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Abstract The study of multidimensional data along time often needs data reduction
methods to reduce dimension, and to study some particular phenomena. In a context
of fluid mechanics, we propose to compare a version of functional principal compo-
nents analysis (FPCA), named proper orthogonal decomposition (POD), with two
methods based on the spectral decomposition of data Fourier transform, the spectral
proper orthogonal decomposition (SPOD) and principal components analysis in the
frequency domain (PCAFD). In this context of, both POD and SPOD have been
proposed, while PCAFD is been newly applied to this domain. Thus, we provide a
discussion on the contribution of PCAFD to deal with multiscale physics.

1 Introduction

Simulation of multidimensional data, such as in fluid mechanics, or observation of
such data, as for example ocean temperature, lead to the production of a large amount
of information. Therefore, dimension reduction is of major importance to be able to
carry out fine analyses of the underlying physical phenomena. Naturally, principal
components analysis (PCA) is the basic method which has been declined by several
approaches since the last decade. The pioneer work concerning fluid mechanics has
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been introduced by Lumley (1970), with Proper Orthogonal Decomposition (POD),
which can be apparented with Functional Principal Components Analysis (FPCA).
The Spectral POD (SPOD), also proposed by Lumley (2007), which performs the
Fourier transform on data before POD has been brought to the fore by Towne et al.
(2018), and put into practice by various authors, as Schmidt and Colonius (2020),
Xiao et al. (2021) or Nekkanti and Schmidt (2021). More recently the Dynamic
Mode Decomposition (DMD) proposed by Schmid (2010), is performed by a time
domain PCA, with time-dependent assumptions. We will focus our work on PCA
in the frequency domain, introduced by Brillinger (1981) generalized to a wide
context by Boudou (1995), performed for a periodic flow by Boudou et al. (2004),
and generalized for a cyclostationary flow by Boudou and Viguier-Pla (2020). This
technique of using reduction methods in the frequency domain is knowning a large
interest, as it is better appropriate for time dependent series than working in the time
domain (see also Hörmann et al, 2015).

In this study, we propose to compare results from POD, SPOD and an improved
method of PCA in the frequency domain, that we name PCAFD, which is not
restrictive on the structure of the multidimensional signal spectrum. In this work, we
first present the data of interest. Secondly, we present the three compared methods,
that is POD, SPOD and PCAFD. In the third part, we apply the three methods on our
simulated data. We end by showing the difficulties of each method, we compare the
qualities of reconstruction and the phenomenon each method reveals at each step.

2 Description of the data

The comparison of POD, SPOD and PCAFD methods is carried out on the spatio-
temporal serie basis of a natural convection flow temperature field (Sergent et
al., 2013, Trias et al. ,2007). In particular, we simulate the thermal coupling be-
tween a fluid and a solid wall, imposing continuity of the temperature field at the
fluid/solid interface. The data considered here is therefore a sampling of simulations
{𝑢(𝑡, 𝑥1, 𝑥2); (𝑡, 𝑥1, 𝑥2) ∈ R+ × [𝑎; 𝑏] × [𝑐; 𝑑]}, where 𝑡 is time index, 𝑥1 and 𝑥2 are
coordinates of the point where the random process 𝑢 is determined by Direct Numer-
ical Simulation (DNS). For the sake of illustration, a snapshot, that is an image at a
time index 𝑡, and time series for three points across time, are given in Fig. 1. Details
of the DNS solver used in this work are presented in Abide et al. (2017, 2018).

3 The methods of dimension reduction

Proper Orthogonal Decomposition. Let {𝑢(𝑡, 𝑥)} be a stochastic process defined
onR×R𝑛, as for example a random 𝑛−dimensional field observed along the time. The
POD is the search of a deterministic function 𝜙(𝑥) that best approximates the stochas-
tic function in average. Practically, it consists of considering a sample (𝑥1, . . . , 𝑥𝑛)
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Fig. 1 First snapshot and time series of the temperature fluctuations
.

of space points, and measures at times 𝑡1, . . . , 𝑡𝑝 . The method is implemented via
PCA of the matrix𝑈 = (𝑢(𝑡𝑖 , 𝑥 𝑗 ))𝑖=1,..., 𝑝; 𝑗=1,...,𝑛. Each principal component of such
a PCA is named a mode.

