
Development of high-order well-balanced schemes for geophysical flows

Development of high-order well-balanced schemes
for geophysical flows

Victor Michel-Dansac

Thursday, September 29th, 2016

PhD advisors: Christophe Berthon and Françoise Foucher
PhD reviewers: Manuel J. Castro-Díaz and Jean-Paul Vila

Defense examiners: Christophe Chalons, Stéphane Clain and Fabien Marche



Development of high-order well-balanced schemes for geophysical flows

Contents

1 Introduction and motivations

2 A well-balanced scheme

3 1D numerical experiments

4 Two-dimensional and high-order extensions

5 2D numerical experiments

6 Conclusion and perspectives



Development of high-order well-balanced schemes for geophysical flows

Introduction and motivations

1 Introduction and motivations

2 A well-balanced scheme

3 1D numerical experiments

4 Two-dimensional and high-order extensions

5 2D numerical experiments

6 Conclusion and perspectives



Development of high-order well-balanced schemes for geophysical flows

Introduction and motivations

Geophysical flows

Several kinds of destructive geophysical flows

Dam failure (Malpasset, France, 1959) Tsunami (Tōhoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010) Mudslide (Madeira, Portugal, 2010)
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Introduction and motivations

The shallow-water equations

The shallow-water equations and their source terms




∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
= −gh∂xZ −

kq|q|
hη

(with q = hu)

We can rewrite the equations as ∂tW + ∂xF (W ) = S(W ), with W =

(
h
q

)
.

x

h(x, t)

water surface

channel bottom

u(x, t)

Z(x)

η = 7/3 and g is the
gravitational constant
k ≥ 0 is the so-called
Manning coefficient:
a higher k leads to a
stronger Manning
friction
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Introduction and motivations

Steady state solutions

Steady state solutions
Definition: Steady state solutions

W is a steady state solution iff ∂tW = 0, i.e. ∂xF (W ) = S(W ).

Taking ∂tW = 0 in the shallow-water equations leads to




∂xq = 0

∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ −

kq|q|
hη

.

The steady state solutions are therefore given by




q = cst = q0

∂x

(
q2

0

h
+

1

2
gh2

)
= −gh∂xZ −

kq0|q0|
hη

.
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Introduction and motivations

Steady state solutions

Steady states for the friction source term
Assume a flat bottom (Z = cst): the steady states are given by

∂x

(
q2

0

h
+

1

2
gh2

)
= −kq0|q0|

hη
.

Assuming smooth steady state solutions and integrating this relation
between some x0 ∈ R and x ∈ R yields (with h = h(x) and h0 = h(x0)):

− q2
0

η − 1

(
hη−1 − hη−1

0

)
+

g

η + 2

(
hη+2 − hη+2

0

)
+ kq0|q0|(x− x0) = 0.

next step: study of the above nonlinear equation, denoted by
χ(h;x, h0, x0, q0) = 0
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Introduction and motivations

Steady state solutions

Steady states for the friction source term

1 We show that
∂χ

∂h
(h;x, h0, x0, q0) < 0 if and only if h < hc, where

hc =

(
q2

0

g

)1�3

.

As a consequence, χ(h) is: decreasing for h < hc;
increasing for h > hc.

2 In the context of a steady state solution, the Froude number is
defined, using the sound speed c =

√
gh, by:

Fr(h) =
u

c
=

q2
0√
gh3

.

Therefore, Fr(hc) = 1 and the steady state is: supercritical if h < hc;
subcritical if h > hc.
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Introduction and motivations

Steady state solutions

Steady states for the friction source term, assuming q0 < 0

h < h c 
supercritical

solution 

h > hc
subcritical

solution

hc

Sketches of χ(h;x) for h ∈ [0, 0.41], for different values of x, and
for hc = 0.25. We are interested in the solutions of χ(h) = 0.
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Introduction and motivations

Steady state solutions

Steady states for the friction source term, assuming q0 < 0

h(x)

blue curve: subcritical solution; red curve: supercritical
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Development of high-order well-balanced schemes for geophysical flows

Introduction and motivations

Objectives

Objectives

1 Derive a scheme that:

is well-balanced for the shallow-water equations with friction
and/or topography, i.e.:

preservation of all steady states with k = 0 and Z 6= cst,
preservation of all steady states with k 6= 0 and Z = cst,
preservation of steady states with k 6= 0 and Z 6= cst;

preserves the non-negativity of the water height;

is able to deal with wet/dry transitions, where the friction
source term is stiff.

