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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

Several kinds of destructive geophysical �ows

Dam failure (Malpasset, France, 1959) Tsunami (T	ohoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010) Mudslide (Madeira, Portugal, 2010)
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

The shallow-water equations and their source terms
∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
= −gh∂xZ −

kq|q|
h

7�3
(with q = hu)

We can rewrite the equations as ∂tW + ∂xF (W ) = S(W ), with W =

(
h
q

)
.

x

h(x, t)

water surface

channel bottom

u(x, t)

Z(x)

Z(x) is the known

topography

k is the Manning

coe�cient

g is the gravitational

constant

we label the water

discharge q := hu
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

Steady state solutions

De�nition: Steady state solutions

W is a steady state solution i� ∂tW = 0, i.e. ∂xF (W ) = S(W ).

Taking ∂tW = 0 in the shallow-water equations leads to
∂xq = 0

∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ −

kq|q|
h

7�3
.

The steady state solutions are therefore given by
q = cst = q0

∂x

(
q2

0

h
+

1

2
gh2

)
= −gh∂xZ −

kq0|q0|
h

7�3
.

3 / 41



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

A real-life simulation:

the 2011 T	ohoku

tsunami.

The water is close to a

steady state at rest far

from the tsunami.

This steady state is not

preserved by a

non-well-balanced

scheme!
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

Objectives
Our goal is to derive a numerical method for the shallow-water

model with topography and Manning friction that exactly preserves

its stationary solutions on every mesh.

To that end, we seek a numerical scheme that:

1 is well-balanced for the shallow-water equations with

topography and friction, i.e. it exactly preserves and captures

the steady states without having to solve the governing

nonlinear di�erential equation;

2 preserves the non-negativity of the water height;

3 ensures a discrete entropy inequality;

4 can be easily extended for other source terms of the

shallow-water equations (e.g. breadth).
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2 Derivation of a 1D �rst-order well-balanced scheme

3 Two-dimensional and high-order extensions

4 2D and high-order numerical simulations

5 Conclusion and perspectives



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction to Godunov-type schemes

Setting: �nite volume schemes

Objective: Approximate the solution W (x, t) of the system

∂tW + ∂xF (W ) = S(W ), with suitable initial and boundary

conditions.

We partition the space domain in cells, of volume ∆x and of evenly

spaced centers xi, and we de�ne:

xi− 1
2
and xi+ 1

2
, the boundaries of the cell i;

Wn
i , an approximation of W (x, t), constant in the cell i and

at time tn, which is de�ned as Wn
i =

1

∆x

∫ ∆x/2

∆x/2
W (x, tn)dx.

W (x, t)

xi− 1
2

xi+ 1
2

Wn
ix x

xi xi+1xi−1
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)
As a consequence, at time tn, we have a succession of Riemann

problems (Cauchy problems with discontinuous initial data) at the

interfaces between cells:
∂tW + ∂xF (W ) = S(W )

W (x, tn) =

{
Wn
i if x < xi+ 1

2

Wn
i+1 if x > xi+ 1

2

xi xi+1xi+1
2

W n
i W n

i+1

For S(W ) 6= 0, the exact solution to these Riemann problems is

unknown or costly to compute  we require an approximation.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)
We choose to use an approximate Riemann solver, as follows.

Wn
i Wn

i+1

Wn
i+ 1

2

λL
i+ 1

2
λR
i+ 1

2

xi+ 1
2

x

t

Wn
i+ 1

2

is an approximation of the interaction between Wn
i and

Wn
i+1 (i.e. of the solution to the Riemann problem), possibly made

of several constant states separated by discontinuities.

λL
i+ 1

2

and λR
i+ 1

2

are approximations of the largest wave speeds of

the system.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)

x

t

tn+1

tn
xixi− 1

2
xi+ 1

2

Wn
i

Wn
i− 1

2
Wn

i+ 1
2

λR
i− 1

2

λL
i+ 1

2

︷ ︸︸ ︷W∆(x, tn+1)

Wn
i−1 Wn

i+1

We de�ne the time update as follows:

Wn+1
i :=

1

∆x

∫ x
i+1

2

x
i− 1

2

W∆(x, tn+1)dx.

