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0 General context: multi-scale models and principle of AP schemes



General context 1/28

Multiscale model M;, depending on a parameter € : |
In the (space-time) domain, € can ] :
@ be of same order as the reference scale; : ‘

@ be small compared to the reference scale;

@ take intermediate values.
When ¢ is small: My = Iin% Mg asympt. model (
e—

Difficulties:

@ Classical explicit schemes for M: they are stable and consistent if
the mesh resolves all the scales of . = very costly when € — 0

@ Schemes for My — the mesh is independent of €

But: = My is not valid everywhere, it needs € < 1
w the interface may be moving: how to locate it?



Principle of AP schemes 2128

A possible solution: Asymptotic Preserving (AP) schemes

@ Use the multi-scale model M, even for small €.
@ Discretize Mg with a scheme preserving the limit € — 0.

w The mesh is independent of €. Asymptotic stability.

w Recovery of an approximate solution of My when € — 0:
Asymptotic consistency.

w Asymptotically stable and consistent scheme
— Asymptotic preserving scheme (AP).
([din, "99] kinetic — hydro)
@ The AP scheme may be used only to reconnect M; and M.
Mo

M, class. scheme

class. scheme

Me
AP scheme




Outline

e An order 1 AP scheme for the Euler system in the low Mach limit



The multi-scale model and its asymptotic limit  ses

w |sentropic Euler system in scaled variables: x € Q CRY, t >0

9tp+V-(pu)=0 (1)e
(Me)

wi =p7
at(PU)+V~(pu®u)+le(p):0 (2)e (with p(p) = )

Parameter: ¢ = M? = [4|2/(yp(P)/P). M = Mach number
Boundary and initial conditions:

0) = D
Jn—00ndQ and p(x,0) po+890(f) |
u(x,0) = up(x) +€lp(x), withV-up=0
The formal low Mach number limit € — 0:
(2)e = Vp(p) =0 = p(x,t) =p(t)

(e = 2P/ +p(1) u-n=0 = p(t) =p(0) = po —> V-u=0



The multi-scale model and its asymptotic limit  42s
w |sentropic Euler system in scaled variables: x € Q CRY, t >0

op+V-(pu)=0 (1)e .

(Me) {at(p u)+V-(pueu)+ l Vp(p)=0  (2)e it p(p) =P

w The asymptotic model: Rigorous limit [Klainerman & Majda, '81]:

p= cst = Po,
(Mo) { poV-u=0, (1)o
Podtu+poV-(uRuU)+Vry =0, (2)o

where T4, the first-order correction of the pressure, is given by:
.1
Ty = lim — (p(p) - p(Do)) :
€0 €

Explicit eq. for iz 9;(1)o—V-(2)0 = —Amy =poV2:(u®u)



Barrier to the use of a fully explicit scheme 5128

w |sentropic Euler system in scaled variables: x € Q CRY, t >0

dIp+V-(pu)=0 (1)e

(M) (with p(p) = p7)

Hpu)+V-(pumu)+1 Vp(p) =0 (2)e

The pressure wave equation from M;:
1
9(1)e=V-(2)e = up— EAP(P) =VZ:(pudu) (3

From a numerical point of view:
@ Explicit treatment of (3); = conditional stability At < /e Ax
@ Implicit treatment of (3)¢ = uniform stability with respect to €

~~ The discretization of (3), by an AP scheme has to be implicit.
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Time semi-discretization: [Degond, Deluzet, Sangam & Vignal, ’09],
[Degond & Tang, ’11], [Chalons, Girardin & Kokh, '15]

If p” and u” are known at time t":

n+1 __ ~n
%_FV.(pU)nJH:O’ (1) )
n+1 _ n 1
(pu) . (pu) +V-(pu )+ Vp(p" ) =0.  (2) wo

ee—0 gves Vp(p™')=0 = consistency at the limit
@ implicit treatment of the pressure wave eq. = uniform stability in €

n+1 ) n+ n—1 1
: Aptz : — S Ap(p™T) = V2 (pUe V)"

