Consistent section-averaged shallow water equations with bottom friction

<u>Victor Michel-Dansac</u>[†], Pascal Noble[†], Jean-Paul Vila[†]

Thursday, February 28th, 2019

Séminaire Calcul Scientifique et Modélisation, Bordeaux

[†]Institut de Mathématiques de Toulouse et INSA Toulouse

Motivation: 2D/1D coupling for estuary simulation

Loire estuary

Thames estuary

Gironde estuary

We wish to take into account:

- 1. the shape of the river bed,
- 2. the meanders of the river.

This presentation focuses on the shape of the river bed:

- the derivation of 1D models is well-understood ^{1 2} in the ideal case of a ∐-shaped channel;
- for more complex shapes, uniform stationary flows are recovered ³
 ⁴ using a complex friction term and an additional term in the discharge flux;
- fully 2D models could be used but they are computationally costly.

¹see Bresch and Noble, 2007, in the context of laminar flows

²see Richard, Rambaud and Vila, 2017, in the context of turbulent flows

³see Decoene, Bonaventura, Miglio and Saleri, 2009

⁴see Marin and Monnier, 2009

The goal of this work is to develop a new model, based on the shallow water equations, that is:

- generic enough to not require empiric friction coefficients;
- consistent with the 2D shallow water in the asymptotic regime corresponding to an estuary or a river;
- hyperbolic and linearly stable;
- easily implementable (collaboration with the SHOM for flood simulations, ocean model forcing, ...).

Numerical experiments, on steady and unsteady flows, will help validate this approach.

1. Governing equations

- 2. Asymptotic expansions
- 3. Transverse averaging
- 4. A zeroth-order model
- 5. A first-order model
- 6. Numerical validation of the model
- 7. Conclusion and perspectives

The non-conservative 2D shallow water system

$$\begin{pmatrix} h_t + \nabla \cdot (h\mathbf{u}) = 0 \\ \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + g\nabla h = g \left(-\nabla Z - \frac{\mathbf{u} \|\mathbf{u}\|}{C_h^2 h^p} \right)$$

- $\mathbf{u} = (u, v)$ is the water velocity
- g is the gravity constant
- C_h(x, y) is the (known)
 Chézy friction coefficient
- p = 4/3 is the friction exponent

Introduction of reference scales: the coordinates

	dimensional	reference	non-dimensional
	quantity	scale	quantity
longitudinal coordinates	$x \in (0m, 60000m)$	$\mathfrak{X} = 2000 \mathrm{m}$	$\bar{x} = \frac{x}{\chi} \in (0, 30)$
transverse coordinates	$y \in (-25m, 25m)$	y = 50m	$\bar{y} = \frac{y}{y} \in (-0.5, 0.5)$

Regarding the geometry, we assume that $Z(x,y) = b(x) + \phi(x,y)$, where:

- b(x) represents the main longitudinal topography, driving the flow from upstream to downstream;
- + $\phi(x, y)$ represents small longitudinal and transverse variations.

Non-dimensional form of the 2D shallow water system

We introduce the following non-dimensional numbers to emphasize the different scales of the flow:

- F², the reference Froude number (ratio material/acoustic velocity),
- + δ , the shallow water parameter (ratio height/reference length),
- R_u, the quasi-1D parameter (ratio transverse/longitudinal velocity),
- I_0 and J_0 , the reference topography and friction slopes.

Finally, the non-dimensional form of the 2D shallow water system is:

$$\begin{split} &\left(\bar{h}_{\bar{t}} + (\bar{h}\bar{u})_{\bar{x}} + (\bar{h}\bar{v})_{\bar{y}} = 0, \\ &\bar{u}_{\bar{t}} + \bar{u}\bar{u}_{\bar{x}} + \bar{v}\bar{u}_{\bar{y}} + \frac{1}{F^2} \Big(\bar{h} + \bar{\varphi}\Big)_{\bar{x}} = \frac{1}{\delta F^2} \left(-J_0 \frac{\bar{u}\sqrt{\bar{u}^2 + R_u^2 \bar{v}^2}}{\bar{C}^2 \bar{h}^p} - J_0 \bar{b}_{\bar{x}}\right), \\ &\bar{v}_{\bar{t}} + \bar{u}\bar{v}_{\bar{x}} + \bar{v}\bar{v}_{\bar{y}} + \frac{1}{R_u^2 F^2} \Big(\bar{h} + \bar{\varphi}\Big)_{\bar{y}} = -\frac{J_0}{\delta F^2} \frac{\bar{v}\sqrt{\bar{u}^2 + R_u^2 \bar{v}^2}}{\bar{C}^2 \bar{h}^p}. \end{split}$$

1. Governing equations

2. Asymptotic expansions

- 3. Transverse averaging
- 4. A zeroth-order model
- 5. A first-order model
- 6. Numerical validation of the model
- 7. Conclusion and perspectives

In the regime under consideration, we have

- $\varepsilon := \frac{\delta F^2}{J_0} \ll 1$ (in practice, $F^2 \ll 1$, $\delta \ll 1$, $J_0 \ll 1$ and $J_0 \sim \delta$), $R_u \ll 1$ (quasi-unidimensional setting), and $R_u = \mathcal{O}(\varepsilon)$.

Highlighting the dominant terms in the system, we get:

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0, \\ u_t + uu_x + vu_y + \frac{1}{\varepsilon} \frac{\delta}{J_0} (h + \phi)_x = \frac{1}{\varepsilon} \left(-\frac{u\sqrt{u^2 + \varepsilon^2 v^2}}{C^2 h^p} - \frac{I_0}{J_0} b_x \right), \\ v_t + uv_x + vv_y + \frac{1}{\varepsilon^3} \frac{\delta}{J_0} (h + \phi)_y = -\frac{1}{\varepsilon} \frac{v\sqrt{u^2 + \varepsilon^2 v^2}}{C^2 h^p}. \end{cases}$$

Goal: Perform asymptotic expansions in this regime, to better understand the weak dependency of the solution in y.

Free surface expansion

We consider the third equation:

$$v_t + uv_x + vv_y + \frac{1}{\varepsilon^3} \frac{\delta}{J_0} (h + \phi)_y = -\frac{1}{\varepsilon} \frac{v\sqrt{u^2 + \varepsilon^2 v^2}}{C^2 h^p},$$

which we rewrite as follows to highlight the dominant term:

$$\frac{\delta}{J_0}(h+\phi)_y = \varepsilon^2 \frac{v\sqrt{u^2+\varepsilon^2 v^2}}{C^2 h^p} + \varepsilon^3 (v_t + uv_x + vv_y).$$

Neglecting the $O(\epsilon^2)$ terms, we get

$$\frac{\delta}{J_0}(h+\phi)_y=\mathcal{O}(\varepsilon^2),$$

and there exists H = H(x, t) such that

$$\mathbb{O}(\varepsilon^2) \Leftrightarrow \underbrace{h(x,y)} \bigoplus \phi(x,y) \bigoplus H(x)$$

$$H(x,t) = h(x,y,t) + \phi(x,y) + O(\varepsilon^{2}).$$

 \rightsquigarrow the free surface is almost flat in the y-direction, up to $\mathcal{O}(\epsilon^2)$

Longitudinal velocity expansion

We now consider the second equation. Highlighting the dominant terms, it reads:

$$u_t + uu_x + vu_y + \frac{1}{\varepsilon} \frac{\delta}{J_0} (h + \phi)_x = \frac{1}{\varepsilon} \left(-\frac{u\sqrt{u^2 + \varepsilon^2 v^2}}{C^2 h^p} - \frac{J_0}{J_0} b_x \right).$$

Rearranging the terms, we get:

$$\frac{\delta}{J_0}(h+\phi)_x + \frac{I_0}{J_0}b_x + \frac{u\sqrt{u^2+\varepsilon^2v^2}}{C^2h^p} = \varepsilon(u_t + uu_x + vu_y),$$
$$\frac{\delta}{J_0}(h+\phi)_x + \frac{I_0}{J_0}b_x + \frac{u|u|}{C^2h^p} = \mathcal{O}(\varepsilon).$$

To perform the asymptotic expansion of u with respect to ε , we write

$$u(x,y,t) = u_{2D}^{(0)}(x,y,t) + \varepsilon u_{2D}^{(1)}(x,y,t) + \mathcal{O}(\varepsilon^{2}).$$

Longitudinal velocity expansion

Plugging $u_{2D}^{(0)}$, the second equation becomes, up to $O(\varepsilon)$:

$$\frac{\delta}{J_0}(h+\phi)_x + \frac{I_0}{J_0}b_x + \frac{u_{2D}^{(0)}|u_{2D}^{(0)}|}{C^2h^p} = \mathcal{O}(\varepsilon).$$

Since $h + \phi = H + O(\varepsilon^2)$, we obtain

$$\frac{\delta}{J_0}H_x + \frac{I_0}{J_0}b_x + \frac{u_{2D}^{(0)}|u_{2D}^{(0)}|}{C^2(H-\Phi)^p} = \mathcal{O}(\varepsilon).$$

Straightforward computations yield:

$$u_{2D}^{(0)}(x,y,t) = \frac{\Lambda(x,t)}{\sqrt{|\Lambda(x,t)|}} (C(x,y)) (H(x,t) - \varphi(x,y))^{p/2},$$

where we have defined the corrected slope $\Lambda(x, t) = -\frac{I_0}{J_0}b_x - \frac{\delta}{J_0}H_x$.