Spectral Proper Orthogonal Decomposition. SPOD is designed for statisti-
cally stationary flows, from which it is aimed to extract coherent structures. The
eigenvectors of the cross-spectral density (CSD) matrix at individual frequencies
represent SPOD modes, and the eigenvalues represent the energy associated with
each mode at a given frequency. We perform SPOD with the open access python
script proposed and successfully applied to several examples by He et al. (2021)
[https://github.com/HexFluid/spod python (accessed December 2024)]. This script
follows the main steps of the method. First it builds a matrix with the spatio-temporal
data. Let the vector 𝑢𝑘 ∈ R𝑛 be the 𝑘 𝑡ℎ time snapshot after subtracting the time-
averaged data. The chronologically sorted spatio-temporal data matrix is:

𝑄 = 𝑈𝑇 =
[
𝑢1, 𝑢2, . . . , 𝑢𝑝

]
∈ R𝑛×𝑝 ,

where 𝑝 is the number of snapshots. Second, the data matrix is splitted into 𝑁𝑏

blocks using the Welch periodogram method and the discrete Fourier transform is
applied to each block to pass into the frequency domain. At this stage, to prevent loss
of precision due to spectral leakage, each data block is processed with a Hamming
window and then overlapped with neighbouring blocks. The 𝑗 𝑡ℎ block matrix is
given by

𝑄̂ ( 𝑗 ) =
[
𝑢̂
( 𝑗 )
1 , 𝑢̂

( 𝑗 )
2 , . . . , 𝑢̂

( 𝑗 )
𝑁 𝑓

]
∈ C𝑛×𝑁 𝑓 .

Then, according to the frequency, the matrices are reshaped so that the matrix for
the 𝑘 𝑡ℎ frequency is

𝑄̂𝑘 =

[
𝑞
(1)
𝑘

, 𝑞
(2)
𝑘

, . . . , 𝑞
(𝑁𝑏 )
𝑘

]
∈ C𝑛×𝑁𝑏 .

The weighted cross-spectral density (CSD) matrix for the 𝑘 𝑡ℎ frequency, denoted as
𝑆𝑘 is obtained as follows:

𝑆𝑘 = 1
𝑁𝑏

𝑊1/2𝑄̂∗
𝑘
𝑄̂𝑘𝑊

1/2 ∈ C𝑁𝑏×𝑁𝑏 ,
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where 𝑊 is the weight matrix for scaling the various flow variables (we chose
𝑊 = 𝐼). Finally, the eigen-decomposition is performed by the CSD matrix 𝑆𝑘 for
each frequency. Similarly to other versions of POD, SPOD determines an orthogonal
basis for the data, meaning that a subset of these modes captures a proportion of the
total energy (variance) within the data compared to any other orthogonal basis. The
function used for the reconstruction is based on Nekkanti & Schmidt (2021), and is
available in the python script above mentioned.

Principal Components Analysis in the Frequency Domain. Let (𝑋𝑛)𝑛∈Z be a
stationary 𝑝−dimensional random time series. The PCAFD of (𝑋𝑛)𝑛∈Z is the search
of a 𝑞−dimensional series (𝑞 < 𝑝) (𝑋 ′

𝑛)𝑛∈Z, stationarily correlated with (𝑋𝑛)𝑛∈Z,
as close as possible to it. As (𝑋𝑛)𝑛∈Z and (𝑋 ′

𝑛)𝑛∈Z are stationary, there exist two
unitary operators 𝑈 and 𝑈′ such that 𝑋𝑛 = 𝑈𝑛𝑋0 et 𝑋 ′

𝑛 = 𝑈′𝑛𝑋 ′
0. So the PCAFD is

the search of 𝑋 ′
0 and𝑈′ such that 𝑋 ′

𝑛 = 𝑈′𝑛𝑋 ′
0 and ∥𝑋0 − 𝑋 ′

0∥ is as small as possible.
The 𝑋𝑛’s of the stationary series (𝑋𝑛)𝑛∈Z, are 𝑝−dimensional random vectors:

𝑋𝑛 =
(
𝑥1
𝑛, . . . , 𝑥

𝑝
𝑛

) 𝑡 . The stationarity is assumed in a broad sense, that isE(𝑋𝑛
𝑡𝑋𝑚) =

E(𝑋𝑛−𝑚 𝑡𝑋0) for any pair (𝑛, 𝑚) of elements from Z. It is equivalent with the
usual second order stationarity of each of its components (𝑥𝑖𝑛)𝑛∈Z and with the
pairwise correlated stationarity: E(𝑥𝑖𝑛𝑥

𝑗
𝑚) = E(𝑥𝑖𝑛−𝑚𝑥

𝑗

0) for any (𝑛, 𝑚, 𝑖, 𝑗) from
Z × Z × {1, ..., 𝑝} × {1, ..., 𝑝}.

