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Abstract We define and study the concept of commutator for two projectors, for a
projector and a unitary operator, and for two unitary operators. Then we state several
properties of these commutators. We recall that projectors and unitary operators
are linked with the spectral elements of stationary processes. We establish relations
between these commutators and some other tools related to the proximity between
processes.

1 Introduction

This work relates to the field of the operatorial domain, dealing with projectors and
unitary operators. These operators take a large place in the statistics of stationary
processes. For example, the shift operator is a unitary operator, and a unitary op-
erator is a linear combination of projectors. We define and study the concepts of
commutator for two projectors, for a projector and a unitary operator, and for two
unitary operators. These concepts are developped in the hilbertian frame, and when
the C−Hilbert space H is of the type L2(Ω ,A ,P), our results apply to stationary
processes. The commutativity of two stationary processes is a generalization of the
notion of stationary correlation. When there is not a complete commutativity, we
may extend the notion of commutativity, asking how to retrieve the part of each pro-
cess which commute. The commutator proposes an answer to this question. We re-
call that the product of convolution of spectral measures, such as defined in Boudou
and Romain [6], needs an hypothesis of commutativity. Our work uses tools defined
in Boudou and Viguier-Pla [9], such as the r−convergence and the distance between
projectors.
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Obviously, the commutator of two projectors is linked with the canonical anal-
ysis of the spaces generated by these projectors. When these spaces are complex,
the practical interest of it is the domain of stationary processes, as seen above. Sev-
eral authors work on spectral elements of processes, as, for example, in the large
deviation field (Gamboa and Rouault [11]), the autoregressive processes (Bosq [2]),
and for reduction of dimension (Brillinger [3], Boudou [4]). The joint study of two
processes may lead to the comparison of these processes, by the way of the com-
mutators. When these spaces are real, applications may be forseen by the search
of common and specific subspaces of two spaces. Such problematics have been
largely developped with other tools, as, for example, in the works of Flury and
Gautschi [10], Benko and Kneip [1], Viguier-Pla [12].

2 Prerequisites, recalls and notation

In this text, H is a C−Hilbert space. The set of the orthogonal projectors of a
C−Hilbert H ′ is denoted by P(H ′). When (E,ξ ) is a measurable space,

a random measure (r.m.) Z, defined on ξ and taking values in H is a vector
measure such that < ZA,ZB >= 0, for any pair (A,B) of disjoint elements of ξ .

Then it is easy to verify that
the application µZ : A ∈ ξ 7→ ‖ZA‖2 ∈ R+ is a bounded measure.
The stochastic integral, relatively to the r.m. Z, can be defined as
the unique isometry from L2(E,ξ ,µZ) onto HZ = vect{ZA;A ∈B} which, with

A, associates ZA, for any A of ξ . The image of an element ϕ of L2(E,ξ ,µZ), by this
isometry, denoted by

∫
ϕdZ, is named integral of ϕ with respect to the r.m. Z.

A series (Xn)n∈Z of elements of H is said to be
stationary when, for any pair (n,m) of elements of Z, we have < Xn,Xm >=<

Xn−m,X0 >.
If Z is a r.m. defined on B, Borel σ−field of [−π;π[, taking values in H, then
(
∫

ei.ndZ)n∈Z is a stationary series.
Conversally,
with any stationary series (Xn)n∈Z of elements of H, we can associate a r.m. Z,

and only one, defined on B, taking values in H, such that Xn =
∫

ei.ndZ, for any n
of Z.

Two stationary series (Xn)n∈Z and (Yn)n∈Z are said to be
stationarily correlated when < Xn,Ym >=< Xn−m,Y0 >, for any pair (n,m) of

elements of Z.
When (E,ξ ) is a measurable space,
a spectral measure (s.m.) on ξ for H is an application E from ξ on P(H) such

that E E = IH , E (A∪ B) = E A+ E B, for any pair (A,B) of disjoint elements of
ξ , and such that limnE AnX = 0, for any sequence (An)n∈N of elements of ξ which
decreasingly converges to /0 and for any X of H.