Longitudinal velocity expansion

At the first order, the second equation becomes

$$\frac{u_{2D}^{(0)}|u_{2D}^{(0)}| - (u_{2D}^{(0)} + \varepsilon u_{2D}^{(1)})|u_{2D}^{(0)} + \varepsilon u_{2D}^{(1)}|}{C^2(H - \Phi)^p} = \varepsilon(u_t + uu_x + vu_y) + \mathcal{O}(\varepsilon^2),$$

which yields the following expression for $u_{2D}^{(1)}$:

$$u_{2D}^{(1)} = -\frac{u_{2D}^{(0)}}{2\Lambda} \left(\left(u_{2D}^{(0)} \right)_t + u_{2D}^{(0)} \left(u_{2D}^{(0)} \right)_x + v_{2D}^{(0)} \left(u_{2D}^{(0)} \right)_y \right).$$

Summary: At this level, we have obtained the asymptotic expansions of the free surface and the longitudinal velocity.

The goal is now to build a 1D model consistent with these asymptotic expansions.

- 1. Governing equations
- 2. Asymptotic expansions
- 3. Transverse averaging
- 4. A zeroth-order model
- 5. A first-order model
- 6. Numerical validation of the model
- 7. Conclusion and perspectives

The river cross-section

To obtain a 1D model, we start by averaging the 2D equations: below, we display the cross-section of the river, with respect to *x*.

Let us introduce the following 1D notations:

$$S(x,t) = \int_{y_-}^{y_+} h(x,y,t) \, dy$$
 and $Q(x,t) = \int_{y_-}^{y_+} h(x,y,t) \, u(x,y,t) \, dy.$

We compute the asymptotic expansions of $Q = Q_{2D}^{(0)} + \varepsilon Q_{2D}^{(1)} + O(\varepsilon^2)$:

•
$$Q_{2D}^{(0)} = \int_{y_{-}}^{y_{+}} hu_{2D}^{(0)} dy = \int_{y_{-}}^{y_{+}} \sqrt{|\Lambda|} \operatorname{sgn}(\Lambda) C h^{1+p/2} dy;$$

• $Q_{2D}^{(1)} = \int_{y_{-}}^{y_{+}} hu_{2D}^{(1)} dy = \frac{-1}{4\Lambda} \left[\left(\int_{y_{-}}^{y_{+}} h\left(u_{2D}^{(0)}\right)^{2} dy \right)_{t} + \left(\int_{y_{-}}^{y_{+}} h\left(u_{2D}^{(0)}\right)^{3} dy \right)_{x} \right].$

We now integrate the 2D equations over the width of the river, to naturally introduce equations on *S* and *Q*.

Averaging the 2D system

1. The original mass conservation equation reads:

$$h_t + (hu)_x + (hv)_y = 0.$$

Therefore, since $v(y_-) = v(y_+) = 0$, we get:

$$\int_{y_{-}}^{y_{+}} h_t \, dy + \int_{y_{-}}^{y_{+}} (hu)_x \, dy = 0 \quad \Longrightarrow \quad S_t + Q_x = 0.$$

2. Now, we consider the second equation (which we multiply by h):

$$hu_t + huu_x + hvu_y + \frac{1}{\varepsilon}\frac{\delta}{J_0}h(h+\phi)_x = \frac{1}{\varepsilon}h\left(-\frac{u\sqrt{u^2 + R_u^2v^2}}{C^2h^p} - \frac{I_0}{J_0}b_x\right).$$

Arguing the mass conservation and integrating between y_{-} and y_{+} yields:

$$Q_{t} + \left(\int_{y_{-}}^{y_{+}} hu^{2} dy\right)_{x} = \frac{1}{\varepsilon} \int_{y_{-}}^{y_{+}} h\left(-\frac{I_{0}}{J_{0}}b_{x} - \frac{\delta}{J_{0}}(h+\phi)_{x}\right) dy$$
$$-\frac{1}{\varepsilon} \int_{y_{-}}^{y_{+}} \frac{u\sqrt{u^{2} + R_{u}^{2}v^{2}}}{C^{2}h^{p-1}} dy.$$

$$Q_t + \left(\int_{y_-}^{y_+} hu^2 \, dy\right)_x = \frac{1}{\varepsilon} \int_{y_-}^{y_+} h\left(-\frac{I_0}{J_0} b_x - \frac{\delta}{J_0} (h+\phi)_x\right) dy$$
$$- \frac{1}{\varepsilon} \int_{y_-}^{y_+} \frac{u\sqrt{u^2 + R_u^2 v^2}}{C^2 h^{p-1}} \, dy$$

$$Q_{t} + \left(\int_{y_{-}}^{y_{+}} hu^{2} dy\right)_{x} = \frac{1}{\varepsilon} \int_{y_{-}}^{y_{+}} h \underbrace{\left(-\frac{I_{0}}{J_{0}}b_{x} - \frac{\delta}{J_{0}}(h + \phi)_{x}\right)}_{u|u| + \mathcal{O}(\varepsilon^{2})} \frac{1}{C^{2}h^{p-1}} dy$$

$$Q_{t} + \left(\int_{y_{-}}^{y_{+}} hu^{2} dy\right)_{x} = \frac{1}{\varepsilon} \Lambda \int_{y_{-}}^{y_{+}} h dy$$
$$- \frac{1}{\varepsilon} \int_{y_{-}}^{y_{+}} \frac{u|u|}{C^{2}h^{p-1}} dy + \mathcal{O}(\varepsilon)$$

$$Q_t + \left(\int_{y_-}^{y_+} hu^2 \, dy\right)_x = \frac{1}{\varepsilon} \Lambda S$$
$$- \frac{1}{\varepsilon} \int_{y_-}^{y_+} \frac{u|u|}{C^2 h^{p-1}} \, dy + \mathfrak{O}(\varepsilon)$$

Finally, the averaged system reads as follows, up to $O(\varepsilon^2)$:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\int_{y_-}^{y_+} hu^2 \, dy\right)_x = \frac{1}{\varepsilon} \left(\Lambda S - \int_{y_-}^{y_+} \frac{u|u|}{C^2 h^{p-1}} \, dy\right) + \mathcal{O}(\varepsilon). \end{cases}$$

Next step: Build a truly 1D model, either zeroth-order accurate (up to $O(\varepsilon)$) or first-order accurate (up to $O(\varepsilon^2)$), from the averaged system. That is to say:

- for the zeroth-order model, we need $Q = Q_{2D}^{(0)} + O(\varepsilon)$;
- for the first-order model, we need $Q = Q_{2D}^{(0)} + \varepsilon Q_{2D}^{(1)} + \mathcal{O}(\varepsilon^2)$.

- 1. Governing equations
- 2. Asymptotic expansions
- 3. Transverse averaging
- 4. A zeroth-order model
- 5. A first-order model
- 6. Numerical validation of the model
- 7. Conclusion and perspectives

Setting up the model

The integrated discharge equation, highlighting the dominant terms and multiplying by ε , is

$$\Lambda S - \int_{y_-}^{y_+} \frac{u|u|}{C^2 h^{p-1}} \, dy = \varepsilon \left(Q_t + \left(\int_{y_-}^{y_+} h u^2 \, dy \right)_x \right) + \mathcal{O}(\varepsilon^2).$$

At the zeroth order, i.e. up to $O(\varepsilon)$, the right-hand side of this equation is neglected, and we get:

$$\Lambda S - \int_{y_-}^{y_+} \frac{u|u|}{C^2 h^{p-1}} \, dy = \mathcal{O}(\varepsilon).$$

We cannot directly use this equation in a 1D model, since it contains the unknown *u*, which depends on *y*.