We assume that the conditions are satisfied for the existence of the spectral density,
(2 𝜋)−1 ∑

𝑛∈Z 𝑒
−𝑖.𝑛E 𝑋 𝑡

𝑛𝑋0.
Theoretically, the PCAFD needs to process the PCA of (2 𝜋)−1 ∑

𝑛∈Z 𝑒
−𝑖𝜆𝑛E 𝑋 𝑡

𝑛𝑋0,
for each 𝜆 from [−𝜋, 𝜋[, this means an infinity of PCA’s. We overcome this difficulty
by a discretization of the spectrum [−𝜋, 𝜋[. More precisely, if 𝑘 is an integer, we
consider the measurable application from [−𝜋, 𝜋[ into itself:

𝑓𝑘 =
∑𝑘−1

𝑙=−𝑘
𝜋 𝑙
𝑘

1𝐵𝑙𝑘
,

where 𝐵−𝑘,𝑘 = {−𝜋}, 𝐵𝑙𝑘 =] 𝜋 𝑙
𝑘

− 𝜋
𝑘
, 𝜋 𝑙

𝑘
] for 𝑙 = −𝑘 + 1, . . . ,−1, 𝐵0𝑘 =] − 𝜋

𝑘
, 𝜋
𝑘
[,

and 𝐵𝑙𝑘 = [ 𝜋 𝑙
𝑘
, 𝜋 𝑙

𝑘
+ 𝜋

𝑘
[ for 𝑙 = 1, . . . , 𝑘 − 1. The PCAFD can be approximated

by a spectral decomposition of each spectral density 𝑀𝑙𝑘 defined on 𝐵𝑙𝑘 ; 𝑙 = −𝑘 +
1, . . . , 𝑘 − 1. The matrices 𝑀𝑙𝑘 can be estimated by

(2 𝜋 𝑚)−1 ∑𝑚
𝑢=1

∑𝑚
𝑣=1 (

∫
𝐵𝑙𝑘

𝑒𝑖𝜆(𝑢−𝑣) 𝑑𝜆)𝑋𝑣
𝑡𝑋𝑢.

Let (𝑋 ′
𝑛)𝑛∈Z be the 𝑞−dimensional solution of the 𝑞−order PCAFD of (𝑋𝑛)𝑛∈Z.

This series is of the form 𝑋 ′
𝑛 =

∑
𝑚∈Z 𝐶′

𝑚𝑋𝑛−𝑚. It can be approximated via the
discretization of the spectrum, by the series

𝑋
′𝑘
𝑛 =

∑
𝑚∈Z 𝐶′

𝑚,𝑘
𝑋𝑛−𝑚,

where
𝐶′
𝑚,𝑘

= (2𝜋)−1 ∑𝑘−1
𝑙=−𝑘+1 (

∫
𝐵𝑙𝑘

𝑒𝑖𝜆𝑚 𝑑 𝜆) ∑𝑞

𝑗=1 𝐹𝑗
𝑡 𝐴 𝑗𝑙𝑘 ,

𝐹𝑗 being the 𝑗 th vector of the canonical basis of C𝑞 , and 𝐴 𝑗𝑙𝑘 being the 𝑗 th unitary
eigenvector of 𝑀𝑙𝑘 .

The reconstructed series is then (𝑋 ′′𝑘
𝑛 )𝑛∈Z, which can be writen

𝑋
′′𝑘
𝑛 =

∑
𝑚∈Z 𝐶′′

𝑚,𝑘
𝑋

′𝑘
𝑛−𝑚 =

∑
𝑚∈Z 𝐷𝑚,𝑘𝑋𝑛−𝑚,

where
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𝐶′′
𝑚,𝑘

= (2𝜋)−1 ∑𝑘−1
𝑙=−𝑘+1 (

∫
𝐵𝑙𝑘

𝑒𝑖𝜆𝑚 𝑑𝜆) ∑𝑞

𝑗=1 𝐴 𝑗𝑙𝑘
𝑡𝐹𝑗 ,

and
𝐷𝑚,𝑘 = (2𝜋)−1 ∑𝑘−1

𝑙=−𝑘+1 (
∫
𝐵𝑙𝑘

𝑒𝑖𝜆𝑚 𝑑𝜆) ∑𝑞

𝑗=1 𝐴 𝑗𝑙𝑘
𝑡 𝐴 𝑗𝑙𝑘 .

Of course, the greater 𝑘 is, the closest the approximated PCAFD is to the theoretical
PCAFD defined above.