We then show that
for any X of H, the application ZX

E : A ∈ ξ 7→ E AX ∈ H is a r.m..
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When E is a s.m. on B for H,
the application X ∈ H 7→

∫
ei.ndZX

E ∈ H is a unitary operator.
Conversally,
with any unitary operator U of H, we can associate one, and only one, s.m. E ,

on B for H, such that UX =
∫

ei.1dZX
E , for any X of H.

When α is a s.m. on B⊗B for H,
the application S : (λ ,λ ′)∈ [−π;π[×[−π;π[7→ λ +λ ′−2π

[
λ+λ ′+π

2π

]
∈ [−π;π[,

where [x] designates the integer part of x, is measurable;
the application Sα : A ∈ B 7→ Sα−1A ∈P(H) is a s.m. on B for H, named

image of α by S.
When
U is a unitary operator of H of associated s.m. E , (UnX)n∈Z is a stationary series

of associated r.m. ZX
E .

When E1 and E2 are two s.m.’s on B for H which commute, that is such that the
projectors E1A and E2B commute, for any A and B of B, then

there exists a s.m., and only one, E1⊗E2, on B⊗B for H, such that E1⊗E2A×
B = E1AE2B, for any pair (A,B) of elements of B. We name product of convolution
of E1 and E2, and we note E1 ∗E2, the image of E1⊗E2 by S.

We show that
two unitary operators U1 and U2, of respective associated s.m.’s E1 and E2, com-

mute if and only if E1 and E2 commute, E1 ∗E2 is the s.m. associated with the unitary
operator U1U2.

For developments of these notions, the reader can refer to Boudou [5], Boudou
and Romain [6], and Boudou and Romain [7].

We will end this section by recalls concerning a relation of partial order defined
on P(H).

We say that a projector P is smaller than a projector Q, and we note P� Q,
when P = PQ = QP. Then we have ‖PX‖ ≤ ‖QX‖, for any X of H.

The relation � is a relation of partial order, but it has the advantage that any
family {Pλ ;λ ∈ Λ} of projectors, finite or not, countable or not, has got a larger
minorant, that is a lower bound, denoted by inf{Pλ ;λ ∈ Λ}, and a smaller majo-
rant, that is an upper bound, denoted sup{Pλ ;λ ∈ Λ}. Then we have the following
properties:

Iminf{Pλ ;λ ∈Λ}= ∩λ∈Λ ImPλ ;
(sup{Pλ ;λ ∈Λ})⊥ = inf{P⊥

λ
;λ ∈Λ};

(inf{Pλ ;λ ∈Λ})⊥ = sup{P⊥
λ

;λ ∈Λ};
if P1 and P2 are two projectors which commute, then inf{P1;P2}= P1P2.

When (Pn)n∈N is a sequence of projectors, it is possible to define its upper bound,
limsup(Pn)n∈N= inf{sup{Pm;m≥ n};n∈N}, and its lower bound, liminf(Pn)n∈N=
sup{inf{Pm;m≥ n};n ∈ N}. We have then

liminf(Pn)n∈N� limsup(Pn)n∈N;
when liminf(Pn)n∈N = limsup(Pn)n∈N = P, we say that (Pn)n∈N r−converges to P,
and we note it limr

nPn = P.
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The r−convergence implies the point by point convergence, but the converse is
not true.

For any pair (P1,P2) of elements of P(H), we define
d(P1,P2) = sup(P1,P2)− inf(P1,P2).
This notion presents a great analogy with a distance, however, it is not a distance,

as d(P1,P2) is a projector. Its interest lies on the following property.
A sequence (Pn)n∈N of projectors r−converges to P if and only if limr

nd(Pn,P) =
0.

We show that
for any pair (P1,P2) of projectors, Im(d(P1,P2))

⊥ = Ker(P1−P2).
When U1 and U2 are two unitary operators,
a projector P is an equalizator of U1 and U2 when U1P =U2P = PU1 = PU2;

the upper bound of the family of the equalizators of U1 and U2 is an equalizator of
U1 and U2, we name it the maximal equalizator of U1 and U2 and we note it RU1,U2 .
We have ImRU1,U2 = ∩n∈ZKer(Un

1 −Un
2 ).

