t} \frac{1}{\Delta x} \left( \int_{0}^{\Delta t} F(W_{\mathcal{R}}) \left( t, -\frac{\Delta x}{2} \right) dt - \int_{0}^{\Delta t} F(W_{\mathcal{R}}) \left( t, \frac{\Delta x}{2} \right) dt \right) - \frac{1}{\Delta t} \frac{1}{\Delta x} \int_{0}^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} S(W_{\mathcal{R}})(t, x) \, dx \, dt \xrightarrow{t}_{0} \frac{1}{\Delta t} \int_{-\Delta x/2}^{\Delta t} \frac{1}{\sqrt{W_{\mathcal{R}}}} \int_{-\Delta x/2}^{\Delta t} \frac{1}{\sqrt{W_{\mathcal{R}}}$$

- A well-balanced scheme
  - Structure of the scheme

$$\frac{1}{\Delta t} \frac{1}{\Delta x} \int_0^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} (\partial_t W_{\mathcal{R}} + \partial_x F(W_{\mathcal{R}}) - S(W_{\mathcal{R}})) \, dx \, dt = 0$$

$$0 = \frac{1}{\Delta t} \frac{1}{\Delta x} \left( \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x) dx - \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(0, x) dx \right) + \frac{1}{\Delta t} \frac{1}{\Delta x} \left( \int_{0}^{\Delta t} F(W_{\mathcal{R}}) \left( t, -\frac{\Delta x}{2} \right) dt - \int_{0}^{\Delta t} F(W_{\mathcal{R}}) \left( t, \frac{\Delta x}{2} \right) dt \right) - \frac{1}{\Delta t} \frac{1}{\Delta x} \int_{0}^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} S(W_{\mathcal{R}})(t, x) dx dt$$

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}(\Delta t, x) dx \simeq \frac{W_L + W_R}{2} - \frac{\Delta t}{\Delta x} (F(W_R) - F(W_L)) + \overline{S} \Delta t$$

- └─A well-balanced scheme
  - Structure of the scheme

#### Modification of the HLL scheme

We have 4 unknowns to determine:  $W_L^* = \begin{pmatrix} h_L^* \\ q_L^* \end{pmatrix}$  and  $W_R^* = \begin{pmatrix} h_R^* \\ q_R^* \end{pmatrix}$ .

• q is a 0-Riemann invariant  $\rightsquigarrow$  we take  $q_L^* = q_R^* = q^*$  (relation 1)

2)

Harten-Lax consistency gives us the following two relations:

• 
$$\lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}$$
 (relation  
•  $q^* = q_{HLL} + \frac{\overline{S}\Delta x}{\lambda_R - \lambda_L}$  (relation 3)

next step: obtain a fourth relation

A well-balanced scheme

 $\Box$  The full scheme for a general source term

## Obtaining an additional relation

Assume that  $W_L$  and  $W_R$  define a steady state, i.e. that they satisfy the following discrete version of the steady relation  $\partial_x F(W) = S(W)$  (where  $[X] = X_R - X_L$ ):

$$\frac{1}{\Delta x} \left( q_0^2 \left[ \frac{1}{h} \right] + \frac{g}{2} \left[ h^2 \right] \right) = \overline{S}.$$

For the steady state to be preserved, it is sufficient to have  $h_L^* = h_L$ ,  $h_R^* = h_R$   $W_L$ and  $q^* = q_0$ .

Assuming a steady state, we show that  $q^* = q_0$ , as follows:

$$\boldsymbol{q}^* = q_{HLL} + \frac{\bar{S}\Delta x}{\lambda_R - \lambda_L} = \boldsymbol{q}_0 - \frac{1}{\lambda_R - \lambda_L} \left( \boldsymbol{q}_0^2 \begin{bmatrix} 1\\h \end{bmatrix} + \frac{g}{2} \begin{bmatrix} h^2 \end{bmatrix} - \bar{S}\Delta x \right) = \boldsymbol{q}_0.$$

- A well-balanced scheme
  - └─ The full scheme for a general source term

## Obtaining an additional relation

In order to determine an addition relation, we consider the discrete steady relation, satisfied when  $W_L$  and  $W_R$  define a steady state:

$$q_0^2 \left( \frac{1}{h_R} - \frac{1}{h_L} \right) + \frac{g}{2} \left( (h_R)^2 - (h_L)^2 \right) = \overline{S} \Delta x.$$