Since Wn
i− 1

2

and Wn
i+ 1

2

are made of constant states, the above

integral is easy to compute.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

The HLL approximate Riemann solver

To approximate solutions of

∂tW + ∂xF (W ) = 0, the HLL approximate

Riemann solver (Harten, Lax, van Leer

(1983)) may be chosen; it is denoted by

W∆ and displayed on the right.

WHLL

WL WR

λL

x

t

λR

0−∆x/2 ∆x/2

The consistency condition (as per Harten and Lax) holds if:

1

∆x

∫ ∆x/2

−∆x/2
W∆(∆t, x;WL,WR)dx =

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x;WL,WR)dx,

which gives WHLL =
λRWR − λLWL

λR − λL
− F (WR)− F (WL)

λR − λL
=

(
hHLL
qHLL

)
.

Note that, if hL > 0 and hR > 0, then hHLL > 0 for |λL| and |λR| large enough.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Modi�cation of the HLL approximate Riemann solver
The shallow-water equations with the topography and friction

source terms read as follows:
∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
+ gh∂xZ +

kq|q|
h

7�3
= 0.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Modi�cation of the HLL approximate Riemann solver
With Y (t, x) := x, we can add the equations ∂tZ = 0 and

∂tY = 0, which correspond to the �xed geometry of the problem:

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
+ gh∂xZ +

kq|q|
h

7�3
∂xY = 0,

∂tY = 0,

∂tZ = 0.
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Derivation of a 1D �rst-order well-balanced scheme

Modi�cation of the HLL approximate Riemann solver
With Y (t, x) := x, we can add the equations ∂tZ = 0 and

∂tY = 0, which correspond to the �xed geometry of the problem:

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
+ gh∂xZ +

kq|q|
h

7�3
∂xY = 0,

∂tY = 0,

∂tZ = 0.

The equations ∂tY = 0 and ∂tZ = 0 induce stationary waves

associated to the source term (of which q is a Riemann invariant).

To approximate solutions of

∂tW + ∂xF (W ) = S(W ), we thus use

the approximate Riemann solver

displayed on the right

(assuming λL < 0 < λR).
WL WR

λL λR0

W ∗
L W ∗

R
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Modi�cation of the HLL approximate Riemann solver

We have 4 unknowns to determine: W ∗L =

(
h∗L
q∗L

)
and W ∗R =

(
h∗R
q∗R

)
.

WL WR

λL λR0

W ∗
L W ∗

R

q is a 0-Riemann invariant  we take q∗L = q∗R = q∗ (relation 1)

The Harten-Lax consistency gives us the following two

relations:

λRh
∗
R − λLh∗L = (λR − λL)hHLL (relation 2),

q∗ = qHLL +
S∆x

λR − λL
(relation 3),

where S ' 1

∆x

1

∆t

∫ ∆x/2

−∆x/2

∫ ∆t

0

S(WR(x, t)) dt dx.

next step: obtain a fourth relation
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Obtaining an additional relation

Assume that WL and WR de�ne a steady state, i.e. that they

satisfy the following discrete version of the steady relation

∂xF (W ) = S(W ) (where [X] = XR −XL):

1

∆x

(
q2

0

[
1

h

]
+
g

2

[
h2
])

= S.

For the steady state to be preserved, it

is su�cient to have h∗L = hL, h
∗
R = hR

and q∗ = q0.
WL WR

λL λR0

WL WR

Assuming a steady state, we show that q∗ = q0, as follows:

q∗ = qHLL +
S∆x

λR − λL
= q0 −

1

λR − λL

(
q2

0

[
1

h

]
+
g

2

[
h2
]
− S∆x

)
= q0.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Obtaining an additional relation

In order to determine an additional relation, we consider the discrete

steady relation, satis�ed when WL and WR de�ne a steady state:

q2
0

(
1

hR
− 1

hL

)
+
g

2

(
(hR)2 − (hL)2

)
= S∆x.