These notions are developped in Boudou and Viguier-Pla [9].

3 Commutator of two projectors

Let us first define this notion of commutator.
Definition 3.1. A projector K is a commutator of the projectors P1 and P2 when

it commutes with P1 and P2 and when P1KP2 = P2KP1.
We can establish the following properties.
Proposition 3.1. Let P1 and P2 be two projectors. Then

i) the upper bound of a family of commutators of the projectors P1 and P2 is a
commutator of the projectors P1 and P2;
ii) 0 is a commutator of the projectors P1 and P2;
iii) the upper bound of the family of the commutators of the projectors P1 and P2 is
the projector on Ker(P1P2−P2P1), that is inf{P1,P2}+ inf{P1,P⊥2 }+ inf{P⊥1 ,P2}+
inf{P⊥1 ,P⊥2 }.

So we have the following definition.
Definition 3.2. Let P1 and P2 be two projectors. We call maximal commuta-

tor of the projectors P1 and P2 the projector CP1,P2 = inf{P1,P2}+ inf{P1,P⊥2 }+
inf{P⊥1 ,P2}+ inf{P⊥1 ,P⊥2 }.

Of course, it is easy to establish that CP1,P2 = I if and only if P1 and P2 commute.
The maximal commutator is a tool for measuring the degree of commutativity of

the projectors P1 and P2, the larger it is, the larger Ker(P1P2−P2P1) is. It is clear
that when X belongs to Ker(P1P2−P2P1) = ImCP1,P2 , ‖C⊥P1,P2

X‖ = 0. So what can
we speculate when X is close to Ker(P1P2−P2P1), that is when ‖C⊥P1,P2

X‖ is small ?
We will bring an answer to this question, with the following property.

Proposition 3.2. For any pair (P1,P2) of projectors, and for any X of H, we have
‖P1P2X−P2P1X‖ ≤ 2‖C⊥P1,P2

X‖.
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This means that when X is close to Ker(P1P2 − P2P1), then P1P2X is close to
P2P1X .

Let us end this section with a property of continuity of the maximal commutator.
Proposition 3.3. If the projector K commutes with each of the elements of the

sequences of projectors (P1
n )n∈N and (P2

n )n∈N, which respectively r−converge to P1
and P2, then KP1 = P1K, KP2 = P2K and limr

nCKP1
n ,KP2

n
=CKP1,KP2 .

4 Commutator of a projector and of a unitary operator

In a same way as we have defined a commutator of two projectors, we can define a
commutator of a projector and of a unitary operator.

Definition 4.1. A projector K is a commutator of the projector P and of the
unitary operator U when it commutes with P and U, and when PKU =UKP.

We have got similar properties as those of the previous section.
Proposition 4.1. Let P be a projector and U a unitary operator. We can affirm

that
i) the upper bound of a family of commutators of the projector P and of the unitary
operator U is a commutator of the projector P and of the unitary operator U;
ii) 0 is a commutator of the projector P and of the unitary operator U;
iii) the upper bound of the family of commutators of the projector P and of the
unitary operator U is the projector on ∩n∈ZKer(PUn−UnP).

The following definition is a consequence of these properties.
Definition 4.2. Let P be a projector and U a unitary operator. We name maximal

commutator of the projector P and of the unitary operator U, and we note it CP,U ,
the projector on ∩n∈ZKer(PUn−UnP).

Of course, it is easy to verify that P and U commute if and only if CP,U = I.
The association “unitary operator-s.m.” being biunivocal, all these properties can
express by means of the s.m. which is associated with a unitary operator. We get
then a relation between commutator of a projector and of a unitary operator and a
family of commutators of two projectors.

Proposition 4.2. If P is a projector and U a unitary operator of associated s.m.
E , we can affirm that
i) a projector K is a commutator of the projector P and of the unitary operator U if
and only if, for any A of B, K is a commutator of the projectors P and E A;
ii) ImCP,U = ∩A∈BKer(PE A−E AP);
iii) CP,U = inf{CP,E A;A ∈B}.