To ensure that  $h_L^* = h_L$  and  $h_R^* = h_R$ , we impose that  $h_L^*$  and  $h_R^*$  satisfy the above relation, as follows:

$$q_0^2 \left(\frac{1}{h_R^*} - \frac{1}{h_L^*}\right) + \frac{g}{2} \left((h_R^*)^2 - (h_L^*)^2\right) = \overline{S} \Delta x.$$

A well-balanced scheme

└─ The full scheme for a general source term

## Determination of $h_L^*$ and $h_R^*$

The intermediate water heights satisfy the following relation:

$$-q_0^2 \left(\frac{h_R^* - h_L^*}{h_L^* h_R^*}\right) + \frac{g}{2}(h_L^* + h_R^*)(h_R^* - h_L^*) = \overline{S}\Delta x.$$

Recall that  $q^*$  is known and is equal to  $q_0$  for a steady state. Instead of the above relation, we choose the following linearization:

$$\frac{-(q^*)^2}{h_L h_R}(h_R^* - h_L^*) + \frac{g}{2}(h_L + h_R)(h_R^* - h_L^*) = \overline{S}\Delta x,$$

which can be rewritten as follows:

$$\underbrace{\left(\frac{-(q^*)^2}{h_L h_R} + \frac{g}{2}(h_L + h_R)\right)}_{\alpha}(h_R^* - h_L^*) = \overline{S}\Delta x.$$

A well-balanced scheme

└─ The full scheme for a general source term

# Determination of $h_L^*$ and $h_R^*$

With the consistency relation between  $h_L^*$  and  $h_R^*$ , the intermediate water heights satisfy the following linear system:

$$\begin{cases} \alpha(h_R^* - h_L^*) = \overline{S}\Delta x, \\ \lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}. \end{cases}$$

Using both relations linking  $h_L^\ast$  and  $h_R^\ast,$  we obtain

$$\begin{cases} h_L^* = h_{HLL} - \frac{\lambda_R \overline{S} \Delta x}{\alpha(\lambda_R - \lambda_L)}, \\ h_R^* = h_{HLL} - \frac{\lambda_L \overline{S} \Delta x}{\alpha(\lambda_R - \lambda_L)}, \end{cases}$$
  
where  $\alpha = \left(\frac{-(q^*)^2}{h_L h_R} + \frac{g}{2}(h_L + h_R)\right)$  with  $q^* = q_{HLL} + \frac{\overline{S} \Delta x}{\lambda_R - \lambda_L}.$ 

Development of high-order well-balanced schemes for geophysical flows

- A well-balanced scheme
  - $\Box$  The full scheme for a general source term

## Correction to ensure non-negative $h_L^*$ and $h_R^*$

However, these expressions of  $h_L^*$  and  $h_R^*$  do not guarantee that the intermediate heights are non-negative: instead, we use the following cutoff (see Audusse, Chalons, Ung (2014)):

$$\begin{cases} h_L^* = \min\left(\left(h_{HLL} - \frac{\lambda_R \overline{S} \Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_R}{\lambda_L}\right) h_{HLL}\right), \\ h_R^* = \min\left(\left(h_{HLL} - \frac{\lambda_L \overline{S} \Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_L}{\lambda_R}\right) h_{HLL}\right). \end{cases}$$

Note that this cutoff does not interfere with:

- the consistency condition  $\lambda_R h_R^* \lambda_L h_L^* = (\lambda_R \lambda_L) h_{HLL}$ ;
- the well-balance property, since it is not activated when  $W_L$  and  $W_R$  define a steady state.

- A well-balanced scheme
  - └─The full scheme for a general source term

# Summary

The two-state approximate Riemann solver with intermediate states

$$\begin{split} W_L^* &= \begin{pmatrix} h_L^* \\ q^* \end{pmatrix} \text{ and } W_R^* = \begin{pmatrix} h_R^* \\ q^* \end{pmatrix} \text{ given by} \\ \begin{cases} q^* &= q_{HLL} + \frac{\overline{S}\Delta x}{\lambda_R - \lambda_L}, \\ h_L^* &= \min\left(\left(h_{HLL} - \frac{\lambda_R \overline{S}\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_R}{\lambda_L}\right)h_{HLL}\right), \\ h_R^* &= \min\left(\left(h_{HLL} - \frac{\lambda_L \overline{S}\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_L}{\lambda_R}\right)h_{HLL}\right), \end{split}$$

is consistent, non-negativity-preserving and well-balanced.

