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Introduction
I model under consideration: We study the shallow-water
equations with the topography and Manning friction source terms:





∂th + ∂xq = 0,

∂tq + ∂x

(
q2
h + 1

2gh2
)

= −gh∂xZ − kq|q|h−η.

I h ≥ 0 is the water height
I q is the horizontal water discharge
I g > 0 is the gravity constant
I Z is the smooth topography
I k is the friction coefficient and η = 7�3
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I steady state solutions: They are time-independent solutions,
governed by the shallow-water model with vanishing time derivatives:




q = cst = q0

∂x

(q20
h + 1

2gh2
)

= −gh∂xZ − kq0|q0|h−η.

I objectives: Propose a numerical scheme that:
I is consistent with the shallow-water equations;
I preserves all the steady states (well-balance property);
I preserves the non-negativity of the height (robustness property);
I provides a high order of accuracy.
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1. A generic well-balanced scheme

Structure of the Godunov-type scheme
Consider the shallow-water equations with a generic source term:

∂tW + ∂xF (W ) =
(

0
S(W )

)
.

We use an approximate Riemann solver W̃ based on the HLL solver.
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HLL solver suggested solver

The suggested solver is used to derive a Godunov-type scheme:
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Goal: determine the intermediate states W ∗L = t(h∗L, q
∗) and

W ∗R = t(h∗R , q
∗) to get a consistent, well-balanced and robust scheme.

Consistency
We impose the following Harten-Lax integral consistency relation:

1
∆x

∫ ∆x/2

−∆x/2
W̃
( x

∆t ; WL,WR
)

dx = 1
∆x

∫ ∆x/2

−∆x/2
WR

( x
∆t ; WL,WR

)
dx .

We assume known the following source term average:

S ' 1
∆t

1
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∫ ∆t

0

∫ ∆x/2
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S
(

WR
(x
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dx dt,

to finally get several relations governing the intermediate states:

λRh∗R − λLh∗L = (λR − λL) hHLL

q∗ = qHLL + S∆x
λR − λL

.

Well-balance and non-negativity
We seek the well-balance property:
W ∗L = WL and W ∗R = WR as soon as WL and WR satisfy the relation

q20
[
1
h

]
+ g

2

[
h2
]

= S∆x .

We thus impose the following relation on the intermediate heights:
(
−(q∗)2
hLhR

+ g
2(hL + hR)

)
(
h∗R − h∗L

)
= α

(
h∗R − h∗L

)
= S∆x ,

and we obtain their expressions, as follows:




h∗L = hHLL −
λRS∆x

α(λR − λL),

h∗R = hHLL −
λLS∆x

α(λR − λL).

Note that we do not have the non-negativity: instead, we set




h∗L = min
((

hHLL −
λRS ∆x

α(λR − λL)

)

+
,

(
1− λR

λL

)
hHLL

)
,

h∗R = min
((

hHLL −
λLS ∆x

α(λR − λL)

)

+
,

(
1− λL

λR

)
hHLL

)
.

2. Application to specific source terms

The topography source term S t = −gh∂xZ
The topography steady states are governed by the following relations:

∂x

(q20
h + 1

2gh2
)

= St and ∂x

( q20
2h2

+ g(h + Z )
)

= 0.

At the discrete level, they become:
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2

[
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= St∆x and
q20
2

[
1
h2

]
+ g [h + Z ] = 0.

second equation  expression of q20
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The friction source term S f = −kq|q|h−η

The friction steady states are governed by the following relations:

∂x

(q20
h + gh2

2

)
= −kq0|q0|

hη and ∂x

(
q20

hη−1
η − 1−g hη+2

η + 2

)
= kq0|q0|.

At the discrete level, we set S f = −kq|q|h−η, where:
I q is the harmonic mean of qL and qR ;
I with µ0 = sgn(q0), the average h−η is governed by:
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Semi-implicitation of the scheme
The friction source term becomes stiff when the height is close to zero:
we use a semi-implicit scheme (splitting method).
With both source terms, we exhibit the numerical flux:

W n+1
i = W n

i −
∆t
∆x

(
Fn

i+1
2
−Fn

i−1
2

)
+ ∆t

((
0(
St)n

i

)
+
(

0(
S f )n

i

))
.

first step: Solve ∂tW + ∂xF (W ) = t(0, St(W )) to get W n+1
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second step: Solve ∂tW = t(0, S f (W )), to get hn+1
i = hn+1

2
i and:
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Note that qn+1
i 6= qn

i for a steady state: we replace (hn+1
i )η with a

well-chosen average (hη)n+1
i to ensure the well-balance.

3. High-order 2D extension

High-order strategy for the two-dimensional model
The goal is now to approximate the 2D shallow-water equations:





∂th + ∇ · q = 0,

∂tq + ∇ ·
(

q ⊗ q
h + 1

2gh2I2
)

= −gh∇Z − kq‖q‖
hη .

To that end, we use the following high-order scheme:
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which takes advantage of the following polynomial reconstruction
(reconstruction of degree d =⇒ scheme of order d + 1):

Ŵ n
i (x) = W n

i +
d∑

|k|=1
αk

i

[
(x − xi)k − 1

|ci |

∫

ci
(x − xi)kdx

]
.

SSPRK methods are used as a high-order time integrator.

Recovering the well-balance and the robustness
Because of the reconstruction, the well-balance and the robustness
properties are lost: to recover them, we suggest a MOOD method.

well-balance: We introduce a convex combination between the
first-order scheme and the high-order scheme:

W n+1
i = θn

i (WHO)n+1
i + (1− θn

i )(WWB)n+1
i .

I θn
i = 0 close to a steady solution  use the well-balanced scheme

I θn
i = 1 far from a steady solution  use the high-order scheme

robustness: We use a classical MOOD method to lower the degree of
the polynomial reconstruction until the robustness is recovered.
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