2 Provide two-dimensional and high-order extensions of this
scheme, while keeping the above properties.
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A well-balanced scheme

Non-exhaustive state of the art

Non-exhaustive state of the art
Well-balanced schemes for the shallow-water equations

introduction of the well-balance property:
Bermudez-Vazquez (1994), Greenberg-LeRoux (1996)

preservation of the lake at rest:
Audusse et al. (2004), Berthon-Foucher (2012), Audusse et al. (2015)

1D fully well-balanced schemes:
Gosse (2000), Castro et al. (2007), Fjordholm et al. (2011),
Xing et al. (2011), Berthon-Chalons (2016)

1D high-order schemes that preserve steady states:
Castro et al. (2006), Castro Díaz et al. (2013)

2D schemes preserving the lake at rest on unstructured meshes:
Duran et al. (2013), Clain-Figueiredo (2014)

for the friction source term:
Liang-Marche (2009), Chertock et al. (2015)
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A well-balanced scheme

Structure of the scheme

The HLL scheme

To approximate solutions of
∂tW + ∂xF (W ) = 0, the HLL scheme
(Harten, Lax, van Leer (1983)) may be
chosen; it uses the approximate Riemann
solver W̃ , displayed on the right.

WHLL

WL WR

λL

x

t

λR

0−∆x/2 ∆x/2

The consistency condition (as per Harten and Lax) holds if:

1

∆x

∫ ∆x/2

−∆x/2
W̃ (∆t, x;WL,WR)dx =

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x;WL,WR)dx,

which gives WHLL =
λRWR − λLWL

λR − λL
− F (WR)− F (WL)

λR − λL
=

(
hHLL
qHLL

)
.

Note that, if hL > 0 and hR > 0, then hHLL > 0 for |λL| and |λR| large enough.
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A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme
With Y (t, x) = x, we rewrite the shallow-water equations with a
generic source term S as follows:





∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
− S∂xY = 0,

∂tY = 0.

The equation ∂tY = 0 induces a stationary wave associated to the
source term; we also note that q is a Riemann invariant for this wave.

To approximate solutions of
∂tW + ∂xF (W ) = S(W ), we thus use
the approximate Riemann solver
displayed on the right
(assuming λL < 0 < λR).

WL WR

λL λR0

W ∗
L W ∗

R
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A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme
We now wish to apply the Harten-Lax consistency condition to
∂tW + ∂xF (W ) = S(W ). Recall this condition:

1

∆x

∫ ∆x/2

−∆x/2
W̃ (∆t, x;WL,WR)dx =

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x;WL,WR)dx,

first step: compute
1

∆x

∫ ∆x/2

−∆x/2
W̃ (∆t, x)dx (straightforward)

1

∆x

∫ ∆x/2

−∆x/2
W̃ (∆t, x)dx =

WL+WR

2
− λR

∆t

∆x
(WR−W ∗R) + λL

∆t

∆x
(WL−W ∗L)

second step: compute
1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x)dx
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A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR) ) dx dt = 0
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A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR) ) dx dt = 0

0 =
1

∆t

1

∆x

(∫ ∆x/2

−∆x/2
WR(∆t, x)dx−

∫ ∆x/2

−∆x/2
WR(0, x)dx

)
+

1

∆t

1

∆x

(∫ ∆t

0
F (WR)

(
t,−∆x

2

)
dt−

∫ ∆t

0
F (WR)

(
t,

∆x

2

)
dt

)

WL WR

λL λR0

W ∗
L W ∗

R

0−∆x/2 ∆x/2

t

x0

∆t
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Development of high-order well-balanced schemes for geophysical flows

A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR) ) dx dt = 0

0 =
1

∆t

1

∆x

(∫ ∆x/2

−∆x/2
WR(∆t, x)dx−

∫ ∆x/2

−∆x/2
WR(0, x)dx

)
+

1

∆t

1

∆x

(∫ ∆t

0
F (WR)

(
t,−∆x

2

)
dt−

∫ ∆t

0
F (WR)

(
t,

∆x

2

)
dt

)

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x)dx =

WL +WR

2
− ∆t

∆x
(F (WR)− F (WL))
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A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR)− S(WR)) dx dt = 0
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A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR)− S(WR)) dx dt = 0