**next step**: determination of  $\overline{S}$  according to the source term definition (topography and/or friction).

A well-balanced scheme

-The cases of the topography and friction source terms

#### The topography source term

We now consider  $S(W) = S^t(W) = -gh\partial_x Z$ : the smooth steady states are governed by

$$\frac{\partial_x \left(\frac{q_0^2}{h}\right) + \frac{g}{2} \partial_x \left(h^2\right) = -gh \partial_x Z, }{\frac{q_0^2}{2} \partial_x \left(\frac{1}{h^2}\right) + g \partial_x (h+Z) = 0, } \xrightarrow{\text{discretization}} \begin{cases} q_0^2 \left[\frac{1}{h}\right] + \frac{g}{2} \left[h^2\right] = \overline{S}^t \Delta x, \\ \frac{q_0^2}{2} \left[\frac{1}{h^2}\right] + g[h+Z] = 0. \end{cases}$$

We can exhibit an expression of  $q_0^2$  and thus obtain

$$\overline{S}^{t} = -g \frac{2h_{L}h_{R}}{h_{L} + h_{R}} \frac{[Z]}{\Delta x} + \frac{g}{2\Delta x} \frac{[h]^{3}}{h_{L} + h_{R}}$$

However, when  $Z_L = Z_R$ , we have  $\overline{S}^t \neq \mathcal{O}(\Delta x)$ , i.e. a loss of consistency with  $S^t$  (see for instance Berthon, Chalons (2016)).

Development of high-order well-balanced schemes for geophysical flows

A well-balanced scheme

Let The cases of the topography and friction source terms

#### The topography source term

Instead, we set, for some constant C > 0,

$$\begin{cases} \overline{S}^t = -g \frac{2h_L h_R}{h_L + h_R} \frac{[Z]}{\Delta x} + \frac{g}{2\Delta x} \frac{[h]_c^3}{h_L + h_R}, \\ [h]_c = \begin{cases} h_R - h_L & \text{if } |h_R - h_L| \le C\Delta x, \\ \operatorname{sgn}(h_R - h_L) C\Delta x & \text{otherwise.} \end{cases} \end{cases}$$

#### Theorem: Well-balance for the topography source term

If  $W_L$  and  $W_R$  define a smooth steady state, i.e. if they satisfy

$$\frac{q_0^2}{2} \left[ \frac{1}{h^2} \right] + g[h + Z] = 0,$$

then we have  $W_L^* = W_L$  and  $W_R^* = W_R$  and the approximate Riemann solver is well-balanced.

A well-balanced scheme

Let The cases of the topography and friction source terms

#### The friction source term

We consider, in this case,  $S(W) = S^f(W) = -kq|q|h^{-\eta}$ .

The average of  $S^f$  we choose is  $\overline{S}^f=-k\bar{q}|\bar{q}|\overline{h^{-\eta}},$  with

- $\bar{q}$  the harmonic mean of  $q_L$  and  $q_R$  (note that  $\bar{q} = q_0$  at the equilibrium);
- $\overline{h^{-\eta}}$  a well-chosen discretization of  $h^{-\eta}$ , depending on  $h_L$  and  $h_R$ , and ensuring the well-balance property.

We determine  $\overline{h^{-\eta}}$  using the same technique (with  $\mu_0 = \operatorname{sgn}(q_0)$ ):

$$\frac{\partial_x \left(\frac{q_0^2}{h}\right) + \frac{g}{2} \partial_x \left(h^2\right) = -kq_0 |q_0| h^{-\eta}, }{q_0^2 \frac{\partial_x h^{\eta-1}}{\eta - 1} - g \frac{\partial_x h^{\eta+2}}{\eta + 2} = kq_0 |q_0|, } \xrightarrow{\text{discretization}} \begin{cases} q_0^2 \left[\frac{1}{h}\right] + \frac{g}{2} [h^2] = -k\mu_0 q_0^2 \overline{h^{-\eta}} \Delta x, \\ q_0^2 \frac{[h^{\eta-1}]}{\eta - 1} - g \frac{[h^{\eta+2}]}{\eta + 2} = k\mu_0 q_0^2 \Delta x. \end{cases}$$