Instead, we approximate the integral, up to $\mathbb{O}(\epsilon)$, with a new 1D friction term.

First, we choose this 1D friction term as a usual hydraulic engineering model. Thus, we impose the following formula:

$$\frac{Q|Q|}{C_{1D}^2S} = \int_{y_-}^{y_+} \frac{u|u|}{C^2h^{p-1}} \, dy + \mathcal{O}(\varepsilon).$$

It contains a 1D friction coefficient⁵ C_{1D} , to be determined.

According to the discharge equation, we get, up to $O(\epsilon)$:

$$\frac{Q|Q|}{C_{1D}^2S} = \Lambda S + \mathcal{O}(\varepsilon) \implies C_{1D}^2 = \frac{Q|Q|}{\Lambda S^2} + \mathcal{O}(\varepsilon).$$

Second, we impose $Q = Q_{2D}^{(0)} + O(\varepsilon)$, to get the following expression of the friction coefficient:

$$C_{1D}^2 = rac{Q_{2D}^{(0)} |Q_{2D}^{(0)}|}{\Lambda S^2}.$$

⁵The coefficient C_{1D}^2 usually contains the hydraulic radius, the Chézy coefficient, ...

The final system

With the new friction model, the discharge equation reads

$$\Lambda S - \frac{Q|Q|}{C_{1D}^2 S} = \varepsilon \left(Q_t + \left(\int_{y_-}^{y_+} h u^2 \, dy \right)_x \right) + \mathcal{O}(\varepsilon).$$

We choose to approximate the integral in the flux to describe the advection of the discharge:

$$\varepsilon \int_{y_{-}}^{y_{+}} hu^{2} dy = \varepsilon \frac{\left(\int_{y_{-}}^{y_{+}} hu dy\right)^{2}}{\int_{y_{-}}^{y_{+}} h dy} + \mathcal{O}(\varepsilon) = \varepsilon \frac{Q^{2}}{S} + \mathcal{O}(\varepsilon).$$

The resulting discharge equation, divided by ε , is

$$Q_t + \left(\frac{Q^2}{S}\right)_x = \frac{1}{\varepsilon}S\left(\Lambda - \underbrace{\frac{Q|Q|}{C_{1D}^2S^2}}_{J}\right) + O(1).$$

$$\left(\begin{array}{c} \mathsf{S}_t + \mathsf{Q}_x = \mathsf{0}, \\ \mathsf{Q}_t + \left(\begin{array}{c} \mathsf{Q}^2 \\ \mathsf{S} \end{array} \right)_x = rac{1}{\varepsilon} \mathsf{S}(\Lambda - \mathcal{J}). \end{array} \right)$$

Let us double check that this model indeed recovers the zerothorder expansion of *Q*.

Since $Q = Q^{(0)} + O(\varepsilon)$, we get, at the zeroth order:

$$\Lambda = \mathcal{J} + \mathcal{O}(\varepsilon) \implies \Lambda = \overbrace{\Lambda \frac{Q|Q|}{Q_{2D}^{(0)}|Q_{2D}^{(0)}|}}^{\mathcal{J}} + \mathcal{O}(\varepsilon) = \Lambda \frac{Q^{(0)}|Q^{(0)}|}{Q_{2D}^{(0)}|Q_{2D}^{(0)}|} + \mathcal{O}(\varepsilon)$$
$$\implies Q^{(0)} = Q_{2D}^{(0)} + \mathcal{O}(\varepsilon).$$

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S}\right)_x = \frac{1}{\varepsilon} S\left(-\frac{I_0}{J_0}b_x - \frac{\delta}{J_0}H_x - \vartheta\right). \end{cases}$$

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S}\right)_x = \frac{1}{\varepsilon} S\left(\underbrace{-\frac{I_0}{J_0}b_x}_{\mathcal{J}} - \frac{\delta}{J_0}H_x - \mathcal{J}\right). \end{cases}$$

$$\begin{cases} \mathsf{S}_t + \mathsf{Q}_x = \mathsf{0}, \\ \mathsf{Q}_t + \left(\frac{\mathsf{Q}^2}{\mathsf{S}}\right)_x + \frac{\mathsf{SH}_x}{\mathsf{F}^2} = \frac{1}{\varepsilon}\mathsf{S}(\mathfrak{I} - \mathfrak{J}). \end{cases}$$

This is quite similar to the usual models: all the complexity lies within the friction model \mathcal{J} , and the expression of the friction coefficient C_{1D} .

→ We have derived a zeroth-order model.

What about a first-order one?

- 1. Governing equations
- 2. Asymptotic expansions
- 3. Transverse averaging
- 4. A zeroth-order model
- 5. A first-order model
- 6. Numerical validation of the model
- 7. Conclusion and perspectives

The procedure developed in the previous section introduces an error in O(1) on the discharge equation. To get a first-order accurate model, we need to lower this error to $O(\varepsilon)$.

However, we already have a nice structure (hyperbolicity, ...): we keep this discharge equation and we focus on the the energy equation⁶.

With
$$E_{2D} = \frac{h}{2} \|\mathbf{u}\|^2 + \frac{1}{2}gh^2$$
, the 2D energy equation is:
 $(E_{2D})_t + \nabla \cdot \left(\mathbf{u}\left(E_{2D} + \frac{1}{2}gh^2\right)\right) = gh\left(-\mathbf{u} \cdot \nabla Z - \frac{\|\mathbf{u}\|^3}{C_h^2h^p}\right).$

⁶see Luchini and Charru, 2010, in the context of thin film flows

The procedure developed in the previous section introduces an error in O(1) on the discharge equation. To get a first-order accurate model, we need to lower this error to $O(\varepsilon)$.

However, we already have a nice structure (hyperbolicity, ...): we keep this discharge equation and we focus on the the energy equation⁶.

With
$$E_{2D} = \frac{1}{2}hu^2 + \frac{h^2}{2F^2} + \mathcal{O}(\varepsilon^2)$$
, the integrated equation is, up to $\mathcal{O}(\varepsilon^2)$:
 $\left(\int_{y_-}^{y_+} \frac{1}{2}hu^2 \, dy\right)_t + \left(\int_{y_-}^{y_+} \frac{1}{2}hu^3 \, dy\right)_x = \frac{1}{\varepsilon} \left(\Lambda Q - \int_{y_-}^{y_+} \frac{u^2|u|}{C^2h^{p-1}} \, dy\right) + \mathcal{O}(\varepsilon).$

We build a 1D equation consistent, up to $O(\varepsilon^2)$, with the energy equation: the first step is the introduction of a new 1D source term.

⁶see Luchini and Charru, 2010, in the context of thin film flows

The asymptotic expansion of Q is $Q = Q^{(0)} + \varepsilon Q^{(1)} + O(\varepsilon^2)$.

At the moment, we have a zeroth order model:

- with the source term $\frac{1}{2}S(\Lambda \beta)$ on the discharge equation,
- that recovers $Q = Q_{2D}^{(0)} + O(\varepsilon)$.

To obtain a first order model, we build an energy equation:

- whose source term is, by analogy, $\frac{1}{c}Q(\Lambda \mathcal{J})$,
- that recovers $Q = Q_{2D}^{(0)} + \varepsilon Q_{2D}^{(1)} + O(\varepsilon^2)$.

We show that the resulting equation deviates with $O(\epsilon^2)$ from the integrated 2D energy equation.
We impose $Q = Q_{2D}^{(0)} + \varepsilon Q_{2D}^{(1)} + \mathcal{O}(\varepsilon^2)$.

