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Introduction

I Model under consideration. We study the compressible isentropic
Euler system:

(Mε)


∂tρ +∇ · (ρU) = 0,

∂t(ρU) +∇ · (ρU ⊗ U) + 1
ε
∇p(ρ) = 0.

I ρ > 0 is the density of the fluid
I U ∈ R is the velocity of the fluid
I p(ρ) = ργ is the pressure
I γ ≥ 1 is the ratio of specific heats
I ε is the squared Mach number
This model introduces fast acoustic waves, governed by:

∂ttρ−
1
ε

∆p(ρ) = ∇2 : (ρU ⊗ U).

I Incompressible limit. With well-prepared initial and boundary
conditions, the compressible Euler system tends to the following
incompressible limit when ε tends to 0:

(M0)


ρ = ρ0,
∇ · U = 0,
ρ0 ∂tU + ρ0∇ · (U ⊗ U) +∇ π1 = 0,

where π1 is the order one correction of the pressure.
The time singularity of this limit is due to the propagation of the
acoustic waves at a velocity proportional to 1/√ε.

I Numerical method. Following [3], in [4], Dimarco, Loubère and
Vignal propose a numerical scheme to preserve this asymptotic behavior.
It is written below in semi-discrete form:

ρn+1 − ρn

∆t +∇ · (ρU)n+1 = 0,
(ρU)n+1 − (ρU)n

∆t +∇ · (ρU ⊗ U)n + 1
ε
∇(p(ρ))n+1 = 0.

Thanks to the semi-implicitation, this scheme is:
I asymptotic preserving (AP), i.e. it discretizes the incompressible

Euler system when ε tends to 0;
I uniformly L∞-stable providing the space discretization is well-chosen.

I AP property. This scheme falls within the general framework of the
AP schemes.

model (Mε) model (M0)

scheme for (Mε) scheme for (M0)
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I Objective. Propose an asymptotically accurate extension of this
numerical scheme. The following properties must be satisfied:
I higher accuracy for all values of ε (including the asymptotic preserving

property when ε→ 0);
I ability to control the oscillations induced by the use of high accuracy

space/time numerical schemes.

1. A model problem

We consider the following advection equation as a model problem:

∂tu + cs ∂xu + cf√
ε
∂xu = 0,

where the slow and fast velocities cs and cf /
√
ε are assumed to be

non-negative and of order one.
Similarly to the Euler system, the characteristic velocity of the information
is proportional to 1/√ε. As a consequence, we consider the following
semi-discrete scheme, mimicking the structure of the one proposed in [4]:

un+1 − un

∆t + cs (∂xu)n + cf√
ε

(∂xu)n+1 = 0.

Since cs ≥ 0 and cf ≥ 0, we use an upwind discretization in space:

∂xu ' uj − uj−1
∆x .

As a consequence, the fully discrete scheme reads:

un+1
j − un

j
∆t + cs

un
j − un

j−1
∆x + cf√

ε

un+1
j − un+1

j−1
∆x = 0.

Goal: Propose an asymptotically accurate extension of this scheme.

1.1. A more accurate time discretization
The above scheme uses an IMEX (IMplicit-EXplicit) time discretization
(see [6] for instance). To improve its time accuracy, we choose the
two-step second-order in time ARS(2,2,2) discretization (see [1]):

u?j = un
j − βcs

∆t
∆x
(

un
j − un

j−1
)
− β cf√

ε

∆t
∆x
(

u?j − u?j−1
)
,

un+1
j = un

j − (β − 1)cs
∆t
∆x
(

un
j − un

j−1
)
− (1− β) cf√

ε

∆t
∆x
(

u?j − u?j−1
)

− (2− β)cs
∆t
∆x
(

u?j − u?j−1
)
− β cf√

ε

∆t
∆x
(

un+1
j − un+1

j−1
)
.