A well-balanced scheme

Let The cases of the topography and friction source terms

#### The friction source term

The expression for  $q_0^2$  we obtained is now used to get:

$$\overline{h^{-\eta}} = \frac{[h^2]}{2} \frac{\eta + 2}{[h^{\eta+2}]} - \frac{\mu_0}{k\Delta x} \left( \left[ \frac{1}{h} \right] + \frac{[h^2]}{2} \frac{[h^{\eta-1}]}{\eta - 1} \frac{\eta + 2}{[h^{\eta+2}]} \right),$$

which gives  $\overline{S}^f = -k\bar{q}|\bar{q}|\overline{h^{-\eta}}$  ( $\overline{h^{-\eta}}$  is consistent with  $h^{-\eta}$ ).

#### Theorem: Well-balance for the friction source term

If  $W_L$  and  $W_R$  define a smooth steady state, i.e. verify

$$q_0^2 \frac{[h^{\eta-1}]}{\eta-1} + g \frac{[h^{\eta+2}]}{\eta+2} = -kq_0 |q_0| \Delta x,$$

then we have  $W_L^* = W_L$  and  $W_R^* = W_R$  and the approximate Riemann solver is well-balanced.

A well-balanced scheme

 ${}^{igsir}$  The cases of the topography and friction source terms

#### Friction and topography source terms

With both source terms, the scheme preserves the following discretization of the steady relation  $\partial_x F(W) = S(W)$ :

$$q_0^2 \left[\frac{1}{h}\right] + \frac{g}{2} \left[h^2\right] = \overline{S}^t \Delta x + \overline{S}^f \Delta x.$$

The intermediate states are therefore given by:

$$\begin{cases} q^* = q_{HLL} + \frac{(\bar{S}^t + \bar{S}^f)\Delta x}{\lambda_R - \lambda_L}; \\ h_L^* = \min\left(\left(h_{HLL} - \frac{\lambda_R(\bar{S}^t + \bar{S}^f)\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_R}{\lambda_L}\right)h_{HLL}\right); \\ h_R^* = \min\left(\left(h_{HLL} - \frac{\lambda_L(\bar{S}^t + \bar{S}^f)\Delta x}{\alpha(\lambda_R - \lambda_L)}\right)_+, \left(1 - \frac{\lambda_L}{\lambda_R}\right)h_{HLL}\right). \end{cases}$$

A well-balanced scheme

Let The cases of the topography and friction source terms

## The full Godunov-type scheme



which can be rewritten, after straightforward computations,

$$W_{i}^{n+1} = W_{i}^{n} - \frac{\Delta t}{\Delta x} \left( \mathcal{F}_{i+\frac{1}{2}}^{n} - \mathcal{F}_{i-\frac{1}{2}}^{n} \right) + \Delta t \left( \left( \underbrace{(\mathcal{S}^{t})_{i-\frac{1}{2}}^{n} + (\mathcal{S}^{t})_{i+\frac{1}{2}}^{n}}_{2} \right) + \underbrace{\begin{pmatrix} 0 \\ (\mathcal{S}^{f})_{i-\frac{1}{2}}^{n} + (\mathcal{S}^{f})_{i+\frac{1}{2}}^{n} \\ 2 \\ 2 \\ 2 \\ 2 \\ 6 \\ / 46 \\ \end{pmatrix} \right).$$

- A well-balanced scheme
  - Let The cases of the topography and friction source terms

## Summary

We have presented a scheme that:

- is consistent with the shallow-water equations with friction and topography;
- is well-balanced for friction and topography steady states;
- preserves the non-negativity of the water height;
- is not able to correctly approximate wet/dry interfaces due to the stiffness of the friction: we require a semi-implicitation of the friction source term.

next step: introduction of this semi-implicitation

A well-balanced scheme

Source terms contribution to the finite volume scheme

#### Semi-implicit finite volume scheme

We use a splitting method with an explicit treatment of the flux and the topography and an implicit treatment of the friction.