The friction model $\mathcal J$ then satisfies:

$$\mathcal{J} = \Lambda \frac{Q|Q|}{Q_{2D}^{(0)}|Q_{2D}^{(0)}|} = \Lambda \left(1 + 2\varepsilon \frac{Q_{2D}^{(1)}}{Q_{2D}^{(0)}}\right) + \mathcal{O}(\varepsilon^2).$$

Therefore, the source term of the energy equation is:

$$\frac{1}{\varepsilon}Q(\Lambda - \mathcal{J}) = -2\Lambda Q_{2D}^{(1)} \frac{Q}{Q_{2D}^{(0)}} + \mathcal{O}(\varepsilon) = -2\Lambda Q_{2D}^{(1)} + \mathcal{O}(\varepsilon)$$

= $-2\Lambda \cdot \underbrace{\frac{-1}{4\Lambda} \left[\left(\int_{y_{-}}^{y_{+}} h\left(u_{2D}^{(0)}\right)^{2} dy \right)_{t} + \left(\int_{y_{-}}^{y_{+}} h\left(u_{2D}^{(0)}\right)^{3} dy \right)_{x} \right]}_{Q_{2D}^{(1)}} + \mathcal{O}(\varepsilon).$

The equation we have just derived reads

$$\left(\frac{1}{2}\int_{y_{-}}^{y_{+}}hu^{2}\,dy\right)_{t}+\left(\frac{1}{2}\int_{y_{-}}^{y_{+}}hu^{3}\,dy\right)_{x}=\frac{1}{\varepsilon}Q(\Lambda-\mathfrak{J})+\mathfrak{O}(\varepsilon).$$

Compare this new equation to the integrated 2D energy equation:

$$\left(\int_{y_{-}}^{y_{+}} \frac{1}{2}hu^{2} dy\right)_{t} + \left(\int_{y_{-}}^{y_{+}} \frac{1}{2}hu^{3} dy\right)_{x} = \frac{1}{\varepsilon} \left(\Lambda Q - \int_{y_{-}}^{y_{+}} \frac{u^{2}|u|}{C^{2}h^{p-1}} dy\right) + \mathcal{O}(\varepsilon).$$

Therefore, the new equation:

- is consistent with the integrated energy equation, up to $O(\varepsilon^2)$;
- is based on the expression of $Q_{2D}^{(1)}$, and ensures its recovery.

The system in conservative form

We have thus obtained the following system:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\int_{y_-}^{y_+} h u^2 \, dy \right)_x = \frac{1}{\varepsilon} S(\Lambda - \mathfrak{J}) + \mathfrak{O}(1), \\ \left(\frac{1}{2} \int_{y_-}^{y_+} h u^2 \, dy \right)_t + \left(\frac{1}{2} \int_{y_-}^{y_+} h u^3 \, dy \right)_x = \frac{1}{\varepsilon} Q(\Lambda - \mathfrak{J}) + \mathfrak{O}(\varepsilon). \end{cases}$$

The system in conservative form

We have thus obtained the following system:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\int_{y_-}^{y_+} hu^2 \, dy\right)_x + \frac{SH_x}{F^2} = \frac{1}{\varepsilon}S(\mathcal{I} - \mathcal{J}) + \mathcal{O}(1), \\ \left(\frac{1}{2}\int_{y_-}^{y_+} hu^2 \, dy\right)_t + \left(\frac{1}{2}\int_{y_-}^{y_+} hu^3 \, dy\right)_x + \frac{QH_x}{F^2} = \frac{1}{\varepsilon}Q(\mathcal{I} - \mathcal{J}) + \mathcal{O}(\varepsilon). \end{cases}$$

The system in conservative form

We have thus obtained the following conservative system:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{P^{hy}}{P^{hy}} + \int_{y_-}^{y_+} hu^2 \, dy\right)_x = P^{lat} + \frac{1}{\varepsilon}S(\mathcal{I} - \mathcal{J}) + \mathcal{O}(1), \\ \left(\frac{\varepsilon}{2} + \frac{1}{2}\int_{y_-}^{y_+} hu^2 \, dy\right)_t + \left(\frac{Q}{S}\left(\frac{\varepsilon}{2} + P^{hy}\right) + \frac{1}{2}\int_{y_-}^{y_+} hu^3 \, dy\right)_x = \frac{1}{\varepsilon}Q(\mathcal{I} - \mathcal{J}) + \mathcal{O}(\varepsilon), \end{cases}$$

where we have defined

•
$$L(x,z)$$
 such that $S = \int_{0}^{H} L(x,z) dz$,
• $P^{hy} = \frac{1}{F^{2}} \int_{0}^{H} (H-z)L dz$, $P^{lat} = \frac{1}{F^{2}} \int_{0}^{H} (H-z)L_{x} dz$, $\mathcal{E} = \frac{1}{F^{2}} \int_{0}^{H} zL dz$.

Introduction of a pressure and an energy

The goal is now to rewrite the homogeneous part of the model under an Euler-like formulation with pressure P_e and energy E_e , as follows:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(P^{hy} + \int_{y_-}^{y_+} hu^2 \, dy\right)_x = 0, \\ \left(\varepsilon + \frac{1}{2} \int_{y_-}^{y_+} hu^2 \, dy\right)_t + \left(\frac{Q}{S} \left(\varepsilon + P^{hy}\right) + \frac{1}{2} \int_{y_-}^{y_+} hu^3 \, dy\right)_x = 0, \end{cases} \xrightarrow{\leftarrow \to +} \begin{cases} S_t + (SU)_x = 0, \\ (SU)_t + (SU^2 + P_e)_x = 0, \\ (E_e)_t + (U(E_e + P_e))_x = 0. \end{cases}$$

By analogy, the Euler variables satisfy:

- **U** such that $U = \frac{Q}{S}$, as expected;
- P_e such that $P_e = P^{hy} + \int_{v}^{y_+} hu^2 dy SU^2$;
- E_e such that $E_e = \mathcal{E} + \frac{1}{2} \int_{y_-}^{y_+} h u^2 dy$.

To take care of the integrals, we introduce a new variable, the enstrophy⁷ Ψ , defined as the variance of the velocity, by

$$\Psi = \int_{y_-}^{y_+} h(u - U)^2 \, dy = \int_{y_-}^{y_+} hu^2 \, dy - SU^2.$$

We therefore define a pressure and an energy in the 1D model by:

$$P = P^{hy} + \Psi$$
 and $E = \mathcal{E} + \frac{1}{2}SU^2 + \frac{1}{2}\Psi$.

We also introduce the potential II, defined by

$$\Pi = \frac{1}{U} \int_{y_{-}}^{y_{+}} h u^{3} \, dy - SU^{2} = \int_{y_{-}}^{y_{+}} h(u - U)^{2} \left(2 + \frac{u}{U}\right) \, dy.$$

In practice, we cannot directly compute Ψ and Π since we do not know u. The final 1D model will have to address this issue.

⁷see Richard and Gavrilyuk, 2012

Introduction of auxiliary variables

With the integrals, the homogeneous model reads:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(P^{hy} + \int_{y_-}^{y_+} hu^2 \, dy\right)_x = 0, \\ \left(\frac{\varepsilon + \frac{1}{2} \int_{y_-}^{y_+} hu^2 \, dy}{y_+} + \left(\frac{Q}{S}(\varepsilon + P^{hy}) + \frac{1}{2} \int_{y_-}^{y_+} hu^3 \, dy\right)_x = 0. \end{cases}$$

Introduction of auxiliary variables

With the energy and the pressure, the homogeneous model reads:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + P\right)_x = 0, \\ E_t + \left(\frac{Q}{S}\left(\mathcal{E} + P^{hy}\right) + \frac{1}{2}\int_{y_-}^{y_+} hu^3 \, dy\right)_x = 0. \end{cases}$$

With the energy and the pressure, the homogeneous model reads:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + P\right)_x = 0, \\ E_t + \left(\frac{Q}{S}(E + P)\right)_x + \left(\frac{1}{2}\frac{Q}{S}(\Pi - 3\Psi)\right)_x = 0. \end{cases}$$

With the energy and the pressure, the homogeneous model reads:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + P\right)_x = 0, \\ \underbrace{E_t + \left(\frac{Q}{S}(E + P)\right)_x}_{\text{Euler-like}} + \underbrace{\left(\frac{1}{2}\frac{Q}{S}(\Pi - 3\Psi)\right)_x}_{\text{non-Euler-like}} = 0. \end{cases}$$

→ How to handle the non-Euler-like part?

We introduce a new variable, the internal energy $e = e(S, \Psi, \Pi)$, which satisfies the equation

$$e_t + \left(\frac{Q}{S}e\right)_x - \left(\frac{1}{2}\frac{Q}{S}(\Pi - 3\Psi)\right)_x = 0.$$

With the internal energy, the homogeneous model reads:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + P\right)_x = 0, \\ E_t + \left(\frac{Q}{S}(E+P)\right)_x + \left(\frac{1}{2}\frac{Q}{S}(\Pi - 3\Psi)\right)_x = 0, \\ e_t + \left(\frac{Q}{S}e\right)_x - \left(\frac{1}{2}\frac{Q}{S}(\Pi - 3\Psi)\right)_x = 0. \end{cases}$$

With the internal energy, the homogeneous model reads:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + P\right)_x = 0, \\ (E + e)_t + \left(\frac{Q}{S}(E + e + P)\right)_x = 0, \\ e_t + \left(\frac{Q}{S}\left(e - \frac{1}{2}(\Pi - 3\Psi)\right)\right)_x = 0. \end{cases}$$

We get an Euler-like model, with energy E + e. How to make it hyperbolic?