0 =
1

∆t

1

∆x

(∫ ∆x/2

−∆x/2
WR(∆t, x)dx−

∫ ∆x/2

−∆x/2
WR(0, x)dx

)
+

1

∆t

1

∆x

(∫ ∆t

0
F (WR)

(
t,−∆x

2

)
dt−

∫ ∆t

0
F (WR)

(
t,

∆x

2

)
dt

)
−

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
S(WR)(t, x) dx dt

WL WR

λL λR0

W ∗
L W ∗

R

0−∆x/2 ∆x/2

t

x0

∆t
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A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR)− S(WR)) dx dt = 0

0 =
1

∆t

1

∆x

(∫ ∆x/2

−∆x/2
WR(∆t, x)dx−

∫ ∆x/2

−∆x/2
WR(0, x)dx

)
+

1

∆t

1

∆x

(∫ ∆t

0
F (WR)

(
t,−∆x

2

)
dt−

∫ ∆t

0
F (WR)

(
t,

∆x

2

)
dt

)
−

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
S(WR)(t, x) dx dt

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x)dx ' WL +WR

2
− ∆t

∆x
(F (WR)− F (WL)) + S∆t
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A well-balanced scheme

Structure of the scheme

Modification of the HLL scheme

We have 4 unknowns to determine: W ∗L =

(
h∗L
q∗L

)
and W ∗R =

(
h∗R
q∗R

)
.

q is a 0-Riemann invariant  we take q∗L = q∗R = q∗ (relation 1)

Harten-Lax consistency gives us the following two relations:

λRh
∗
R − λLh∗L = (λR − λL)hHLL (relation 2)

q∗ = qHLL +
S∆x

λR − λL
(relation 3)

next step: obtain a fourth relation
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A well-balanced scheme

The full scheme for a general source term

Obtaining an additional relation
Assume that WL and WR define a steady state, i.e. that they
satisfy the following discrete version of the steady relation
∂xF (W ) = S(W ) (where [X] = XR −XL):

1

∆x

(
q2

0

[
1

h

]
+
g

2

[
h2
])

= S.

For the steady state to be preserved, it
is sufficient to have h∗L = hL, h∗R = hR
and q∗ = q0.

0

WL WR

Assuming a steady state, we show that q∗ = q0, as follows:

q∗ = qHLL +
S∆x

λR − λL
= q0 −

1

λR − λL

(
q2

0

[
1

h

]
+
g

2

[
h2
]
− S∆x

)
= q0.
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A well-balanced scheme

The full scheme for a general source term

Obtaining an additional relation

In order to determine an addition relation, we consider the discrete
steady relation, satisfied when WL and WR define a steady state:

q2
0

(
1

hR
− 1

hL

)
+
g

2

(
(hR)2 − (hL)2

)
= S∆x.

To ensure that h∗L = hL and h∗R = hR, we impose that h∗L and h∗R
satisfy the above relation, as follows:

q2
0

(
1

h∗R
− 1

h∗L

)
+
g

2

(
(h∗R)2 − (h∗L)2

)
= S∆x.
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A well-balanced scheme

The full scheme for a general source term

Determination of h∗L and h∗R
The intermediate water heights satisfy the following relation:

−q2
0

(
h∗R − h∗L
h∗Lh

∗
R

)
+
g

2
(h∗L + h∗R)(h∗R − h∗L) = S∆x.

Recall that q∗ is known and is equal to q0 for a steady state.
Instead of the above relation, we choose the following linearization:

−(q∗)2

hLhR
(h∗R − h∗L) +

g

2
(hL + hR)(h∗R − h∗L) = S∆x,

which can be rewritten as follows:
(−(q∗)2

hLhR
+
g

2
(hL + hR)

)

︸ ︷︷ ︸
α

(h∗R − h∗L) = S∆x.
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A well-balanced scheme

The full scheme for a general source term

Determination of h∗L and h∗R
With the consistency relation between h∗L and h∗R, the intermediate
water heights satisfy the following linear system:

{
α(h∗R − h∗L) = S∆x,

λRh
∗
R − λLh∗L = (λR − λL)hHLL.

Using both relations linking h∗L and h∗R, we obtain




h∗L = hHLL −
λRS∆x

α(λR − λL)
,

h∗R = hHLL −
λLS∆x

α(λR − λL)
,

where α =

(−(q∗)2

hLhR
+
g

2
(hL + hR)

)
with q∗ = qHLL +

S∆x

λR − λL
.