1.2. A time limiting procedure
This discretization preserves the AP property of the scheme. However, it
is oscillatory, as displayed below with the advection of a step function.
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The implicit part of this IMEX scheme is nothing but an implicit Runge-
Kutta discretization. Unfortunately, the following negative result holds.
Theorem ([5]): There are no implicit Runge-Kutta schemes of order

higher than one which preserves the TVD property.
To obtain a scheme more accurate than the first-order one and still
TVD, we introduce a limiting procedure. It consists in a convex
combination, of parameter θ, between the second-order discretization
and the first-order discretization, as follows:

un+1
j = un

j − θ(β − 1)cs
∆t
∆x
(

un
j − un

j−1
)
− θ(1− β) cf√

ε

∆t
∆x
(

u?j − u?j−1
)

− θ(2− β)cs
∆t
∆x
(

u?j − u?j−1
)
− θβ cf√

ε

∆t
∆x
(

un+1
j − un+1

j−1
)

− (1− θ)cs
∆t
∆x
(

un
j − un

j−1
)
− (1− θ) cf√

ε

∆t
∆x
(

un+1
j − un+1

j−1
)
.

Theorem: With θ = β/(1− β), the above scheme is TVD.
Then, to further improve the scheme, we propose a MOOD-like technique
(see [2]). It consists in using the above TVD-AP scheme only if oscillations
are detected, to use the second-order scheme whenever possible. The
following procedure is thus applied at each time step:

1. compute a candidate solution un+1 with the original ARS(2,2,2)
discretization, i.e. with θ = 1;

2. detect if this candidate solution satisfies the following global
maximum principle: ‖un+1‖∞ ≤ ‖un‖∞;

3. if this maximum principle is not satisfied, then take θ = β/(1− β)
and compute a new solution un+1 with the above TVD-AP scheme.
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The approximation provided by the TVD-AP scheme (blue curve) is
in-bounds and more accurate than the first-order discretization.
The MOOD procedure (red curve) further improves this result.

2. Application to the Euler system

The strategy developed for the model problem is now applied to the Euler
system. For the second-order space-time accuracy, we use:
I the ARS(2,2,2) time discretization;
I a linear MUSCL reconstruction.

To control the oscillations, we introduce:
I the Euler analogue of the TVD-AP scheme;
I the MC limiter on the MUSCL reconstruction slopes.

Remark: The Euler variables no longer satisfy a maximum principle.
Indeed, for most initial data, ‖ρ(t, ·)‖∞ ≤ ‖ρ(0, ·)‖∞ and
‖(ρU)(t, ·)‖∞ ≤ ‖(ρU)(0, ·)‖∞ are false.

As a consequence, we cannot apply the same detection criterion as in the
transport case. Instead, we turn to the Riemann invariants, defined by

u ∓ 2
γ − 1

√
p′(ρ)
ε

.

Even for non-smooth solutions, in a Riemann problem, at least one
Riemann invariant satisfies a maximum principle (see J. A. Smoller
and J. L. Johnson, 1969).

Error curves in 1D
We display density error curves in L∞ norm for a smooth 1D solution.
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first-order second-order TVD-AP AP-MOOD
As expected, the TVD-AP scheme is more accurate than the first-order
one, and the MOOD procedure further improves its accuracy.

Riemann problem
We consider a Riemann problem with the following initial data:{

ρL = 1 + ε,

ρR = 1,

{
qL = hLuL = 1,
qR = hRuR = 1,

with ε = 1 (top) and ε = 10−4 (bottom). We get a left rarefaction wave
and a right shock wave, with characteristic velocities ∼ 1/√ε.
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For both values of ε, the TVD-AP scheme and the MOOD procedure yield
a better approximation than both other schemes: they are less diffusive
than the first-order one and less oscillatory than the second-order one.

Degond-Tang numerical experiment from [3], ε = 1
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Comparison with an incompressible solution
As a last experiment, in 2D, we compare an incompressible reference
solution to the solutions of our compressible schemes; we take ε = 10−5
and 200× 200 cells. We compare the vorticity ω = ∂xv − ∂yu.
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incompressible Euler,
vorticity formulation:
∂tω + U · ∇ω = 0,

where ω = ∂xv −∂yu

Ongoing work and perspectives
I validate and verify the schemes on the full Euler system
I develop a relevant criterion to determine a local θ
I change time discretization to maximize the optimal θ
I domain decomposition with respect to ε
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