To ensure that h∗L = hL and h∗R = hR, we impose that h∗L and h∗R
satisfy the above relation, as follows:

q2
0

(
1

h∗R
− 1

h∗L

)
+
g

2

(
(h∗R)2 − (h∗L)2

)
= S∆x.

14 / 41



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Determination of h∗L and h∗R
The intermediate water heights satisfy the following relation:

−q2
0

(
h∗R − h∗L
h∗Lh

∗
R

)
+
g

2
(h∗L + h∗R)(h∗R − h∗L) = S∆x.

Recall that q∗ is known and is equal to q0 for a steady state.

Instead of the above relation, we choose the following linearization:

−(q∗)2

hLhR
(h∗R − h∗L) +

g

2
(hL + hR)(h∗R − h∗L) = S∆x,

which can be rewritten as follows:(−(q∗)2

hLhR
+
g

2
(hL + hR)

)
︸ ︷︷ ︸

α

(h∗R − h∗L) = S∆x.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Determination of h∗L and h∗R

With the consistency relation between h∗L and h∗R, the intermediate

water heights satisfy the following linear system:{
α(h∗R − h∗L) = S∆x,

λRh
∗
R − λLh∗L = (λR − λL)hHLL.

Using both relations linking h∗L and h∗R, we obtain
h∗L = hHLL −

λRS∆x

α(λR − λL)
,

h∗R = hHLL −
λLS∆x

α(λR − λL)
,

where α =

(−(q∗)2

hLhR
+
g

2
(hL + hR)

)
with q∗ = qHLL +

S∆x

λR − λL
.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Correction to ensure non-negative h∗L and h∗R
However, these expressions of h∗L and h∗R do not guarantee that the

intermediate heights are non-negative: instead, we use the following

cuto� (see Audusse, Chalons, Ung (2015)):


h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)
+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)
+

,

(
1− λL

λR

)
hHLL

)
.

Note that this cuto� does not interfere with:

the consistency condition λRh
∗
R − λLh∗L = (λR − λL)hHLL;

the well-balance property, since it is not activated when WL and

WR de�ne a steady state.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

Summary
The two-state approximate Riemann solver with intermediate states

W ∗L =

(
h∗L
q∗

)
and W ∗R =

(
h∗R
q∗

)
given by

q∗ = qHLL +
S∆x

λR − λL
,

h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)
+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)
+

,

(
1− λL

λR

)
hHLL

)
,

is consistent, non-negativity-preserving, entropy preserving and

well-balanced.

next step: determination of S according to the source term

de�nition (topography or friction).
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

The topography source term

We now consider S(W ) = St(W ) = −gh∂xZ:
the smooth steady states are governed by

∂x

(
q2

0

h

)
+
g

2
∂x
(
h2
)

= −gh∂xZ,

q2
0

2
∂x

(
1

h2

)
+ g∂x(h+ Z) = 0,

−−−−−−−→discretization


q2

0

[
1

h

]
+
g

2

[
h2
]

= St∆x,

q2
0

2

[
1

h2

]
+ g[h+ Z] = 0.

We can exhibit an expression of q2
0 and thus obtain

St = −g 2hLhR
hL + hR

[Z]

∆x
+

g

2∆x

[h]3

hL + hR
.

However, when ZL = ZR, we have St 6= O(∆x), i.e. a loss of

consistency with St (see for instance Berthon, Chalons (2016)).
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

The topography source term

Instead, we set, for some constant C > 0,
St = −g 2hLhR

hL + hR

[Z]

∆x
+

g

2∆x

[h]3c
hL + hR

,

[h]c =

{
hR − hL if |hR − hL| ≤ C∆x,

sgn(hR − hL)C∆x otherwise.