18 / 46



Development of high-order well-balanced schemes for geophysical flows

A well-balanced scheme

The full scheme for a general source term

Correction to ensure non-negative h∗L and h∗R
However, these expressions of h∗L and h∗R do not guarantee that the
intermediate heights are non-negative: instead, we use the following
cutoff (see Audusse, Chalons, Ung (2014)):





h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)

+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)

+

,

(
1− λL

λR

)
hHLL

)
.

Note that this cutoff does not interfere with:
the consistency condition λRh∗R − λLh∗L = (λR − λL)hHLL;

the well-balance property, since it is not activated when WL and
WR define a steady state.
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A well-balanced scheme

The full scheme for a general source term

Summary
The two-state approximate Riemann solver with intermediate states

W ∗L =

(
h∗L
q∗

)
and W ∗R =

(
h∗R
q∗

)
given by





q∗ = qHLL +
S∆x

λR − λL
,

h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)

+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)

+

,

(
1− λL

λR

)
hHLL

)
,

is consistent, non-negativity-preserving and well-balanced.

next step: determination of S according to the source term
definition (topography and/or friction).
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A well-balanced scheme

The cases of the topography and friction source terms

The topography source term
We now consider S(W ) = St(W ) = −gh∂xZ:
the smooth steady states are governed by

∂x

(
q2

0

h

)
+
g

2
∂x
(
h2
)

= −gh∂xZ,

q2
0

2
∂x

(
1

h2

)
+ g∂x(h+ Z) = 0,




−−−−−−−→
discretization





q2
0

[
1

h

]
+
g

2

[
h2
]

= St∆x,

q2
0

2

[
1

h2

]
+ g[h+ Z] = 0.

We can exhibit an expression of q2
0 and thus obtain

St = −g 2hLhR
hL + hR

[Z]

∆x
+

g

2∆x

[h]3

hL + hR
.

However, when ZL = ZR, we have St 6= O(∆x), i.e. a loss of
consistency with St (see for instance Berthon, Chalons (2016)).
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A well-balanced scheme

The cases of the topography and friction source terms

The topography source term
Instead, we set, for some constant C > 0,





St = −g 2hLhR
hL + hR

[Z]

∆x
+

g

2∆x

[h]3c
hL + hR

,

[h]c =

{
hR − hL if |hR − hL| ≤ C∆x,

sgn(hR − hL)C∆x otherwise.

Theorem: Well-balance for the topography source term

If WL and WR define a smooth steady state, i.e. if they satisfy

q2
0

2

[
1

h2

]
+ g[h+ Z] = 0,

then we have W ∗L = WL and W ∗R = WR and the approximate
Riemann solver is well-balanced.

22 / 46



Development of high-order well-balanced schemes for geophysical flows

A well-balanced scheme

The cases of the topography and friction source terms

The friction source term
We consider, in this case, S(W ) = Sf (W ) = −kq|q|h−η.
The average of Sf we choose is Sf = −kq̄|q̄|h−η, with

q̄ the harmonic mean of qL and qR (note that q̄ = q0 at the
equilibrium);

h−η a well-chosen discretization of h−η, depending on hL and
hR, and ensuring the well-balance property.

We determine h−η using the same technique (with µ0 = sgn(q0)):

∂x

(
q2
0

h

)
+
g

2
∂x
(
h2
)

= −kq0|q0|h−η,

q2
0

∂xh
η−1

η − 1
− g ∂xh

η+2

η + 2
= kq0|q0|,




−−−−−−−→
discretization





q2
0

[
1

h

]
+
g

2

[
h2
]

= −kµ0q
2
0h
−η∆x,

q2
0

[
hη−1

]

η − 1
− g

[
hη+2

]

η + 2
= kµ0q

2
0∆x.
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A well-balanced scheme

The cases of the topography and friction source terms

The friction source term

The expression for q2
0 we obtained is now used to get:

h−η =
[h2]

2

η + 2

[hη+2]
− µ0

k∆x

([
1

h

]
+

[h2]

2

[hη−1]

η − 1

η + 2

[hη+2]

)
,

which gives Sf = −kq̄|q̄|h−η (h−η is consistent with h−η).