We take
$$e = \frac{1}{2}(\Pi - 3\Psi)$$
: the wave velocities then are
0, U , $U \pm \sqrt{\frac{S}{F^2L(H)} + \frac{\Pi}{S}}$, as opposed to $U \pm \sqrt{\frac{S}{F^2L(H)}}$ for classical SW.

The final homogeneous model reads:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + P\right)_x = 0, \\ (E + e)_t + \left(\frac{Q}{S}(E + e + P)\right)_x = 0, \\ e_t = 0, \end{cases}$$

with the pressure and the total energy satisfying:

•
$$P(S, U, E) = 2\left(E - \frac{1}{2}SU^2\right) + \frac{1}{F^2}\int_0^H (H - 3z) L dz;$$

• $E + e = E + \frac{1}{2}SU^2 + \frac{1}{2}\int_{y_-}^{y_+} h(u - U)^2 dy + \frac{1}{2U}\int_{y_-}^{y_+} h(u - U)^3 dy.$

Let us write the non-homogeneous model with Ψ and Π :

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x = \frac{1}{\varepsilon}S(\Lambda - \mathcal{J}), \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x = \frac{1}{\varepsilon}Q(\Lambda - \mathcal{J}), \\ \left(\frac{1}{2}(\Pi - 3\Psi)\right)_t = 0. \end{cases}$$

We check the zeroth-order expansion: we write $Q = Q^{(0)} + O(\varepsilon)$, to get

$$\Lambda = \mathcal{J} + \mathcal{O}(\varepsilon) \implies \Lambda = \Lambda \frac{Q|Q|}{Q_{2D}^{(0)}|Q_{2D}^{(0)}|} + \mathcal{O}(\varepsilon)$$
$$\implies Q^{(0)} = Q_{2D}^{(0)} + \mathcal{O}(\varepsilon),$$

and the zeroth-order expansion of *Q* is indeed still recovered. What about the first-order expansion of *Q*? We study the first-order expansion of the energy equation: with $Q = Q_{2D}^{(0)} + \epsilon Q^{(1)} + O(\epsilon^2)$, $\Psi = \Psi^{(0)} + O(\epsilon)$ and $\Pi = \Pi^{(0)} + O(\epsilon)$, we get

$$-2\Lambda Q^{(1)} = \left(\frac{1}{2}\frac{\left(Q_{2D}^{(0)}\right)^2}{S} + \frac{1}{2}\Psi^{(0)}\right)_t + \left(\frac{Q_{2D}^{(0)}}{S}\left(\frac{1}{2}\frac{\left(Q_{2D}^{(0)}\right)^2}{S} + \frac{1}{2}\Pi^{(0)}\right)\right)_x.$$

Moreover, straighforward computations show that

$$-2\Lambda Q_{2D}^{(1)} = \left(\frac{1}{2} \frac{\left(Q_{2D}^{(0)}\right)^2}{S} + \frac{1}{2} \Psi_{2D}^{(0)}\right)_t + \left(\frac{Q_{2D}^{(0)}}{S} \left(\frac{1}{2} \frac{\left(Q_{2D}^{(0)}\right)^2}{S} + \frac{1}{2} \Pi_{2D}^{(0)}\right)\right)_x.$$

To ensure $Q^{(1)} = Q_{2D}^{(1)}$, it is sufficient for the enstrophy and potential to satisfy $\Psi^{(0)} = \Psi_{2D}^{(0)} + \mathcal{O}(\varepsilon)$ and $\Pi^{(0)} = \Pi_{2D}^{(0)} + \mathcal{O}(\varepsilon)$.

To recover the zeroth-order expansions of Ψ and Π , we introduce two new relaxation source terms in the system. These source terms have to ensure that $\Psi = \Psi_{2D}^{(0)} + \mathcal{O}(\varepsilon)$ and $\Pi = \Pi_{2D}^{(0)} + \mathcal{O}(\varepsilon)$.

We choose the following forms, where K_1 and K_2 are to be determined:

$$\frac{K_1}{\varepsilon}S\Lambda\left(1-\frac{\Psi}{\Psi_{2D}^{(0)}}\right) \quad \text{and} \quad \frac{K_2}{\varepsilon}Q\Lambda\left(\frac{\Psi}{\Psi_{2D}^{(0)}}-\frac{\Pi}{\Pi_{2D}^{(0)}}\right).$$

At the zeroth-order, we indeed get $\Psi = \Psi_{2D}^{(0)} + O(\epsilon)$ and $\Pi = \Pi_{2D}^{(0)} + O(\epsilon)$.

We introduce the condensed notations

$$\mathcal{J}_{\Psi} = \Lambda \frac{\Psi}{\Psi_{2D}^{(0)}} \quad \text{and} \quad \mathcal{J}_{\Pi} = \Lambda \frac{\Pi}{\Pi_{2D}^{(0)}} \quad \left(\text{similarly to } \mathcal{J} = \Lambda \frac{Q|Q|}{Q_{2D}^{(0)}|Q_{2D}^{(0)}|}\right).$$

We introduce these relaxation source terms in the system⁸, to get:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x = \frac{1}{\varepsilon}S(\Lambda - \mathcal{J} + K_1(\Lambda - \mathcal{J}_\Psi)), \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x = \frac{1}{\varepsilon}Q(\Lambda - \mathcal{J}), \\ \left(\frac{1}{2}(\Pi - 3\Psi)\right)_t = \frac{1}{\varepsilon}QK_2(\mathcal{J}_\Psi - \mathcal{J}_\Pi). \end{cases}$$

 8 In order to ensure the recovery of $Q_{2D}^{(1)}$, we do not modify the energy equation.

We introduce these relaxation source terms in the system⁸, to get:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x = \frac{1}{\varepsilon}S(\Lambda - \vartheta + K_1(\Lambda - \vartheta_{\Psi})), \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x = \frac{1}{\varepsilon}Q(\Lambda - \vartheta), \\ \left(\frac{1}{2}(\Pi - \Im\Psi)\right)_t = \frac{1}{\varepsilon}QK_2(\vartheta_{\Psi} - \vartheta_{\Pi}). \end{cases}$$

Recall that, at the zeroth-order, the energy equation yields:

$$\Lambda = \mathcal{J} + \mathcal{O}(\varepsilon) \implies Q = Q_{2D}^{(0)} + \mathcal{O}(\varepsilon).$$

⁸In order to ensure the recovery of $Q_{2D}^{(1)}$, we do not modify the energy equation.

We introduce these relaxation source terms in the system⁸, to get:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x = \frac{1}{\varepsilon}S(\Lambda - \mathcal{J} + K_1(\Lambda - \mathcal{J}_{\Psi})), \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x = \frac{1}{\varepsilon}Q(\Lambda - \mathcal{J}), \\ \left(\frac{1}{2}(\Pi - 3\Psi)\right)_t = \frac{1}{\varepsilon}QK_2(\mathcal{J}_{\Psi} - \mathcal{J}_{\Pi}). \end{cases}$$

At the zeroth-order, from the discharge equation, we get:

 $\Lambda - \mathcal{J} + \mathcal{K}_1(\Lambda - \mathcal{J}_{\Psi}) = \mathcal{O}(\varepsilon) \implies \Lambda = \mathcal{J}_{\Psi} + \mathcal{O}(\varepsilon) \implies \Psi = \Psi_{2D}^{(0)} + \mathcal{O}(\varepsilon).$

⁸In order to ensure the recovery of $Q_{2D}^{(1)}$, we do not modify the energy equation.

We introduce these relaxation source terms in the system⁸, to get:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x = \frac{1}{\varepsilon}S(\Lambda - \vartheta + K_1(\Lambda - \vartheta_\Psi)), \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x = \frac{1}{\varepsilon}Q(\Lambda - \vartheta), \\ \left(\frac{1}{2}(\Pi - \Im\Psi)\right)_t = \frac{1}{\varepsilon}QK_2(\vartheta_\Psi - \vartheta_\Pi). \end{cases}$$

At the zeroth-order, from the internal energy equation, we get:

$$\mathcal{J}_{\Pi} = \mathcal{J}_{\Psi} + \mathcal{O}(\varepsilon) \implies \mathcal{J}_{\Pi} = \Lambda + \mathcal{O}(\varepsilon) \implies \Pi = \Pi_{2D}^{(0)} + \mathcal{O}(\varepsilon).$$

⁸In order to ensure the recovery of $Q_{2D}^{(1)}$, we do not modify the energy equation.