1 explicitly solve  $\partial_t W + \partial_x F(W) = S^t(W)$  to get

$$W_{i}^{n+\frac{1}{2}} = W_{i}^{n} - \frac{\Delta t}{\Delta x} \left( \mathcal{F}_{i+\frac{1}{2}}^{n} - \mathcal{F}_{i-\frac{1}{2}}^{n} \right) + \Delta t \left( \frac{1}{2} \left( (\mathcal{S}^{t})_{i-\frac{1}{2}}^{n} + (\mathcal{S}^{t})_{i+\frac{1}{2}}^{n} \right) \right)$$

2 implicitly solve  $\partial_t W = S^f(W)$  to get

$$\begin{cases} h_i^{n+1} = h_i^{n+\frac{1}{2}} \\ \text{IVP:} \begin{cases} \partial_t q = -kq |q| (h_i^{n+1})^{-\eta} \\ q(x_i, t^n) = q_i^{n+\frac{1}{2}} \end{cases} \rightsquigarrow q_i^{n+1} \end{cases}$$

A well-balanced scheme

-Source terms contribution to the finite volume scheme

# Semi-implicit finite volume scheme

Solving the IVP yields:

$$q_i^{n+1} = \frac{(h_i^{n+1})^{\eta} q_i^{n+\frac{1}{2}}}{(h_i^{n+1})^{\eta} + k \,\Delta t \left| q_i^{n+\frac{1}{2}} \right|}.$$

We use the following approximation of  $(h_i^{n+1})^{\eta}$ , which provides us with an expression of  $q_i^{n+1}$  that is equal to  $q_0$  at the equilibrium:

$$(\overline{h^{\eta}})_{i}^{n+1} = \frac{2\mu_{i}^{n+\frac{1}{2}}\mu_{i}^{n}}{\left(\overline{h^{-\eta}}\right)_{i-\frac{1}{2}}^{n+1} + \left(\overline{h^{-\eta}}\right)_{i+\frac{1}{2}}^{n+1}} + k\,\Delta t\,\mu_{i}^{n+\frac{1}{2}}q_{i}^{n}.$$

- semi-implicit treatment of the friction source term → scheme able to model wet/dry transitions
- scheme still well-balanced and non-negativity-preserving



- 2 A well-balanced scheme
- 3 1D numerical experiments
- 4 Two-dimensional and high-order extensions
- 5 2D numerical experiments
- 6 Conclusion and perspectives

#### Verification of the well-balance: friction



left panel: water height for the subcritical steady state solution right panel: water height for the perturbed steady state solution

#### Verification of the well-balance: friction



left panel: convergence to the unperturbed steady state right panel: errors to the steady state (solid: h, dashed: q)

# Verification of the well-balance: topography

subcritical flow test case (see Goutal, Maurel (1997))



left panel: initial free surface at rest; water is injected from the left boundary right panel: free surface for the steady state solution, after a transient state

|                                         |                    | Ľ        | L        |          |         |
|-----------------------------------------|--------------------|----------|----------|----------|---------|
| <sub>u2</sub> er                        | rors on $q$        | 6.65e-14 | 6.99e-14 | 8.26e-14 |         |
| $\mathcal{E} = \frac{a}{2} + g(h+Z)$ er | rors on ${\cal E}$ | 1.18e-13 | 1.25e-13 | 1.53e-13 | 21 / 46 |

# Verification of the well-balance: topography

transcritical flow test case (see Goutal, Maurel (1997))



left panel: initial free surface at rest; water is injected from the left boundary right panel: free surface for the steady state solution, after a transient state

|                                      |                      | $L^1$    | $L^2$    | $L^{\infty}$ |         |
|--------------------------------------|----------------------|----------|----------|--------------|---------|
| <i>u</i> <sup>2</sup>                | errors on $q$        | 1.47e-14 | 1.58e-14 | 2.04e-14     |         |
| $\mathcal{E} = \frac{a}{2} + g(h+Z)$ | errors on ${\cal E}$ | 1.67e-14 | 2.13e-14 | 4.26e-14     | 21 / 44 |

#### Dry dam-break: Hunt's asymptotic solution



See Hunt (1984) for the experimental points and the solution, valid far enough away from the initial dam.