Theorem: Well-balance for the friction source term

If WL and WR define a smooth steady state, i.e. verify

q2
0

[
hη−1

]

η − 1
+ g

[
hη+2

]

η + 2
= −kq0|q0|∆x,

then we have W ∗L = WL and W ∗R = WR and the approximate
Riemann solver is well-balanced.
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A well-balanced scheme

The cases of the topography and friction source terms

Friction and topography source terms
With both source terms, the scheme preserves the following
discretization of the steady relation ∂xF (W ) = S(W ):

q2
0

[
1

h

]
+
g

2

[
h2
]

= St∆x+ Sf∆x.

The intermediate states are therefore given by:




q∗ = qHLL +
(St + Sf )∆x

λR − λL
;

h∗L = min

((
hHLL −

λR(St + Sf )∆x

α(λR − λL)

)

+

,

(
1− λR

λL

)
hHLL

)
;

h∗R = min

((
hHLL −

λL(St + Sf )∆x

α(λR − λL)

)

+

,

(
1− λL

λR

)
hHLL

)
.
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A well-balanced scheme

The cases of the topography and friction source terms

The full Godunov-type scheme

x

t

tn+1

tn
xixi− 1

2
xi+ 1

2

Wn
i

WR
i− 1

2
WL

i+ 1
2

λR
i− 1

2

λL
i+ 1

2

︷ ︸︸ ︷
W∆(x, tn+1)

We define Wn+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

W∆(x, tn+1)dx: then

Wn+1
i = Wn

i −
∆t

∆x

[
λL
i+ 1

2

(
WL
i+ 1

2

−Wn
i

)
− λR

i− 1
2

(
WR
i− 1

2

−Wn
i

)]
,

which can be rewritten, after straightforward computations,

Wn+1
i = Wn

i −
∆t

∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
+ ∆t

 0
(St)n

i− 1
2
+(St)n

i+ 1
2

2

+

 0

(Sf )n
i− 1

2
+(Sf )n

i+ 1
2

2

.
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A well-balanced scheme

The cases of the topography and friction source terms

Summary

We have presented a scheme that:

is consistent with the shallow-water equations with friction and
topography;

is well-balanced for friction and topography steady states;

preserves the non-negativity of the water height;

is not able to correctly approximate wet/dry interfaces due to the
stiffness of the friction: we require a semi-implicitation of the
friction source term.

next step: introduction of this semi-implicitation
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A well-balanced scheme

Source terms contribution to the finite volume scheme

Semi-implicit finite volume scheme
We use a splitting method with an explicit treatment of the flux
and the topography and an implicit treatment of the friction.

1 explicitly solve ∂tW + ∂xF (W ) = St(W ) to get

W
n+ 1

2
i = Wn

i −
∆t

∆x

(
Fn
i+ 1

2

−Fn
i− 1

2

)
+ ∆t

(
0

1

2

(
(St)n

i− 1
2

+ (St)n
i+ 1

2

)
)

2 implicitly solve ∂tW = Sf (W ) to get




hn+1
i = h

n+ 1
2

i

IVP:

{
∂tq = −kq|q|(hn+1

i )−η

q(xi, t
n) = q

n+ 1
2

i

 qn+1
i
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A well-balanced scheme

Source terms contribution to the finite volume scheme

Semi-implicit finite volume scheme
Solving the IVP yields:

qn+1
i =

(hn+1
i )ηq

n+ 1
2

i

(hn+1
i )η + k∆t

∣∣qn+ 1
2

i

∣∣
.

We use the following approximation of (hn+1
i )η, which provides us

with an expression of qn+1
i that is equal to q0 at the equilibrium:

(hη)n+1
i =

2µ
n+ 1

2
i µni(

h−η
)n+1

i− 1
2

+
(
h−η

)n+1

i+ 1
2

+ k∆t µ
n+ 1

2
i qni .

semi-implicit treatment of the friction source term
 scheme able to model wet/dry transitions
scheme still well-balanced and non-negativity-preserving
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1D numerical experiments

Verification of the well-balance: friction

left panel: water height for the subcritical steady state solution
right panel: water height for the perturbed steady state solution
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1D numerical experiments

Verification of the well-balance: friction

left panel: convergence to the unperturbed steady state
right panel: errors to the steady state (solid: h, dashed: q)
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1D numerical experiments

Verification of the well-balance: topography
subcritical flow test case (see Goutal, Maurel (1997))

left panel: initial free surface at rest; water is injected from the left boundary
right panel: free surface for the steady state solution, after a transient state