The last two points come from the fact that∩n∈ZKer(PUn−UnP)=∩A∈BKer(PE A−
E AP), and that ImCP,E A = Ker(PE A−E AP).

If we remark that {U−nPUn;n∈Z} is a family of projectors and that Ker(PUn−
UnP) = Ker(U−nPUn−P) = (Imd(U−nPUn,P))⊥, we can give to CP,U an ergodic
definition.
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Proposition 4.3. For any projector P and for any unitary operator U, we have
CP,U = inf{(d(U−nPUn,P))⊥;n ∈ Z}.

This last result can have the following interpretation. If all the elements of the
family {U−nPUn;n ∈ Z} are close to P, that is, if for any n of Z, d(U−nPUn,P) is
small, or evenmore, for any n of Z, (d(U−nPUn,P))⊥ is large, then it is the same
for the lower bound CP,U . This means that P and U are near to commute.

Proposition 4.3 lets us write d(U−nPUn,P)�C⊥P,U , so
‖(PUn−UnP)X‖= ‖U−nPUnX−PX‖ ≤ 2‖d(U−nPUn,P)X‖ ≤ 2‖C⊥P,U X‖,
because for any pair of projectors (P,P′), we have ‖PX −P′X‖ ≤ 2‖d(P,P′)X‖

(cf. Boudou and Viguier-Pla [9]).
Thanks to a similar approach, Propositions 3.2 and 4.2 let us affirm that

‖PZX
E A−ZPX

E A‖= ‖PE AX−E APX‖ ≤ 2‖C⊥P,E AX‖ ≤ 2‖C⊥P,U X‖.
Then the following stands.
Proposition 4.4. For any projector P and for any unitary operator U of associ-

ated s.m. E , for any X of H, we have
i) ‖PUnX−UnPX‖ ≤ 2‖C⊥P,U X‖;
ii) ‖PZX

E A−ZPX
E A‖ ≤ 2‖C⊥P,U X‖, for any A of B.

So, if X is close to ImCP,U , that is if ‖C⊥P,U X‖ is small, then the series (PUnX)n∈Z
is “almost stationary”, in such a way it is close to the stationary series (UnPX)n∈Z.
As for the application P◦ZPX

E , it is almost a r.m., close to ZPX
E , r.m. associated with

the stationary series (UnPX)n∈Z.
Let us end this section by the resolution of the following problem:
let (Xn)n∈Z be a stationary series, of associated r.m. Z, and P be a projector. We

wish to define all the stationary series, stationarily correlated with (Xn)n∈Z, included
in ImP. Such series will be named “solution series”. Then we have the following.

Proposition 4.5. If U is a unitary operator whose associated s.m. is such that
ZX0

E = Z, then, for any X of ImCP,U , we can affirm that (UnPX)n∈Z is a “solution
series”. Any “solution series” is of this type.

We remember that when Z is a r.m. defined on B, taking values in H, there
exists at least one s.m. E on B for H such that ZX0

E = Z, where X0 =
∫

ei.0dZ (cf.
Boudou [5]).

5 Commutator of two unitary operators

When two unitary operators U and V commute, the s.m. which is associated with
the unitary operator UV is the product of convolution of the s.m.’s respectively asso-
ciated with U and V . But what happens when UV 6=VU? The maximal commutator
will bring a partial solution to this question.

Definition 5.1. A projector K is a commutator of the unitary operators U and V
when it commutes with U and V , and when UKV =V KU.

Then we can establish the following properties.
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Proposition 5.1. Let U and V be two unitary operators. We can affirm that
i) the upper bound of a family of commutators of the unitary operators U and V is
a commutator of the unitary operators U and V ;
ii) 0 is a commutator of the unitary operators U and V ;
iii) the upper bound of the family of commutators of the unitary operators U and V
is the projector on ∩(n,m)∈Z×ZKer(UnV m−V mUn).