V- (2) inserted into (1): gives an uncoupled formulation
pn—i—1 _ pn

A7 —FV-(pu)”—%LAp(p”J”)—AZ‘V2 (puu)"=0
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The scheme proposed in [Dimarco, Loubére & Vignal, ’17]:
w Framework of IMEX (IMplicit-EXplicit) schemes:

P , 0 o PU )\ _
i <pU) Y <pU®U) o (@/d) -
~— S~ —
w Fe(W) Fi(w)

m The CFL condition comes from the explicit flux Fe(W): in 1D, we have

AP < A—: = A—);’ <reca|| Agclass. < - Axy/e >
2] Tl

where A" are the eigenvalues of the explicit Jacobian matrix DFe(W").

w A linear stability analysis yields: if the implicit part is
e centered —> L2 stability;

e upwind = TVD and L™ stability.
SSP Strong Stability Preserving, [Gottlieb, Shu & Tadmor, '01]



Importance of the upwind implicit viscosity 8128

To highlight the relevance of upwinding the implicit viscosity, we display
the density p in the vicinity of a shock wave and a rarefaction wave
(€ =10.99, 45 cells in the left panel, 150 cells in the right panel).

©
>
2%
=iy
P8

x : centered implicit discretization = L2 stability and less diffusive

m : upwind implicit discretization = L* stability but more diffusive



AP but diffusive results, 1D test case

€ =0.99, 300 cells

Class: 273 loops
CPU time 0.07
AP: 510 loops
CPU time 1.46

Time steps

st --- 1st-order AP

6x107

—Class. scheme

—Class. scheme
— 1st-order AP

001 002 003 004 005 006

Time

9/28

€ =10"%, 300 cells

Class: 4036 loops
CPU time 0.82
AP: 57 loops
CPU time 0.14

Time steps

—Class. scheme

---1st-order AP

2
B
c
—Class. scheme 8 M
---1st-order AP
5
o 0.01 0.02 0.03 0.04 0.05 0.06 0.2 04 06 08 1

Time
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AP but diffusive results, 1D test case

* cl h ! —Class. scheme
—Class. scheme ---AP scheme
---AP scheme
—_ >
e=10"* 2 2
_‘g c
$ 10 g 1
i £
Underlying of £
the viscosity [
10 0.9999
0 0.01 0.02 0.03 0.04 0.05 0.06 [] 0.2 0.4 0.6 0.8 1
Time X

It is necessary to use high order schemes

But they must respect the AP properties
we also wish to retain the L™ stability



0 General context: multi-scale models and principle of AP schemes
e An order 1 AP scheme for the Euler system in the low Mach limit
e Second-order schemes in time

e Second-order schemes in space and application to Euler

e Work in progress and perspectives
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Bibliography for stiff source terms or ODE problems: Ascher,
Boscarino, Cafflish, Dimarco, Filbet, Gottlieb, Happenhofer, Higueras, Jin,
Koch, Kupka, LeFloch, Pareschi, Russo, Ruuth, Shu, Spiteri, Tadmor...

IMEX division: oW+ V- Fo(W)+ V- Fi(W)=0.
General principle:  Step n: W" is known

@ Quadrature formula introducing intermediate values:
tn+1 tn+1

WEY = Wit — [ V- Fa(W(t)) dt —/ V. F(W(0)) dt

n n
\t > \t >

~~ ~~

S S
Wt =w"  —AtY BV-Fo(W™) —At) V- F(W™)
=1 =1

] t o~ 4 t
t" A AU G

—_
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e Intermediate values at times ™/ = t"+ ¢; At:

i

W(t™) = w(t") + O W(t) at

@ Quadrature formula for intermediate values: forj=1,...,s,

il thi

w(t) = w(t") — ., V- Fe(W(t)at  — . V- Fi(W(t))at

Wn’j =wn —CjAfZ éj7kV : Fe(Wn’k) —CjAtZ ajjkV : F,'(Wn’k)
k<j k<j

4—%%»—)» t  (explicit part)
bt —<: th
tn £ 4—&—0—»—]—» t (implicit part)

tn 7./
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The arbitrarily high-order IMEX time semi-discretization reads:

s ) S .
W = WP ALY By V- Fo(W) — AtY. b V- F(W)