E =
u2

2
+ g(h+ Z)

L1 L2 L∞

errors on q 6.65e-14 6.99e-14 8.26e-14
errors on E 1.18e-13 1.25e-13 1.53e-13
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1D numerical experiments

Verification of the well-balance: topography
transcritical flow test case (see Goutal, Maurel (1997))

left panel: initial free surface at rest; water is injected from the left boundary
right panel: free surface for the steady state solution, after a transient state

E =
u2

2
+ g(h+ Z)

L1 L2 L∞

errors on q 1.47e-14 1.58e-14 2.04e-14
errors on E 1.67e-14 2.13e-14 4.26e-14
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1D numerical experiments

Dry dam-break: Hunt’s asymptotic solution

L
H

water surface

x
↑

initial condition for the dry dam-

break on a sloping channel

→
water height with respect to the

time at a fixed position

See Hunt (1984) for the experimental points and the solution, valid far enough

away from the initial dam.
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Two-dimensional and high-order extensions

Two-dimensional extension

Two-dimensional extension
2D shallow-water model: ∂tW + ∇ · F (W ) = St(W ) + Sf (W )





∂th+ ∇ · q = 0

∂tq + ∇ ·
(
q ⊗ q

h
+

1

2
gh2I2

)
= −gh∇Z − kq‖q‖

hη

to the right: simulation
of the 2011 Japan
tsunami
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Two-dimensional and high-order extensions

Two-dimensional extension

Two-dimensional extension

space discretization: Cartesian mesh xi

ci

eij

cj

nij

With Fnij = F(Wn
i ,W

n
j ;nij), the scheme reads:

W
n+ 1

2
i = Wn

i −∆t
∑

j∈νi

|eij |
|ci|
Fnij +

∆t

2

∑

j∈νi

(St)nij .

Wn+1
i is obtained from W

n+ 1
2

i with a splitting strategy:

{
∂th = 0

∂tq = −k q‖q‖h−η  





hn+1
i = h

n+ 1
2

i

qn+1
i =

(hη)n+1
i q

n+ 1
2

i

(hη)n+1
i + k∆t

∥∥qn+ 1
2

i

∥∥
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Two-dimensional and high-order extensions

Two-dimensional extension

Two-dimensional extension

The 2D scheme is:

non-negativity-preserving for the water height:
∀i ∈ Z, hni ≥ 0 =⇒ ∀i ∈ Z, hn+1

i ≥ 0;

able to deal with wet/dry transitions thanks to the
semi-implicitation with the splitting method;

well-balanced by direction for the shallow-water equations with
friction and/or topography, i.e.:

it preserves all steady states at rest,
it preserves friction and/or topography steady states in the
x-direction and the y-direction,
it does not preserve the fully 2D steady states.

next step: high-order extension of this 2D scheme
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Two-dimensional and high-order extensions

High-order extension

High-order extension: the polynomial reconstruction

polynomial reconstruction (see Diot, Clain, Loubère (2012)):

Ŵn
i (x) = Wn

i +

d∑

|k|=1

αki

[
(x− xi)k −Mk

i

]

The polynomial coefficients αki are chosen to minimize the least
squares error between the reconstruction and Wn

j , for all j in the
stencil Sdi .

We have Mk
i =

1

|ci|

∫

ci

(x− xi)kdx such that

the conservation property is verified:
1

|ci|

∫

ci

Ŵn
i (x)dx = Wn

i .
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Two-dimensional and high-order extensions

High-order extension

High-order extension: the scheme
High-order space accuracy

Wn+1
i = Wn

i −∆t
∑

j∈νi

|eij |
|ci|

R∑

r=0

ξrFnij,r+∆t

Q∑

q=0

ηq

(
(St)ni,q + (Sf )ni,q

)

Fnij,r = F(Ŵn
i (σr), Ŵ

n
j (σr);nij)

(St)ni,q = St(Ŵn
i (xq)) and (Sf )ni,q = Sf (Ŵn

i (xq))

We have set:
(ξr, σr)r, a quadrature rule on the edge eij ;
(ηq, xq)q, a quadrature rule on the cell ci.

The high-order time accuracy is achieved by the use of SSPRK
methods (see Gottlieb, Shu (1998)).
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Two-dimensional and high-order extensions

High-order extension

MOOD method

High-order schemes induce oscillations: we use the MOOD method
to get rid of the oscillations and to restore the non-negativity
preservation (see Clain, Diot, Loubère (2011)).