So we can define the following.
Definition 5.2. Let U and V be two unitary operators. We name maximal com-

mutator of the unitary operators U and V , and we note it CU,V , the projector on the
space ∩(n,m)∈Z×ZKer(UnV m−V mUn).

Of course, it is easy to verify that U and V commute if and only if CU,V = I.
The reader will notice the similarities between Definitions 3.1, 4.1 and 5.1, between
Propositions 3.1, 4.1 and 5.1, and between Definitions 3.2, 4.2 and 5.2.

The commutator of two unitary operators can be defined from the associated
s.m.’s.

Proposition 5.2. If U and V are two unitary operators of respective associated
s.m.’s E and α , we can affirm that
i) a projector K is a commutator of U and V if and only if, for any pair (A,B) of
elements of B, K is a commutator of the projectors E A and αB;
ii) ImCU,V = ∩(A,B)∈B×BKer(E AαB−αBE A);
iii) CU,V = inf{CE A,αB;(A,B) ∈B×B}= inf{CαB,U ;B ∈B}.

To establish the last two points, we must notice that
∩(n,m)∈Z×ZKer(UnV m−V mUn) = ∩(A,B)∈B×BKer(E AαB−αBE A) = ∩(A,B)∈B×BImCE A,αB.

Point iii) provides a relation between the three types of maximal commutators
which we study. We can also establish a relation between the maximal commutator
of two unitary operators and the maximal equalizator of two unitary operators.

Proposition 5.3. Let U and V be two unitary operators. We have CU,V =
inf{RV,U−nVUn ;n ∈ Z}.

For the proof, we have just to notice that
ImCU,V = ∩n∩m Ker(UnV m−V mUn) = ∩n∩m Ker(V m−U−nV mUn)

= ∩n∩m Ker(V m− (U−nVUn)m) = ∩nImRV,U−nVUn = Iminf{RV,U−nVUn ;n ∈ Z}.
Let us now approach the questions suggested at the beginning of the section.

Let us denote by C the maximal commutator of the unitary operators U and V . Let
L be the application X ∈ ImC 7→ X ∈ H. Then we have L∗(X) = CX , for any X
of H, L∗L = IImC, L∗L = C, L∗C = L∗, and CL = L. Let E be the s.m. which is
associated with the unitary operator U . As CU = UC, we can prove that (Boudou
and Viguier [9])

U ′ = L∗UL is a unitary operator of ImC;
for any A of B, E ′A = L∗E AL is a projector of ImC;
the application E ′ : A ∈B 7→ E ′A ∈P(ImC) is the s.m. which is associated with
the unitary operator U ′.

With obvious notation, we also show that
V ′ = L∗V L is a unitary operator of ImC;

for any A of B, α ′A = L∗αAL is a projector of ImC;
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the application α ′ : A ∈B 7→ α ′A ∈P(ImC) is the s.m. which is associated with
the unitary operator V ′.

From the fact that U ′V ′ = L∗ULL∗V L = L∗UCV L = L∗VCUL = L∗V LL∗UL =
V ′U ′, we can consider the s.m. E ′⊗α ′ on B⊗B for ImC (as the s.m.’s E ′ and α ′

commute). For any pair (A,B) of elements of B, we have
E ′⊗α ′(A×B) = E ′Aα ′B = inf{E ′A,α ′B}= inf{L∗E AL,L∗αBL}= L∗inf{E A,αB}L.

If we notice that U ′V ′ = L∗UV L = L∗VUL, we have the following.
Proposition 5.4. There exists one s.m., and only one, E ′⊗α ′, on B⊗B for ImC,

such that E ′⊗α ′(A×B) = L∗inf{E A,αB}L, for any pair (A,B) of elements of B.
Its image by S is the s.m. associated with the unitary operator L∗UV L = L∗VUL.

Of course, when U and V commute, that is when C = I, we have L = L∗ = I,
U ′ = U , V ′ = V , E ′ = E , α ′ = α and E ⊗α(A×B) = inf{E A,αB} = E AαB, for
any (A,B) of B×B.
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