J=1

J=1

Vie[1,s[, W =W"—AtY 3, V-Fo(W™)— ALY g, V- F(W™F)

k<j k<j
Butcher tableaux (Runge-Kutta time discretizations):
Explicit part Implicit part
0 0 0 0 Cq ai A 0 cee 0
Co :’:‘12_1 0 0 Co | a1 a2 . 0
Cs | 8s1 ... dss 1 O Cs | ds1 ... dss—1 dsgs
b1 bs by ... ... bs

Conditions for 2nd order: Y bj¢; =) b;g =Y bg=Y bg=1/2
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ARS(2,2,2) discretization [Ascher, Ruuth & Spiteri, *97]:
“only one” intermediate step

ol o 0 o0 0jlo 0 0
Bl B 0 o0 Blo B o g1
1|B—1 2—-B 0 110 1-B B N
B—1 2—-B 0 0o 1—-B P
Wn,1:Wn
= W= W"— AtBV-Fo(W") — AtV - Fi(W)
W™ = W™ = W — AHB— 1)V Fo(W™) — At(2 — B)V - Fo(W*)

— At(1 —B)V-F(W*) — AtBV - F(w"™)
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Density p(x) for the ARS time discretization: (1st order in space)

p(x), e=10"" p(x), e=10"2
- T ]1.01

= 1.005

| | | 1" 1
0 02 04 06 08 1
1.0001
1.0005 1.00005

1L [ 1

| | | | | | |
0O 02 04 06 08 1 0 02 04 006 08 1
p(x), e=10"3 p(x), e=10"*

---- exact —— 1storder — 2nd order
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Consider the scalar hyperbolic equation d;w + dxf(w) = 0.

@ Oscillations measured by the Total Variation and the L™ norm:

VW)=Y wfy il and [l = max|u]|
J
@ TVD (Total Variation Diminishing) property and L™ stability:

V(W™ < TV(w") o
<— no oscillations

)
W™ oo < (| W"|es
First idea: Find an AP order 2 scheme which satisfies these properties.
Impossible

Theorem (Gottlieb, Shu & Tadmor, ’01): There are no implicit Runge-Kutta
schemes of order higher than one which preserves the TVD property.
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Another idea: use a limited scheme.
WI’I+1 — e Wn+1,02 + (1 o 9) Wn+1,O1
o W19 = order j AP approximation
@ 0 € [0,1] largest value such that W”Jr1 does not oscillate

Toy scalar equation: w4 CoOxW + —= 8 w=0

\/_

@ Order 1 AP time semi-discretization:

1,01
WO = W e 0w —

Ci n41,01

\/E X
@ Order 2 AP scheme: ARS with the parameter B =1—1//2.

Theorem (Dimarco, Loubére, M.-D., Vignal):
Under the explicit CFL condition At < Ax/ce,

TV(w™ ) < TV(W"),
9:75 ~041 — r(7+1 )< n( )
1-P W™ oo < [ W[
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Limited AP scheme:
Wn—|—17lim —9 Wn+1,02 + (1 . 9) Wn+1,O1 with 6= i

1-B
Problem: More accurate than order 1 but not order 2
Solution: MOOD procedure: see [Clain, Diot & Loubére, '11]

On the toy equation: w"™! MOOD AP scheme, CFL At < Ax/ce

@ Compute the order 2 approximation w102,

@ Detect if the max. principle is satisfied: HW”"H 2|l < [|W|oo ?
@ If not, compute the limited AP approximation w" /™,

0.01

—0.01

| | |
0 02 04 06 08 1 0 02 0.4 06 08 1

---- exact — 1st order — 2nd order — TVD-AP — AP-MOOQOD
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0 Second-order schemes in space and application to Euler