Theorem: Well-balance for the topography source term

If WL and WR de�ne a smooth steady state, i.e. if they satisfy

q2
0

2

[
1

h2

]
+ g[h+ Z] = 0,

then we have W ∗L = WL and W ∗R = WR and the approximate

Riemann solver is well-balanced. By construction, the Godunov-type

scheme using this approximate Riemann solver is consistent,

well-balanced, non-negativity-preserving and entropy preserving.
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a 1D �rst-order well-balanced scheme

The friction source term

We consider, in this case, S(W ) = Sf (W ) = −kq|q|h−η, where we

have set η = 7�3.

The average of Sf we choose is Sf = −kq̄|q̄|h−η, with
q̄ the harmonic mean of qL and qR (note that q̄ = q0 at the

equilibrium);

h−η a well-chosen discretization of h−η, depending on hL and

hR, and ensuring the well-balance property.

We determine h−η using the same technique (with µ0 = sgn(q0)):

∂x

(
q2
0

h

)
+
g

2
∂x
(
h2
)

= −kq0|q0|h−η,

q2
0

∂xh
η−1

η − 1
− g ∂xh

η+2

η + 2
= kq0|q0|,

−−−−−−−→discretization


q2
0

[
1

h

]
+
g

2

[
h2
]

= −kµ0q
2
0h
−η∆x,

q2
0

[
hη−1

]
η − 1

− g
[
hη+2

]
η + 2

= kµ0q
2
0∆x.
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Derivation of a 1D �rst-order well-balanced scheme

The friction source term
The expression for q2

0 we obtained is now used to get:

h−η =
[h2]

2

η + 2

[hη+2]
− µ0

k∆x

([
1

h

]
+

[h2]

2

[hη−1]

η − 1

η + 2

[hη+2]

)
,

which gives Sf = −kq̄|q̄|h−η (h−η is consistent with h−η if a cuto�

is applied to the second term of h−η).

Theorem: Well-balance for the friction source term

If WL and WR de�ne a smooth steady state, i.e. verify

q2
0

[
hη−1

]
η − 1

+ g

[
hη+2

]
η + 2

= −kq0|q0|∆x,

then we have W ∗L = WL and W ∗R = WR and the approximate

Riemann solver is well-balanced. By construction, the Godunov-type

scheme using this approximate Riemann solver is consistent,

well-balanced, non-negativity-preserving and entropy preserving.
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Derivation of a 1D �rst-order well-balanced scheme

Friction and topography source terms

With both source terms, the scheme preserves the following

discretization of the steady relation ∂xF (W ) = S(W ):

q2
0

[
1

h

]
+
g

2

[
h2
]

= St∆x+ Sf∆x.

The intermediate states are therefore given by:

q∗ = qHLL +
(St + Sf )∆x

λR − λL
;

h∗L = min

((
hHLL −

λR(St + Sf )∆x

α(λR − λL)

)
+

,

(
1− λR

λL

)
hHLL

)
;

h∗R = min

((
hHLL −

λL(St + Sf )∆x

α(λR − λL)

)
+

,

(
1− λL

λR

)
hHLL

)
.
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Derivation of a 1D �rst-order well-balanced scheme

The full Godunov-type scheme

x

t

tn+1

tn
xixi− 1

2
xi+ 1

2

Wn
i

WR,∗
i− 1

2
WL,∗

i+ 1
2

λR
i− 1

2

λL
i+ 1

2

︷ ︸︸ ︷W∆(x, tn+1)

We recall Wn+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

W∆(x, tn+1)dx: then

Wn+1
i = Wn

i −
∆t

∆x

[
λL
i+ 1

2

(
WL,∗
i+ 1

2

−Wn
i

)
− λR

i− 1
2

(
WR,∗
i− 1

2

−Wn
i

)]
,

which can be rewritten, after straightforward computations,

Wn+1
i = Wn

i −
∆t

∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
+ ∆t

 0
(St)n

i− 1
2
+(St)n

i+ 1
2

2

+

 0

(Sf )n
i− 1

2
+(Sf )n

i+ 1
2

2

.
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Derivation of a 1D �rst-order well-balanced scheme