We introduce these relaxation source terms in the system⁸, to get:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x = \frac{1}{\varepsilon}S(\Lambda - \vartheta + K_1(\Lambda - \vartheta_\Psi)), \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x = \frac{1}{\varepsilon}Q(\Lambda - \vartheta), \\ \left(\frac{1}{2}(\Pi - \Im\Psi)\right)_t = \frac{1}{\varepsilon}QK_2(\vartheta_\Psi - \vartheta_\Pi). \end{cases}$$

At the first-order, from the energy equation, we get, up to $O(\epsilon)$:

$$\left(\frac{1}{2}\frac{(Q_{2D}^{(0)})^2}{S} + \frac{1}{2}\Psi_{2D}^{(0)}\right)_t + \left(\frac{Q_{2D}^{(0)}}{S}\left(\frac{1}{2}\frac{(Q_{2D}^{(0)})^2}{S} + \frac{1}{2}\Pi_{2D}^{(0)}\right)\right)_x = -2\Lambda Q^{(1)} \implies Q^{(1)} = Q_{2D}^{(1)}.$$

 8 In order to ensure the recovery of $Q_{2D}^{(1)}$, we do not modify the energy equation.

Summary

At this level, the model is, with no differential terms in the source:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x + (1 + K_1)\frac{SH_x}{F^2} = \frac{1}{\varepsilon}S(\mathbb{J} - \mathcal{J} + K_1(\mathbb{J} - \mathcal{J}_\Psi)), \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x + \frac{QH_x}{F^2} = \frac{1}{\varepsilon}Q(\mathbb{J} - \mathcal{J}), \\ \left(\frac{1}{2}(\Pi - 3\Psi)\right)_t = \frac{1}{\varepsilon}QK_2(\mathcal{J}_\Psi - \mathcal{J}_\Pi). \end{cases}$$

It ensures the correct asymptotic regime, that is to say

$$Q = Q_{2D}^{(0)} + \varepsilon Q_{2D}^{(1)} + \mathcal{O}(\varepsilon^2).$$

The quantities K_1 and K_2 still need to be determined: can we ensure the hyperbolicity and the linear stability of the model?

After straightforward but tedious computations, we show that, for small enough F^2 and ε :

- a necessary condition for the hyperbolicity is $1 + K_1 > 0$;
- taking the values

$$K_1 = -rac{S\Psi^{(0)}}{(Q^{(0)})^2}$$
 and $K_2 = rac{S\Pi^{(0)}}{(Q^{(0)})^2}$

ensures the linear stability of the system, under the condition

$$\left(\frac{Q^{(0)}(S)}{S}\right)^2 < \frac{4S}{L(H)} + \frac{\Pi^{(0)}(S)}{S}$$

Note that, in this case, $1 + K_1 > 0$ in the usual applications.

Summary

The final model is:

$$\begin{split} \left(S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x + \left(1 - \frac{S\Psi^{(0)}}{\left(Q^{(0)}\right)^2}\right) \frac{SH_x}{F^2} &= \frac{1}{\epsilon} S\left(\Im - \Im - \frac{S\Psi^{(0)}}{\left(Q^{(0)}\right)^2}(\Im - \Im_\Psi)\right), \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x + \frac{QH_x}{F^2} &= \frac{1}{\epsilon} Q(\Im - \Im), \\ \left(\frac{1}{2}(\Pi - \Im\Psi)\right)_t &= \frac{1}{\epsilon} Q\frac{S\Pi^{(0)}}{\left(Q^{(0)}\right)^2}(\Im\Psi - \Im_\Pi). \end{split}$$

It ensures the correct asymptotic regime, that is to say

$$Q = Q_{2D}^{(0)} + \varepsilon Q_{2D}^{(1)} + \mathcal{O}(\varepsilon^2).$$

In addition, it is hyperbolic and linearly stable.

Next step: numerical validation of this model

- 1. Governing equations
- 2. Asymptotic expansions
- 3. Transverse averaging
- 4. A zeroth-order model
- 5. A first-order model

6. Numerical validation of the model

7. Conclusion and perspectives

To handle the stiff relaxation source term, we introduce an implicit splitting procedure.

We present this procedure on the zeroth-order model for clarity:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S}\right)_x + \frac{1}{\varepsilon} \frac{\delta}{J_0} SH_x = \frac{1}{\varepsilon} S(\mathcal{I} - \mathcal{J}). \end{cases}$$

First, we consider the non-stiff part:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S}\right)_x = 0 \end{cases}$$

which we discretize using an upwind finite difference scheme.

Numerical schemes

Second, we consider the stiff part:

$$\begin{cases} \mathsf{S}_t = \mathsf{0}, \\ \mathsf{Q}_t + \frac{1}{\varepsilon} \frac{\delta}{J_0} \mathsf{S} \mathsf{H}_{\mathsf{X}} = \frac{1}{\varepsilon} \mathsf{S} (\mathfrak{I} - \mathfrak{J}). \end{cases}$$

Since $S_t = 0$, we are left with the following ODE on Q:

$$Q_{t} = \frac{1}{\varepsilon} S \Lambda \left(1 - \frac{Q^{2}}{\left(Q_{2D}^{(0)}\right)^{2}} \right),$$

which we can solve exactly, to get

$$Q(t) = Q_{2D}^{(0)} \frac{\tanh\left(\frac{1}{\varepsilon} \frac{S|\Lambda|}{|Q_{2D}^{(0)}|}t\right) + \frac{Q(0)}{Q_{2D}^{(0)}}}{1 + \tanh\left(\frac{1}{\varepsilon} \frac{S|\Lambda|}{|Q_{2D}^{(0)}|}t\right) \frac{Q(0)}{Q_{2D}^{(0)}}}.$$

The same procedure is applied to the first-order model.

Unsteady flood flow (2D: ref. sol., A0: 0th-order, A1: 1st-order)

- 1. Governing equations
- 2. Asymptotic expansions
- 3. Transverse averaging
- 4. A zeroth-order model
- 5. A first-order model
- 6. Numerical validation of the model
- 7. Conclusion and perspectives

We have developed a new 1D model, based on the 2D shallow water equations, that is:

- consistent, up to first-order, with the 2D model in the asymptotic regime corresponding to a river flow:
 - the zeroth-order is obtained with a new explicit friction term,
 - the first-order relies on new equations describing the evolution of the enstrophy and the potential;
- hyperbolic and linearly stable;
- easily implementable and numerically validated.

The preprint related to these results is available on HAL:

V. Michel-Dansac, P. Noble et J.-P. Vila, **Consistent section-averaged shallow water equations with bottom friction**, 2018. https://hal.archives-ouvertes.fr/hal-01962186

Work related to the model:

- improve the treatment of the river meanders by going to the first-order instead of the zeroth-order
- adapt this methodology to treat confluences
- consider a time-dependent topography to model the effects of sedimentation

Work related to the implementation and scientific computation:

- compare the 1D results to the ones given by a fully 2D code, in real test cases (Garonne, Lèze, Gironde, Amazon, ...)
- couple the 1D and 2D equations in the context of the Gironde estuary (collaboration with the SHOM)

Thank you for your attention!

To emphasize the different scales of the flow, we perform a non-dimensionalization of the 2D system.