Error curves for the toy scalar equation 19728

@ Order 2 in space: MUSCL (with the MC limiter) with explicit slopes.
@ Error w.r.t. number of cells on a smooth solution for the toy model:

error (%) error (%)

0
10 ‘N N
10_4 ‘\‘\‘\‘\‘ 10_2

e=1 04 g=10"2 S
400 800 1600 3200 6400 400 800 1600 3200 6400

106

error (%)

—— first-order 3
—=— second-order 10
—o— TVD-AP
—— AP-MOQOD

e=10" 4 N
400 800 1600 3200 6400
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Recall the first-order IMEX scheme for the Euler system:

pn+1,01 _pn
Y (pu)™ O —o, (1)
n+1,01 _ n 1

(pU) A (pU) +V.(pu®u)n+gvp(pn+1,01):0. (2)

We apply the same convex combination procedure:

B

wrthim — g Wt 02 4 (1 ) W01 with § = B

~+ We use the value of 8 given by the study of the toy scalar equation.

~~ But how can we detect oscillations for the MOOD procedure?



Euler equations: MOQOD procedure 21/28

The previous detector (L™ criterion on the solution) is irrelevant for the
Euler equations, since p and u do not satisfy a maximum principle.

~» we need another detection criterion

2 10

19p(p). .
y—1\ € dp
Riemann problem, at least one of them satisfies a maximum principle.
[Smoller & Johnson, '69]

We pick the Riemann invariants & = u ¥

On the Euler equations: W' MOOD AP scheme, CFL At < Ax/A

@ Compute the order 2 approximation W02,

@ Detect if both Riemann invariants break the maximum principle at
the same time.

@ If so, compute the limited AP approximation W"*./m.
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Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

Density p Momentum q = pu
2 ~ ] T T T T T 1.8
1.8 I SR e
1.6 = L {1.4
e L — - P12
1 [ | | | \:l ----- \---' | | \L--*1
0O 02 04 06 08 1 0 02 04 06 08 1
1.0001 - T T T F T T T T 71.009
: A b 11.006
1.00005 [ *==-mmmmmmmmmmas . ! :
; - 1 {1.003
1 [ | | | | : : | | | | :. 1
0 02 04 06 08 1 0 02 04 06 08 1

---- exact
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Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

Density p Momentum q = pu

— — — —
“ NP ON

1.0001 E 1.009
""""""" 1.006
1.003

1.00005

| | | | ! | | |
0 020406 08 1 0 02 04 06 0.8 1
---- exact — 1st order
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Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

Density p Momentum q = pu

— — — —
“ NP ON
I

1.0001 T T T T

11.006
1.00005 | -\-7 ST
! - 11.003

| | | | |-
0O 02 04 06 08 1 0 02 04 06 0.8 1
---- exact — 1storder — 2nd order

11.009




Euler equations: 1D Numerical results

Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

Density p

Momentum q = pu

— — — —
“ NP ON

1.0001

1.00005

1L

11.009
+11.006
1.003

0

L L L
0.2 04 06 O

.8

1

0

0.2 0.

L L
4 0.6 0.

8_

1
1

22/28

---- exact — 1storder — 2nd order —— 2nd order space lim.
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Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

— — — —
“ NP ON

1.0001

1.00005

1

Density p Momentum q = pu
: | | | \I | | | | |
0O 0.2 04 06 0.8 1 0.2 0.4 0.6 0.8
1! T T T T T T T 71009
o IR N\ |1.006
3 . L1 1.003
L I I I | ! : I I | | :_ 1
0O 02 04 06 08 1 0 02 04 06 0.8 1

---- exact — 1storder — 2nd order — TVD-AP

22/28



Euler equations: 1D Numerical results

Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

— — — —
“ NP ON

1.0001

1.00005

1

1.009
1.006
1.003

Density p Momentum q = pu
: \ | | |
0 0.2 04 0.6 0.8
T T T T \ \ \ \ =
L | | | |t ! | | | L 1
0 020406 08 1 0 02 04 06 0.8 1