Summary

We have presented a scheme that:

is consistent with the shallow-water equations with friction and

topography;

is well-balanced for friction and topography steady states;

preserves the non-negativity of the water height;

ensures a discrete entropy inequality;

is not able to correctly approximate wet/dry interfaces due to the

sti�ness of the friction kq|q|h−7�3: the friction term should be

treated implicitly.

next step: introduction of this semi-implicit scheme
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Derivation of a 1D �rst-order well-balanced scheme

Semi-implicit �nite volume scheme

We use a splitting method with an explicit treatment of the �ux

and the topography and an implicit treatment of the friction.

1 explicitly solve ∂tW + ∂xF (W ) = St(W ) as follows:

W
n+ 1

2
i = Wn

i −
∆t

∆x

(
Fn
i+ 1

2

−Fn
i− 1

2

)
+ ∆t

(
0

1

2

(
(St)n

i− 1
2

+ (St)n
i+ 1

2

))

2 implicitly solve ∂tW = Sf (W ) as follows:
hn+1
i = h

n+ 1
2

i

IVP:

{
∂tq = −kq|q|(hn+1

i )−η

q(xi, t
n) = q

n+ 1
2

i

 qn+1
i
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Derivation of a 1D �rst-order well-balanced scheme

Semi-implicit �nite volume scheme
Solving the IVP yields:

qn+1
i =

(hn+1
i )ηq

n+ 1
2

i

(hn+1
i )η + k∆t

∣∣qn+ 1
2

i

∣∣ .
We use the following approximation of (hn+1

i )η, which provides us

with an expression of qn+1
i that is equal to q0 at the equilibrium:

(hη)n+1
i =

2µ
n+ 1

2
i µni(

h−η
)n+1

i− 1
2

+
(
h−η

)n+1

i+ 1
2

+ k∆t µ
n+ 1

2
i qni .

semi-implicit treatment of the friction source term

 scheme able to model wet/dry transitions

scheme still well-balanced and non-negativity-preserving
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Two-dimensional and high-order extensions

Two-dimensional extension
2D shallow-water model: ∂tW + ∇ · F (W ) = St(W ) + Sf (W )

∂th+ ∇ · q = 0

∂tq + ∇ ·
(
q ⊗ q

h
+

1

2
gh2I2

)
= −gh∇Z − kq‖q‖

hη

to the right: simulation

of the 2011 Japan

tsunami
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Two-dimensional and high-order extensions

Two-dimensional extension

space discretization: Cartesian mesh xi

ci

eij

cj

nij

With Fnij = F(Wn
i ,W

n
j ;nij) and νi the neighbors of ci, the scheme reads:

W
n+ 1

2
i = Wn

i −∆t
∑
j∈νi

|eij |
|ci|
Fnij +

∆t

2

∑
j∈νi

(St)nij .

Wn+1
i is obtained from W

n+ 1
2

i with a splitting strategy:

{
∂th = 0

∂tq = −k q‖q‖h−η  


hn+1
i = h

n+ 1
2

i

qn+1
i =

(hη)n+1
i q

n+ 1
2

i

(hη)n+1
i + k∆t

∥∥qn+ 1
2

i

∥∥
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Two-dimensional and high-order extensions

Two-dimensional extension

The 2D scheme is:

non-negativity-preserving for the water height:

∀i ∈ Z, hni ≥ 0 =⇒ ∀i ∈ Z, hn+1
i ≥ 0;

able to deal with wet/dry transitions thanks to the

semi-implicitation with the splitting method;

well-balanced by direction for the shallow-water equations with

friction and/or topography, i.e.:

it preserves all steady states at rest,
it preserves friction and/or topography steady states in the
x-direction and the y-direction,
it does not preserve the fully 2D steady states.

next step: high-order extension of this 2D scheme
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Two-dimensional and high-order extensions