— Two-dimensional and high-order extensions



- 2 A well-balanced scheme
- 3 1D numerical experiments
- 4 Two-dimensional and high-order extensions
- 5 2D numerical experiments
- 6 Conclusion and perspectives

- Two-dimensional and high-order extensions
  - Two-dimensional extension

#### Two-dimensional extension

2D shallow-water model:  $\partial_t W + \boldsymbol{\nabla} \cdot \boldsymbol{F}(W) = \boldsymbol{S}^t(W) + \boldsymbol{S}^f(W)$ 

$$\begin{cases} \partial_t h + \boldsymbol{\nabla} \cdot \boldsymbol{q} = 0\\ \partial_t \boldsymbol{q} + \boldsymbol{\nabla} \cdot \left(\frac{\boldsymbol{q} \otimes \boldsymbol{q}}{h} + \frac{1}{2}gh^2 \mathbb{I}_2\right) = -gh\boldsymbol{\nabla} Z - \frac{k\boldsymbol{q} \|\boldsymbol{q}\|}{h^{\eta}} \end{cases}$$

to the right: simulation of the 2011 Japan tsunami



- Two-dimensional and high-order extensions
  - Two-dimensional extension

#### Two-dimensional extension

space discretization: Cartesian mesh



With  $\mathcal{F}_{ij}^n = \mathcal{F}(W_i^n, W_j^n; \boldsymbol{n}_{ij})$ , the scheme reads:

$$W_i^{n+\frac{1}{2}} = W_i^n - \Delta t \sum_{j \in \nu_i} \frac{|e_{ij}|}{|c_i|} \mathcal{F}_{ij}^n + \frac{\Delta t}{2} \sum_{j \in \nu_i} (\mathcal{S}^t)_{ij}^n.$$

 $W_i^{n+1}$  is obtained from  $W_i^{n+\frac{1}{2}}$  with a splitting strategy:

$$\begin{cases} \partial_t h = 0\\ \partial_t q = -k \, q \| q \| h^{-\eta} \rightsquigarrow \begin{cases} h_i^{n+1} = h_i^{n+\frac{1}{2}} \\ q_i^{n+1} = \frac{(\overline{h^{\eta}})_i^{n+1} q_i^{n+\frac{1}{2}}}{(\overline{h^{\eta}})_i^{n+1} + k \, \Delta t \, \left\| q_i^{n+\frac{1}{2}} \right\|} \end{cases}$$

- Two-dimensional and high-order extensions
  - Two-dimensional extension

#### Two-dimensional extension

The 2D scheme is:

- non-negativity-preserving for the water height:  $\forall i \in \mathbb{Z}, h_i^n \ge 0 \Longrightarrow \forall i \in \mathbb{Z}, h_i^{n+1} \ge 0;$
- able to deal with wet/dry transitions thanks to the semi-implicitation with the splitting method;
- well-balanced by direction for the shallow-water equations with friction and/or topography, i.e.:
  - it preserves all steady states at rest,
  - it preserves friction and/or topography steady states in the *x*-direction and the *y*-direction,
  - it does not preserve the fully 2D steady states.

next step: high-order extension of this 2D scheme

Two-dimensional and high-order extensions

High-order extension

#### High-order extension: the polynomial reconstruction

polynomial reconstruction (see Diot, Clain, Loubère (2012)):

$$\widehat{W}_i^n(x) = W_i^n + \sum_{|k|=1}^d \alpha_i^k \Big[ (x - x_i)^k - M_i^k \Big]$$

The polynomial coefficients α<sup>k</sup><sub>i</sub> are chosen to minimize the least squares error between the reconstruction and W<sup>n</sup><sub>j</sub>, for all j in the stencil S<sup>d</sup><sub>i</sub>.

We have 
$$M_i^k = \frac{1}{|c_i|} \int_{c_i} (x - x_i)^k dx$$
 such that

the conservation property is verified:  $\frac{1}{|c_i|} \int_{c_i} \widehat{W}_i^n(x) dx = W_i^n$ .