---- exact — 1st order — 2nd order — AP-MOOD

22/28
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Error curves in L norm, smooth 1D solution

error (%) error (%)
10-2 is 10-4
1 -5 S
10° | °
‘ | | | N 10| e=10"* |
15 30 60 120 240 100 200 400 800 1600

error (%)

—=— second-order .
—e— TVD-AP 107 "

—— AP-MOOD 108 |

e—104 |
1500 3000 6000 1200024000
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Error curves in L™ norm, smooth 2D traveling vortex (Cartesian mesh)

error (%) error (%)

10—3 is S 10-5 1

10_4 8 =1 ; ; — N 10_6 8 = 1072} ; — N
625 2500 10000 40000 625 2500 10000 40000

error (%)

—e— first-order 105 | %
—=— second-order

—e— TVD-AP jos |

—— AP-MOOD

107 le=10"* | N
625 2500 10000 40000
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Euler equations: 2D Numerical results { ;5% 25/28

1st-order AP

6

4

2

00 2 4

6

4

2

00 2 4
TVD-AP

2nd-order AP reference solution
obtained solving

the vorticity formulation
0w+ u-Vw =0,
with ® = dyus —dy U

A~ O

reference

S N OB~ O

oSO N O~ OO O DN

0 2 4 6
o 2 4 s HEW TN

AP-MOOD —4-20 2 4
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Euler equations: 2D Numerical results { ;5% 25/28

1st-order AP 2nd-order AP reference solution
obtained solving

the vorticity formulation
00+ u-Vo =0,
with ® = dyus —dy U

reference

o NN~ O O N~ OO
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e Second-order schemes in time

e Second-order schemes in space and application to Euler
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Work in progress and perspectives: the system 2
Extension to the full Euler system:
dip+V-(pu) =0,
at(PU)+V-(PU®U)+%VP=0, with  p=(y— )(E SPH2H2)
OE+V-(u(E+p))=0,

In 1D, to get an AP scheme ensuring that both the explicit and the
implicit parts are hyperbolic, we take:

Wn+1 —wn
At

The scheme no longer takes the conservative IMEX form

+Ag7n+1ax Wn+A?,n+1aX Wn—|—1 — 0.

Wn+1 —wn



Work in progress and perspectives: IMEX 27/28

@ Study a local value of 6, depending on the presence of oscilla-
tions in a given cell: how to reconcile the locality of 6 with the non-
locality of the implicitation?

| | | | | | . | | | | | |
I I I I I I I I I I I 1

. : cell with oscillation =— 0 < 1

D : cell without oscillation =— 6 =10r06 < 1?

@ Compute optimal values of 0 for other IMEX discretizations:
o SSPRK explicit part?
e custom-made second-order IMEX discretization to ensure 6
as close to 1 as possible?
e higher-order discretizations?
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Domain decomposition with respect to €:

Compressible Euler (M) ﬁ Incompressible Euler (Mp)

e=0(1) interzrgr?:iate <1

exp. scheme for Mg AP scheme for Mg discretization of My

@ How to define the boundaries of the intermediate zones?
@ How to handle interfaces in 1D with first-order schemes?
@ How to extend to higher dimensions and higher-order schemes?



Thanks for your attention!



Euler equations: 2D Numerical results

To obtain a 2D reference incompressible solution, set ® = dxv —d,u and
consider the vorticity formulation of the incompressible Euler equations:

810)+ U-Vo=0,

U = (0,W,—0oxV),

V.U =0 = dstream function WV such that
—AV = .

To get the time evolution of the vorticity from ®":

@ solve —AV" = " for W" (with periodic BC and assuming that the
average of W vanishes);

@ get U" from U™ =!(9, V", —9, V");

@ solve ;0 + U"- V" =0 to get "',

We get a reference incompressible vorticity ®(x,t), to be compared
to the vorticity of the solution given by the compressible scheme with
small € (we take € = M? = 107°).
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