High-order extension: the basics, in 1D

xi−1 xi+1xi

Wn
i+1

Wn
i−1

Wn
i

x

xi+ 1
2

xi− 1
2

Wn
i ∈ P0: constant (order 1 scheme)
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Two-dimensional and high-order extensions

High-order extension: the basics, in 1D

xi−1 xi+1xi

Wn
i+1

Wn
i−1

Wn
i

Ŵn
i (x)

Wn
i,−

Wn
i,+

x

xi+ 1
2

xi− 1
2

Ŵn
i ∈ P1: linear (order 2 scheme)
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Two-dimensional and high-order extensions

High-order extension: the basics, in 1D

xi−1 xi+1xi

Wn
i+1

Wn
i−1

Wn
i

Ŵn
i (x)

Wn
i,−

Wn
i,+

x

xi+ 1
2

xi− 1
2

Ŵn
i ∈ Pd: polynomial (order d+ 1 scheme)
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Two-dimensional and high-order extensions

High-order extension: the polynomial reconstruction
polynomial reconstruction (see Diot, Clain, Loubère (2012)):

Ŵn
i (x) = Wn

i +

d∑
|k|=1

αki

[
(x− xi)k −Mk

i

]
We have Mk

i =
1

|ci|

∫
ci

(x− xi)kdx such that

the conservation property is veri�ed:
1

|ci|

∫
ci

Ŵn
i (x)dx = Wn

i .

xi

Wn
i+1

Wn
i−1

Wn
i

Ŵn
i (x)

x

xi+ 1
2

xi− 1
2

ci

∈ S2
i /∈ S2

i

The polynomial coe�cients αki are chosen to minimize the least squares

error between the reconstruction and Wn
j , for all j in the stencil Sdi . 32 / 41
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Two-dimensional and high-order extensions

High-order extension: the scheme

High-order space accuracy

Wn+1
i = Wn

i −∆t
∑
j∈νi

|eij |
|ci|

R∑
r=0

ξrFnij,r+∆t

Q∑
q=0

ηq

(
(St)ni,q + (Sf )ni,q

)

Fnij,r = F(Ŵn
i (σr), Ŵ

n
j (σr);nij)

(St)ni,q = St(Ŵn
i (xq)) and (Sf )ni,q = Sf (Ŵn

i (xq))

We have set:

(ξr, σr)r, a quadrature rule on the edge eij ;

(ηq, xq)q, a quadrature rule on the cell ci.

The high-order time accuracy is achieved by the use of SSPRK

methods (see Gottlieb, Shu (1998)).
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Two-dimensional and high-order extensions

Well-balance recovery (1D): a convex combination

reconstruction procedure  the scheme no longer preserves

steady states

Well-balance recovery

We suggest a convex combination between the high-order scheme

WHO and the well-balanced scheme WWB :

Wn+1
i = θni (WHO)n+1

i + (1− θni )(WWB)n+1
i ,

with θni the parameter of the convex combination, such that:

if θni = 0, then the well-balanced scheme is used;

if θni = 1, then the high-order scheme is used.

next step: derive a suitable expression for θni
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Two-dimensional and high-order extensions

Well-balance recovery (1D): a steady state detector

Steady state detector

steady state solution:


qL = qR = q0,

E :=
q2

0

hR
− q2

0

hL
+
g

2

(
h2
R − h2

L

)
− (St + Sf )∆x = 0

steady state detector: ϕni =

∥∥∥∥∥∥
qni − qni−1

[E ]n
i− 1

2

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
qni+1 − qni

[E ]n
i+ 1

2

∥∥∥∥∥∥
2

ϕni = 0 if there is a steady state

between Wn
i−1, W

n
i and Wn

i+1

 in this case, we take θni = 0

 otherwise, we take 0 < θni ≤ 1 0

1

m∆x M∆x

θni

ϕn
i

WB HO
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Two-dimensional and high-order extensions

MOOD method

High-order schemes induce oscillations: we use the MOOD method

to get rid of the oscillations and to restore the non-negativity

preservation (see Clain, Diot, Loubère (2011)).