We introduce the following dimensionalization scales and related non-dimensional quantities (which are denoted with a bar, like \bar{x}):

$$h := \mathcal{H}\overline{h}, \quad u := \mathcal{U}\overline{u}, \quad v := \mathcal{V}\overline{v}, \quad x := \mathfrak{X}\overline{x}, \quad y := \mathcal{Y}\overline{y}, \quad t := \mathfrak{T}\overline{t}, \quad \mathfrak{T} := \frac{\mathfrak{X}}{\mathfrak{U}}.$$

The mass conservation equation

$$\frac{\partial h}{\partial t} + \frac{\partial h u}{\partial x} + \frac{\partial h v}{\partial y} = 0$$

then becomes

$$\frac{\mathcal{H}}{\mathcal{T}}\frac{\partial\bar{h}}{\partial\bar{t}} + \frac{\mathcal{H}\mathcal{U}}{\mathcal{X}}\frac{\partial\bar{h}\bar{u}}{\partial\bar{x}} + \frac{\mathcal{H}\mathcal{V}}{\mathcal{Y}}\frac{\partial\bar{h}\bar{v}}{\partial\bar{y}} = 0.$$

The non-dimensional conservation equation is

$$\frac{\mathcal{H}}{\mathcal{T}}\frac{\partial\bar{h}}{\partial\bar{t}} + \frac{\mathcal{H}\mathcal{U}}{\mathcal{X}}\frac{\partial\bar{h}\bar{u}}{\partial\bar{x}} + \frac{\mathcal{H}\mathcal{V}}{\mathcal{Y}}\frac{\partial\bar{h}\bar{v}}{\partial\bar{y}} = 0, \quad \text{i.e.} \quad \frac{\partial\bar{h}}{\partial\bar{t}} + \frac{\partial\bar{h}\bar{u}}{\partial\bar{x}} + \frac{\mathcal{V}}{\mathcal{U}}\frac{\mathcal{X}}{\mathcal{Y}}\frac{\partial\bar{h}\bar{v}}{\partial\bar{y}} = 0.$$

We set $R_u := \mathcal{V}/\mathcal{U}$ and $R_x := \mathcal{Y}/\mathcal{X}$, to get

$$\frac{\partial \bar{h}}{\partial \bar{t}} + \frac{\partial \bar{h} \bar{u}}{\partial \bar{x}} + \frac{R_u}{R_x} \frac{\partial \bar{h} \bar{v}}{\partial \bar{y}} = 0.$$

We have

- $\mathcal{V} \ll \mathcal{U}$ (quasi-unidimensional flow) $\implies R_u \ll 1$,
- $\mathcal{Y} \ll \mathcal{X}$ (quasi-unidimensional geometry) $\implies R_x \ll 1$.

We assume $R_u = R_x$ to keep the mass conservation equation unchanged from the dimensional case.

Regarding the geometry, we assume that $Z(x,y) = b(x) + \phi(x,y)$, where:

- b(x) represents the main longitudinal topography, driving the flow from upstream to downstream;
- $\phi(x, y)$ represents small longitudinal and transverse variations.

The related non-dimensional quantities are

$$b = \mathcal{B}\overline{b}\left(\frac{x}{\chi}\right)$$
 and $\phi = \mathcal{H}\overline{\phi}\left(\frac{x}{\chi}, \frac{y}{y}\right)$.

The non-dimensional topography gradient then reads:

$$\boldsymbol{\nabla} \boldsymbol{Z} = \begin{pmatrix} \frac{\mathcal{B}}{\mathcal{X}} \frac{\partial \bar{\boldsymbol{b}}}{\partial \bar{\boldsymbol{x}}}(\bar{\boldsymbol{x}}) + \frac{\mathcal{H}}{\mathcal{X}} \frac{\partial \bar{\boldsymbol{\phi}}}{\partial \bar{\boldsymbol{x}}}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{y}}) \\ \frac{\mathcal{H}}{\mathcal{Y}} \frac{\partial \bar{\boldsymbol{\phi}}}{\partial \bar{\boldsymbol{y}}}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{y}}) \end{pmatrix}$$

Regarding the friction, we take $C_h = \mathcal{C} \overline{C}(\overline{x}, \overline{y})$.

The non-dimensional friction source term then reads:

$$\frac{\mathbf{u}\|\mathbf{u}\|}{C_{h}^{2}h^{p}} = \begin{pmatrix} \frac{\mathcal{U}}{\mathcal{CH}^{p}} \cdot \frac{\bar{u}\sqrt{\mathcal{U}^{2}\bar{u}^{2} + \mathcal{V}^{2}\bar{v}^{2}}}{\bar{c}^{2}\bar{h}^{p}} \\ \frac{\mathcal{V}}{\mathcal{CH}^{p}} \cdot \frac{\bar{v}\sqrt{\mathcal{U}^{2}\bar{u}^{2} + \mathcal{V}^{2}\bar{v}^{2}}}{\bar{c}^{2}\bar{h}^{p}} \end{pmatrix} = \begin{pmatrix} \frac{\mathcal{U}|\mathcal{U}|}{\mathcal{CH}^{p}} \cdot \frac{\bar{u}\sqrt{\bar{u}^{2} + R_{u}^{2}\bar{v}^{2}}}{\bar{c}^{2}\bar{h}^{p}} \\ \frac{\mathcal{V}|\mathcal{U}|}{\mathcal{CH}^{p}} \cdot \frac{\bar{v}\sqrt{\bar{u}^{2} + R_{u}^{2}\bar{v}^{2}}}{\bar{c}^{2}\bar{h}^{p}} \end{pmatrix}$$

We are finally able to write the non-dimensional form of the 2D shallow water system: from the dimensional system

$$\begin{cases} h_t + \nabla \cdot (h\mathbf{u}) = \mathbf{0}, \\ \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + g \nabla h = g \left(-\nabla Z - \frac{\mathbf{u} \|\mathbf{u}\|}{C_h^2 h^p} \right), \end{cases}$$

we get the following non-dimensional form:

$$\begin{split} & \Big(\bar{h}_{\bar{t}} + (\bar{h}\bar{u})_{\bar{x}} + (\bar{h}\bar{v})_{\bar{y}} = \mathbf{0}, \\ & \frac{\mathcal{U}^2}{\mathcal{X}}\bar{u}_{\bar{t}} + \frac{\mathcal{U}^2}{\mathcal{X}}\bar{u}\bar{u}_{\bar{x}} + \frac{\mathcal{U}\mathcal{V}}{\mathcal{Y}}\bar{v}\bar{u}_{\bar{y}} + \frac{g\mathcal{H}}{\mathcal{X}}\Big(\bar{h} + \bar{\phi}\Big)_{\bar{x}} = g\left(-\frac{\mathcal{U}|\mathcal{U}|}{\mathcal{C}\mathcal{H}^p}\frac{\bar{u}\sqrt{\bar{u}^2 + R_u^2\bar{v}^2}}{\bar{c}^2\bar{h}^p} - \frac{\mathcal{B}}{\mathcal{X}}\bar{b}_{\bar{x}}\right), \\ & \frac{\mathcal{V}\mathcal{U}}{\mathcal{X}}\bar{v}_{\bar{t}} + \frac{\mathcal{V}\mathcal{U}}{\mathcal{X}}\bar{u}\bar{v}_{\bar{x}} + \frac{\mathcal{V}^2}{\mathcal{Y}}\bar{v}\bar{v}_{\bar{y}} + \frac{g\mathcal{H}}{\mathcal{Y}}\Big(\bar{h} + \bar{\phi}\Big)_{\bar{y}} = g\left(-\frac{\mathcal{V}|\mathcal{U}|}{\mathcal{C}\mathcal{H}^p}\frac{\bar{v}\sqrt{\bar{u}^2 + R_u^2\bar{v}^2}}{\bar{c}^2\bar{h}^p}\right). \end{split}$$

We are finally able to write the non-dimensional form of the 2D shallow water system: from the dimensional system

$$\begin{cases} h_t + \nabla \cdot (h\mathbf{u}) = \mathbf{0}, \\ \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + g \nabla h = g \left(-\nabla Z - \frac{\mathbf{u} \|\mathbf{u}\|}{C_h^2 h^p} \right), \end{cases}$$

we get the following non-dimensional form:

$$\begin{cases} \bar{h}_{\bar{t}} + (\bar{h}\bar{u})_{\bar{x}} + (\bar{h}\bar{v})_{\bar{y}} = 0, \\ \bar{u}_{\bar{t}} + \bar{u}\bar{u}_{\bar{x}} + \bar{v}\bar{u}_{\bar{y}} + \frac{g\mathcal{H}}{\mathcal{U}^2} \Big(\bar{h} + \bar{\phi}\Big)_{\bar{x}} = \frac{g\mathcal{X}}{\mathcal{U}^2} \left(-\frac{\mathcal{U}|\mathcal{U}|}{\mathcal{C}\mathcal{H}^p} \frac{\bar{u}\sqrt{\bar{u}^2 + R_u^2 \bar{v}^2}}{\bar{c}^2 \bar{h}^p} - \frac{\mathcal{B}}{\mathcal{X}} \bar{b}_{\bar{x}} \right), \\ \bar{v}_{\bar{t}} + \bar{u}\bar{v}_{\bar{x}} + \bar{v}\bar{v}_{\bar{y}} + \frac{g\mathcal{H}\mathcal{X}}{\mathcal{V}\mathcal{U}\mathcal{Y}} \Big(\bar{h} + \bar{\phi}\Big)_{\bar{y}} = \frac{g\mathcal{X}}{\mathcal{U}^2} \left(-\frac{\mathcal{U}|\mathcal{U}|}{\mathcal{C}\mathcal{H}^p} \frac{\bar{v}\sqrt{\bar{u}^2 + R_u^2 \bar{v}^2}}{\bar{c}^2 \bar{h}^p} \right). \end{cases}$$

We introduce:

•
$$F^2=rac{\mathcal{U}^2}{g\mathcal{H}}$$
 the reference Froude number,

•
$$\delta = \frac{\mathcal{H}}{\chi}$$
 the shallow water parameter,

•
$$I_0 = \frac{\mathcal{B}}{\mathcal{X}}$$
 and $J_0 = \frac{\mathcal{U}|\mathcal{U}|}{\mathcal{CH}^p}$ the topography and friction slopes.