MOOD loop

1 compute a candidate solution W c with the high-order scheme
2 determine whether W c is admissible, i.e.

if hc is non-negative (PAD criterion)
if W c does not present spurious oscillations (DMP and u2 criteria)

3 where necessary, decrease the degree of the reconstruction

4 compute a new candidate solution
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Two-dimensional and high-order extensions

High-order extension

Well-balance recovery (1D)

reconstruction procedure  scheme no longer well-balanced

Well-balance recovery

We suggest a convex combination between the high-order scheme
WHO and the well-balanced scheme WWB :

Wn+1
i = θni (WHO)n+1

i + (1− θni )(WWB)n+1
i ,

with θni the parameter of the convex combination, such that:

if θni = 0, then the well-balanced scheme is used;

if θni = 1, then the high-order scheme is used.

next step: derive a suitable expression for θni
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Two-dimensional and high-order extensions

High-order extension

Choice of θni
Steady state detector

steady state solution:





qL = qR = q0,

q2
0

hR
− q2

0

hL
+
g

2

(
h2
R − h2

L

)
= (St + Sf )∆x

steady state detector: ϕni =

∥∥∥∥∥∥


q

n
i − qni−1

[E ]n
i− 1

2



∥∥∥∥∥∥

2

+

∥∥∥∥∥∥


q

n
i+1 − qni
[E ]n

i+ 1
2



∥∥∥∥∥∥

2

ϕni = 0 if there is a steady state
between Wn

i−1, W
n
i and Wn

i+1

 in this case, we take θni = 0

 otherwise, we take 0 < θni ≤ 1
0

1

m∆x M∆x

θni

ϕn
i
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2D numerical experiments

Order of accuracy assessment

L2 errors with
respect to the
number of cells

top graphs:
2D steady
solution with
topography

bottom graphs:
2D steady
solution with
friction and
topography
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3
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5

1e3 1e4

1e-6
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1e-10

1e-12

4

6

1

h, PWB
3
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5

1e3 1e4

1e-6

1e-8
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1e-12

4

6

1
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3
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5
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2D numerical experiments

Perturbed pseudo-1D steady state

h ‖q‖
L1 L2 L∞ L1 L2 L∞

P0 1.22e-15 1.71e-15 6.27e-15 2.34e-15 3.02e-15 9.10e-15
P5 5.01e-05 1.47e-04 1.16e-03 2.32e-04 2.63e-04 1.18e-03

PWB
5 8.50e-14 1.05e-13 3.35e-13 2.82e-13 3.37e-13 6.76e-13
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2D numerical experiments

Double dry dam-break on a sinusoidal bottom

near the edges, steady state at rest  well-balanced scheme

away from the edges, far from steady state  high-order scheme

center, dry area  well-balanced scheme
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2D numerical experiments

Simulation of the 2011 Tōhoku tsunami
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2D numerical experiments

Simulation of the 2011 Tōhoku tsunami
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2D numerical experiments

Simulation of the 2011 Tōhoku tsunami
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Conclusion and perspectives

Conclusion

1D scheme: well-balanced for the shallow-water equations with
friction and topography

non-negativity-preserving for the water height

provides a suitable approximation of interfaces
between wet and dry areas

able to be applied to other source terms or
combinations of source terms

2D scheme: well-balanced by direction

non-negativity-preserving, handles wet/dry
transitions

high-order accurate in space and time
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Conclusion and perspectives

Perspectives

application to other source terms:

Coriolis force source term
breadth variation source term

stability of the scheme:

values of C, λL and λR to ensure the entropy preservation
entropy criterion in the MOOD method

high-order accuracy:

rigorous proof of the order of the convex combination
reconstruction based on the moving steady states
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Thanks!

Thank you for your attention!
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Appendices

Riemann problems between two wet areas

left: k = 0 left: k = 10

both Riemann problems have initial data WL =

(
6

0

)
and

WR =

(
1

0

)
, on [0, 5], with 200 points, and final time 0.2s
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Appendices

Riemann problems with a wet/dry transition

left: k = 0 left: k = 10

both Riemann problems have initial data WL =

(
6

0

)
and

WR =

(
0

0

)
, on [0, 5], with 200 points, and final time 0.15s
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Appendices

Double dry dam-break on a sinusoidal bottom
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Appendices

Japan tsunami: 1D slice
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