MOOD loop

1 compute a candidate solution W c with the high-order scheme

2 determine whether W c is admissible, i.e.

if hc is non-negative (PAD criterion)
if W c does not present spurious oscillations (DMP and u2 criteria)

3 where necessary, decrease the degree of the reconstruction

4 compute a new candidate solution
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2D and high-order numerical simulations

Pseudo-1D double dry dam-break on a sinusoidal bottom

The PWB
5 scheme is used in the whole domain:

near the boundaries, steady state at rest  well-balanced scheme;

away from the boundaries, far from steady state  high-order scheme;

center, dry area  well-balanced scheme.
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2D and high-order numerical simulations

Order of accuracy assessment
To assess the order of accuracy, we take the following exact steady

solution of the 2D shallow-water system, where r = t(x, y):

h = 1 ; q =
r

‖r‖ ; Z =
2k‖r‖ − 1

2g‖r‖2 .

With k = 10, this solution is depicted below on the space domain

[−0.3, 0.3]× [0.4, 1].
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2D and high-order numerical simulations

Order of accuracy assessment

L2 errors with

respect to the

number of cells

top graphs:

2D steady

solution with

topography

bottom graphs:

2D steady

solution with

friction and

topography
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2D and high-order numerical simulations

2011 T	ohoku tsunami

Tsunami simulation on a Cartesian mesh: 13 million cells, Fortran

code parallelized with OpenMP, run on 48 cores.
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2D and high-order numerical simulations

2011 T	ohoku tsunami

0 500 1,000 1,500 2,000 2,500

−8

−6

−4

−2

0

Russia
(Vladivostok)

Sea of Japan

Japan (Hokkaidō
island)

Kuril trench

Pacific Ocean

1D slice of the topography (unit: kilometers).
39 / 41



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

2D and high-order numerical simulations

2011 T	ohoku tsunami
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2D and high-order numerical simulations

2011 T	ohoku tsunami
physical time of the simulation: 1 hour

�rst-order scheme

CPU time: ∼ 1.1 hour

second-order scheme

CPU time: ∼ 2.7 hours
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2D and high-order numerical simulations

2011 T	ohoku tsunami

Water depth at the sensors:

#1: 5700 m;

#2: 6100 m;

#3: 4400 m.

Graphs of the time variation
of the water height (in meters).
data in black, order 1 in blue, order 2 in red

0 1,200 2,400 3,600
−0.2

0

0.2

0.4

0.6

Sensor #1

0 1,200 2,400 3,600

0

0.1

0.2

Sensor #2

0 1,200 2,400 3,600
0

0.1

0.2

Sensor #3
39 / 41



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Conclusion and perspectives

1 Introduction to Godunov-type schemes

2 Derivation of a 1D �rst-order well-balanced scheme

3 Two-dimensional and high-order extensions

4 2D and high-order numerical simulations

5 Conclusion and perspectives



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Conclusion and perspectives

Conclusion
We have presented a well-balanced, non-negativity-preserving and en-

tropy preserving numerical scheme for the shallow-water equations with

topography and Manning friction, able to be applied to other source

terms or combinations of source terms.

We have also displayed results from the 2D high-order extension of this

numerical method, coded in Fortran and parallelized with OpenMP.

This work has been published:

V. M.-D., C. Berthon, S. Clain and F. Foucher.
�A well-balanced scheme for the shallow-water equations with topography�.
Comput. Math. Appl. 72(3):568�593, 2016.
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�A well-balanced scheme for the shallow-water equations with topography
or Manning friction�. J. Comput. Phys. 335:115�154, 2017.

C. Berthon, R. Loubère, and V. M.-D.
�A second-order well-balanced scheme for the shallow-water equations with
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C. Berthon and V. M.-D.
�A simple fully well-balanced and entropy preserving scheme for the shallow-water
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Conclusion and perspectives

Perspectives

Work in progress

high-order simulation of the 2011 T	ohoku tsunami

application to other source terms:

Coriolis force source term
breadth variation source term

Long-term perspectives

ensure the entropy preservation for the high-order scheme (use of

an e-MOOD method)

simulation of rogue waves
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Thanks!