Two-dimensional and high-order extensions

High-order extension

## High-order extension: the scheme

#### High-order space accuracy

$$\begin{split} W_i^{n+1} &= W_i^n - \Delta t \sum_{j \in \nu_i} \frac{|e_{ij}|}{|c_i|} \sum_{r=0}^R \xi_r \mathcal{F}_{ij,r}^n + \Delta t \sum_{q=0}^Q \eta_q \Big( (\mathcal{S}^t)_{i,q}^n + (\mathcal{S}^f)_{i,q}^n \Big) \\ &\bullet \ \mathcal{F}_{ij,r}^n = \mathcal{F}(\widehat{W}_i^n(\sigma_r), \widehat{W}_j^n(\sigma_r); \boldsymbol{n}_{ij}) \\ &\bullet \ (\mathcal{S}^t)_{i,q}^n = S^t(\widehat{W}_i^n(x_q)) \quad \text{ and } \quad (\mathcal{S}^f)_{i,q}^n = S^f(\widehat{W}_i^n(x_q)) \end{split}$$

We have set:

- $(\xi_r, \sigma_r)_r$ , a quadrature rule on the edge  $e_{ij}$ ;
- $(\eta_q, x_q)_q$ , a quadrature rule on the cell  $c_i$ .

The high-order time accuracy is achieved by the use of SSPRK methods (see Gottlieb, Shu (1998)).

Two-dimensional and high-order extensions

High-order extension

## MOOD method

High-order schemes induce oscillations: we use the MOOD method to get rid of the oscillations and to restore the non-negativity preservation (see Clain, Diot, Loubère (2011)).

#### MOOD loop

- **1** compute a candidate solution  $W^c$  with the high-order scheme
- **2** determine whether  $W^c$  is admissible, i.e.
  - if  $h^c$  is non-negative (PAD criterion)
  - if W<sup>c</sup> does not present spurious oscillations (DMP and u2 criteria)
- 3 where necessary, decrease the degree of the reconstruction
- 4 compute a new candidate solution

Two-dimensional and high-order extensions

High-order extension

# Well-balance recovery (1D)

reconstruction procedure  $\rightsquigarrow$  scheme no longer well-balanced

#### Well-balance recovery

We suggest a convex combination between the high-order scheme  $W_{HO}$  and the well-balanced scheme  $W_{WB}$ :

$$W_{i}^{n+1} = \frac{\theta_{i}^{n}}{(W_{HO})_{i}^{n+1}} + (1 - \frac{\theta_{i}^{n}}{(W_{WB})_{i}^{n+1}},$$

with  $\theta_i^n$  the parameter of the convex combination, such that:

- if  $\theta_i^n = 0$ , then the well-balanced scheme is used;
- if  $\theta_i^n = 1$ , then the high-order scheme is used.

**next step**: derive a suitable expression for  $\theta_i^n$ 

Two-dimensional and high-order extensions

High-order extension

## Choice of $\theta_i^n$

#### Steady state detector

$$\begin{array}{l} \text{steady state solution:} & \left\{ \begin{aligned} q_L &= q_R = q_0, \\ \frac{q_0^2}{h_R} - \frac{q_0^2}{h_L} + \frac{g}{2} \left( h_R^2 - h_L^2 \right) &= (\overline{S}^t + \overline{S}^f) \Delta x \end{aligned} \right. \\ \text{steady state detector:} & \left. \varphi_i^n &= \left\| \begin{pmatrix} q_i^n - q_{i-1}^n \\ [\mathcal{E}]_{i-\frac{1}{2}}^n \end{pmatrix} \right\|_2 + \left\| \begin{pmatrix} q_{i+1}^n - q_i^n \\ [\mathcal{E}]_{i+\frac{1}{2}}^n \end{pmatrix} \right\|_2 \end{aligned}$$

$$\begin{split} \varphi_i^n &= 0 \text{ if there is a steady state} \\ \text{between } W_{i-1}^n, \ W_i^n \text{ and } W_{i+1}^n \\ & \rightsquigarrow \text{ in this case, we take } \theta_i^n = 0 \\ & \rightsquigarrow \text{ otherwise, we take } 0 < \theta_i^n \leq 1 \end{split}$$





- 2 A well-balanced scheme
- 3 1D numerical experiments
- 4 Two-dimensional and high-order extensions
- 5 2D numerical experiments
- 6 Conclusion and perspectives

#### Order of accuracy assessment

 $L^2$  errors with respect to the number of cells

top graphs: 2D steady solution with topography

bottom graphs: 2D steady solution with friction and topography



#### Perturbed pseudo-1D steady state



#### Double dry dam-break on a sinusoidal bottom



- $\blacksquare$  near the edges, steady state at rest  $\rightsquigarrow$  well-balanced scheme
- away from the edges, far from steady state ~→ high-order scheme
- center, dry area ~→ well-balanced scheme