With
$$\frac{g\chi}{\mathcal{U}^2} = \frac{g\mathcal{H}}{\mathcal{U}^2}\frac{\chi}{\mathcal{H}} = \frac{1}{\delta F^2}$$
 and $\frac{g\mathcal{H}\chi}{\mathcal{V}\mathcal{U}\mathcal{Y}} = \frac{g\mathcal{H}}{\mathcal{U}^2}\frac{\chi}{\mathcal{V}}\frac{\chi}{\mathcal{Y}} = \frac{1}{R_u^2 F^2}$, we finally get:

$$\begin{cases} \bar{h}_{\bar{t}} + (\bar{h}\bar{u})_{\bar{x}} + (\bar{h}\bar{v})_{\bar{y}} = 0, \\ \bar{u}_{\bar{t}} + \bar{u}\bar{u}_{\bar{x}} + \bar{v}\bar{u}_{\bar{y}} + \frac{1}{F^2}(\bar{h} + \bar{\phi})_{\bar{x}} = \frac{1}{\delta F^2}\left(-J_0\frac{\bar{u}\sqrt{\bar{u}^2 + R_u^2\bar{v}^2}}{\bar{C}^2\bar{h}^p} - I_0\bar{b}_{\bar{x}}\right), \\ \bar{v}_{\bar{t}} + \bar{u}\bar{v}_{\bar{x}} + \bar{v}\bar{v}_{\bar{y}} + \frac{1}{R_u^2 F^2}(\bar{h} + \bar{\phi})_{\bar{y}} = -\frac{J_0}{\delta F^2}\frac{\bar{v}\sqrt{\bar{u}^2 + R_u^2\bar{v}^2}}{\bar{C}^2\bar{h}^p}.$$

The zeroth-order expansions of Ψ and Π are defined by

$$\Psi_{2D}^{(0)} = |\Lambda| \left(\mathfrak{M}_2 - \frac{\mathfrak{M}_1^2}{\mathfrak{M}_0} \right) \quad \text{and} \quad \Pi_{2D}^{(0)} = |\Lambda| \left(\frac{\mathfrak{M}_0}{\mathfrak{M}_1} \mathfrak{M}_2 - \frac{\mathfrak{M}_1^2}{\mathfrak{M}_0} \right),$$

where \mathcal{M}_n is a shorter notation for

$$\mathcal{M}_n = \int_{y_-}^{y_+} h\Big(C h^{p/2}\Big)^n dy$$
 (note that $\mathcal{M}_0 = S$ and $\mathcal{M}_1 = Q_{2D}^{(0)}$).

To define the hyperbolicity and the linear stability, we write the system under the condensed form

$$W_t + A(W)W_x = \frac{1}{\varepsilon}S(W).$$

- 1. Hyperbolicity: We compute the eigenvalues of the matrix A(W). For the system to be hyperbolic, they have to be real-valued.
- 2. Linear stability: We linearize the system around $W_0 = \operatorname{cst} \operatorname{such}$ that $S(W_0) = 0$, by taking $W = W_0 + \overline{W}e^{i(kx - \omega t)}$, with $|\overline{W}| < |W_0|$: the system is linearly stable if $\operatorname{Im}(\omega) \leq 0$. After linearization, we obtain $(kA(W_0) + i\nabla S(W_0)/\varepsilon - \omega \operatorname{Id})\overline{W} = 0$, and therefore

 ω is an eigenvalue of $M(k) := kA(W_0) + \frac{i}{\varepsilon} \nabla S(W_0)$.

We study the hyperbolicity of the homogeneous model. First, the homogeneous classical (S, Q) shallow water system is:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S}\right)_x + \frac{SH_x}{F^2} = 0. \end{cases}$$

This system is hyperbolic, with wave velocities

We study the hyperbolicity of the homogeneous model. The zeroth-order homogeneous model (taking $K_1 = K_2 = 0$) reads:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x + \frac{SH_x}{F^2} = 0, \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x + \frac{QH_x}{F^2} = 0, \\ \left(\frac{1}{2}(\Pi - 3\Psi)\right)_t = 0. \end{cases}$$

As mentioned before, this system is hyperbolic, with wave velocities

$$\underbrace{\underbrace{0}_{\substack{\text{stationary wave}}}, \underbrace{U}_{\substack{\text{wave}}}, \underbrace{U}_{\substack{\text{material wave}}} \pm \underbrace{\sqrt{\frac{S}{F^2 L(H)} + \frac{\Pi}{S}}}_{\substack{\text{acoustic velocity}}}.$$

We study the hyperbolicity of the homogeneous model. Finally, the first-order homogeneous model is:

$$\begin{cases} S_t + Q_x = 0, \\ Q_t + \left(\frac{Q^2}{S} + \Psi\right)_x + (1 + K_1)\frac{SH_x}{F^2} = 0, \\ \left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Psi\right)_t + \left(\frac{Q}{S}\left(\frac{1}{2}\frac{Q^2}{S} + \frac{1}{2}\Pi\right)\right)_x + \frac{QH_x}{F^2} = 0, \\ \left(\frac{1}{2}(\Pi - 3\Psi)\right)_t = 0. \end{cases}$$

This system is hyperbolic for small enough F, with wave velocities

$$0, \ U\frac{1+3K_1}{1+K_1} + \mathcal{O}(F^2), \ \frac{U}{1+K_1} \pm \sqrt{\frac{S}{L(H)}} \left(\frac{\sqrt{1+K_1}}{F} + \frac{F}{2} \frac{\Pi + K_1(2\Pi + K_1(\Pi - 3SU^2))}{S(1+K_1)^{5/2}}\right) + \mathcal{O}(F^2).$$

Thus, a necessary condition for the hyperbolicity is $1 + K_1 > 0$.

Let us first consider the special case k = 0.

For the classical shallow water equations in (S, Q) variables, the matrix M(0), whose eigenvalues we seek, is:

$$M(0) = i \frac{\mathcal{I}}{\varepsilon} \begin{pmatrix} 0 & 0\\ \frac{\operatorname{sgn}(U_0)}{S_0} & \frac{-2}{U_0} \end{pmatrix}.$$

By inspection, the eigenvalues are

0 and
$$-2i\frac{1}{\varepsilon}\frac{\Im}{U_0} < 0.$$

The case k = 0 is thus treated for the classical shallow water system.

Now, for the model, the eigenvalues for k = 0 are

$$\underbrace{\omega_1 = 0, \quad \omega_2 = -2i\frac{1}{\varepsilon}\frac{\mathcal{I}}{U_0}}_{\text{shallow water eigenvalues}}, \quad \omega_3 = 2i\frac{1}{\varepsilon}K_1\frac{S_0U_0}{\Psi_0}, \quad \omega_4 = -2i\frac{1}{\varepsilon}K_2\frac{S_0U_0}{\Pi_0}.$$

We elect to define K_1 and K_2 by taking $\omega_3 = \omega_2$ and $\omega_4 = \omega_2$, to get:

$$K_1 = -\frac{S\Psi^{(0)}}{(Q^{(0)})^2}$$
 and $K_2 = \frac{S\Pi^{(0)}}{(Q^{(0)})^2}$.

Then, for $k \neq 0$, tedious computations show that, for small enough ε , the following linear stability condition holds:

$$U_0^2 < rac{4S_0}{L(H)} + rac{\Pi}{S}$$
, as opposed to $U_0^2 < rac{4S_0}{L(H)}$ for classical SW.

Backwater curves: U-shaped channel versus trapezoidal river

Backwater curves: U-shaped channel versus trapezoidal river

Backwater curves: U-shaped channel versus trapezoidal river

Backwater curves: |_-shaped channel versus trapezoidal river