Thank you for your attention!
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Appendices

The discrete entropy inequality

The following non-conservative entropy inequality is satis�ed by the

shallow-water system:

∂tη(W ) + ∂xG(W ) ≤ q

h
S(W ); η(W ) =

q2

2h
+
gh2

2
; G(W ) =

q

h

(
q2

2h
+ gh2

)
.

At the discrete level, we show that:

λR(η∗R − ηR)− λL(η∗L − ηL)+(GR −GL) ≤ qHLL
hHLL

S∆x+O(∆x2).

main ingredients: h∗L = hHLL − S∆x
λR

α(λR − λL)

(and similar expressions for h∗R and q∗)

(λR − λL)ηHLL ≤ λRηR − λLηL − (GR −GL)

from Harten, Lax, van Leer (1983)
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Appendices

Veri�cation of the well-balance: topography

The initial condition is at rest; water is injected through the left

boundary.
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Appendices

Veri�cation of the well-balance: topography

The non-well-balanced HLL scheme converges towards a numerical

steady state which does not correspond to the physical one.
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Appendices

Veri�cation of the well-balance: topography

The non-well-balanced HLL scheme yields a numerical steady state

which does not correspond to the physical one. The well-balanced

scheme exactly yields the physical steady state.
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Appendices

Veri�cation of the well-balance: topography

The non-well-balanced HLL scheme yields a numerical steady state

which does not correspond to the physical one. The well-balanced

scheme exactly yields the physical steady state.
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Appendices

Veri�cation of the well-balance: topography
transcritical �ow test case (see Goutal, Maurel (1997))

left panel: initial free surface at rest; water is injected from the left boundary

right panel: free surface for the steady state solution, after a transient state

Φ =
u2

2
+ g(h+ Z)

L1 L2 L∞

errors on q 1.47e-14 1.58e-14 2.04e-14

errors on Φ 1.67e-14 2.13e-14 4.26e-14
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Appendices

Veri�cation of the well-balance: friction

left panel: water height for the subcritical steady state solution

right panel: water height for the perturbed steady state solution



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

Appendices

Veri�cation of the well-balance: friction

left panel: convergence to the unperturbed steady state

right panel: errors to the steady state (solid: h, dashed: q)
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Appendices

Perturbed pseudo-1D friction and topography steady state

h ‖q‖
L1 L2 L∞ L1 L2 L∞

P0 1.22e-15 1.71e-15 6.27e-15 2.34e-15 3.02e-15 9.10e-15

P5 5.01e-05 1.47e-04 1.16e-03 2.32e-04 2.63e-04 1.18e-03

PWB
5 8.50e-14 1.05e-13 3.35e-13 2.82e-13 3.37e-13 6.76e-13
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Appendices

Riemann problems between two wet areas

left: k = 0 left: k = 10

both Riemann problems have initial data WL =

(
6

0

)
and

WR =

(
1

0

)
, on [0, 5], with 200 points, and �nal time 0.2s
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Appendices

Riemann problems with a wet/dry transition

left: k = 0 left: k = 10

both Riemann problems have initial data WL =

(
6

0

)
and

WR =

(
0

0

)
, on [0, 5], with 200 points, and �nal time 0.15s
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Appendices

Double dry dam-break on a sinusoidal bottom


	Introduction and motivations
	Geophysical flows
	The shallow-water equations and their source terms
	Steady state solutions
	Why use a well-balanced scheme?
	Objectives

	Introduction to Godunov-type schemes
	Derivation of a 1D first-order well-balanced scheme
	Structure of the scheme
	The full scheme for a general source term
	The topography source term
	Source terms contribution to the finite volume scheme

	Two-dimensional and high-order extensions
	Two-dimensional extension
	High-order extension

	2D and high-order numerical simulations
	Conclusion and perspectives
	Thanks!
	Appendices

	fd@rm@0: 