#### Simulation of the 2011 Tohoku tsunami



#### Simulation of the 2011 Tohoku tsunami



#### Simulation of the 2011 Tōhoku tsunami





Conclusion and perspectives



- 2 A well-balanced scheme
- 3 1D numerical experiments
- 4 Two-dimensional and high-order extensions
- 5 2D numerical experiments
- 6 Conclusion and perspectives

#### Conclusion and perspectives

#### Conclusion

- 1D scheme: well-balanced for the shallow-water equations with friction and topography
  - non-negativity-preserving for the water height
  - provides a suitable approximation of interfaces between wet and dry areas
  - able to be applied to other source terms or combinations of source terms

#### 2D scheme: well-balanced by direction

- non-negativity-preserving, handles wet/dry transitions
- high-order accurate in space and time

Conclusion and perspectives

#### Perspectives

- application to other source terms:
  - Coriolis force source term
  - breadth variation source term
- stability of the scheme:
  - values of C,  $\lambda_L$  and  $\lambda_R$  to ensure the entropy preservation
  - entropy criterion in the MOOD method
- high-order accuracy:
  - rigorous proof of the order of the convex combination
  - reconstruction based on the moving steady states

# Thank you for your attention!

#### - Appendices

#### Riemann problems between two wet areas



left: k = 0 left: k = 10

both Riemann problems have initial data  $W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$  and

 $W_R = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ , on [0, 5], with 200 points, and final time 0.2s

#### - Appendices

#### Riemann problems with a wet/dry transition



left: k = 0 left: k = 10

both Riemann problems have initial data  $W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$  and

 $W_R = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ , on [0, 5], with 200 points, and final time 0.15s

#### Appendices

#### Double dry dam-break on a sinusoidal bottom



#### Appendices



Bibliography

#### Preservation of the lake at rest

A. Bermudez and M. E. Vazquez. "Upwind methods for hyperbolic conservation laws with source terms". In: *Comput. & Fluids* 23.8 (1994), pp. 1049–1071

J. M. Greenberg and A.-Y. LeRoux. "A well-balanced scheme for the numerical processing of source terms in hyperbolic equations". In: *SIAM J. Numer. Anal.* 33.1 (1996), pp. 1–16

E. Audusse et al. "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows". In: *SIAM J. Sci. Comput.* 25.6 (2004), pp. 2050–2065

C. Berthon and F. Foucher. "Efficient well-balanced hydrostatic upwind schemes for shallow-water equations". In: *J. Comput. Phys.* 231.15 (2012), pp. 4993–5015

E. Audusse et al. "A simple well-balanced and positive numerical scheme for the shallow-water system". In: *Commun. Math. Sci.* 13.5 (2015), pp. 1317–1332

#### Bibliography

#### Fully well-balanced schemes

L. Gosse. "A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms". In: *Comput. Math. Appl.* 39.9-10 (2000), pp. 135–159

M. J. Castro et al. "Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique". In: *Math. Models Methods Appl. Sci.* 17.12 (2007), pp. 2055–2113

U. S. Fjordholm et al. "Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography". In: *J. Comput. Phys.* 230.14 (2011), pp. 5587–5609

Y. Xing et al. "On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations". In: *J. Sci. Comput.* 48.1-3 (2011), pp. 339–349

C. Berthon and C. Chalons. "A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations". In: *Math. Comp.* 85.299 (2016), pp. 1281–1307

V. Michel-Dansac et al. "A well-balanced scheme for the shallow-water equations with topography". In: *Comput. Math. Appl.* 72.3 (2016), pp. 568–593

#### Bibliography

#### High-order well-balanced schemes and friction

M. Castro et al. "High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems". In: *Math. Comp.* 75.255 (2006), pp. 1103–1134

M. J. Castro Díaz et al. "High order exactly well-balanced numerical methods for shallow water systems". In: J. Comput. Phys. 246 (2013), pp. 242–264

S. Clain and J. Figueiredo. "The MOOD method for the non-conservative shallow-water system". working paper or preprint. 2014

Q. Liang and F. Marche. "Numerical resolution of well-balanced shallow water equations with complex source terms". In: *Adv. Water Resour.* 32.6 (2009), pp. 873–884

A. Chertock et al. "Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms". In: *Internat. J. Numer. Methods Fluids* 78.6 (2015), pp. 355–383