We can examine the norms of the 𝐶′
𝑚,𝑘

, which are high when the autocorrelation
of order 𝑚 is high, what happens, for example, when the series is periodic of period
𝑚. We can also compare the series before and after PCAFD, for various dimensions
𝑞 of the reconstruction.

4 Results and discussion

Analysis with POD. We examine the modes of this analysis, which match with the
principal components in usual PCA. In Figure 2, the reconstruction is very slightly
improved using to 2 dimensions. At least, the essential of the variations is returned,
that is those for median temperature.

Fig. 2 POD. Reconstruction of image at 𝑡 = 0 and of three points variations with two modes
.

Analysis with SPOD. In Figure 3, we can see that the variations most recon-
structed are those for extreme temperatures at 𝑡 = 0. The variations of points 20 and
100 are slightly more complex than the ones from POD, but the same variations are
first retrieved.

Analysis with PCAFD. Figure 4 gives the first snapshot and trajectories of three
points for a two-dimensions reconstruction. By comparison with the initial first
snapshot, we can recognise the main variations of the flow. As for the trajectories,
PCAFD retrieves more complexity than the previous methods. It takes into account
more frequencies in the first modes.

Now we can focus on the possible periodicities in the signal, by looking at the
norms of the coefficients of the reconstruction of (𝑋𝑛). In Figure 5, the norms of the
𝐶′
𝑙𝑘

show some phenomenum of period around 26. So we guess that any frequency
of the form 𝑝 2𝜋

26 in [−𝜋; 𝜋[ is of high energy. The frequency 4𝜋
26 falls in the interval
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Fig. 3 SPOD. Reconstruction of image at 𝑡 = 0 and of three points variations with two modes
.

Fig. 4 PCAFD, 𝑘 = 10. Reconstruction on dimension 2
.

𝐵𝑙𝑘 , where 𝑙 = 1 for 𝑘 = 10. In the second diagram of Figure 5, we show the three
selected trajectories for frequencies in 𝐵1,10 and 𝑞 = 2. Note that this period depends
on the time discretization. This technique offers a way to analyze what is specific to
a given frequency, when the bandwidth is small enough.

Fig. 5 PCAFD, 𝑘 = 10. Norms of the 𝐶′
𝑙𝑘

and reconstruction for 3 points on 𝐵1,10
.
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5 Comparisons

One way to assess the efficiency of decomposition method relies on its ability to
reconstruct the initial signal with few modes. To this end, we evaluate the error
in reconstruction with respect to the mode numbers. Figure 6 presents the relative
error computed for the three methods POD, SPOD and PCAFD. One can note that
PCAFD is able to reconstruct the data with fewer modes than the other methods.
In this way, PCAFD overcomes the POD and SPOD in its ability to retrieve data.
Moreover, the control parameter 𝑘 greatly improves the decomposition efficiency.
When 𝑘 is small, the number of subdivisions of the frequency spectrum is small, so
few frequencies are taken into account. The higher 𝑘 is, the higher is the number
of considered potential frequencies. The method PCAFD has been performed with
𝑘 = 10 and 𝑘 = 20. This comparison of two values of 𝑘 illustrates the fact that the
higher 𝑘 is, the smaller the error is, for a fixed value of 𝑞. As POD and SPOD present
similar errors in the first dimensions, SPOD tends to be better with dimension getting
higher. PCAFD has more little errors, and the quality of reconstruction is almost
perfect as soon as the dimension reaches 𝑞 = 10 when 𝑘 = 10, and 𝑞 = 6 when
𝑘 = 20.

Fig. 6 Standard deviation of errors of reconstruction for dimensions 1 to 20
.

6 Conclusion

The PCAFD sounds interesting for several purposes in fluid mechanics. The summary
needs few modes to give good quality of reconstruction compared to POD and
SPOD. We can analyze the coefficients of the reconstruction for information above
the periodic parts of the signal, and we can select part of the spectrum for the
extraction of some particular phenomena. Moreover, Boudou and Viguier-Pla (2006)
have investigated the conditions where PCA and PCAFD give the same results.
This condition is the independence of data from time, and a consequence of this
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independence is that PCAFD and POD become equivalent. The difference between
POD, SPOD and PCAFD results give indications about how time-dependent are the
data.

PCAFD is newly compared to SPOD, which is supposed to proceed with the same
way of dealing with the frequency domain, on data simulated from fluid mechanics
models. However, we must also analyze the computational efficiency of each method,
and the ability of these methods to apply to large volumes of data. As PCAFD has
got longer execution time, one of the challenges is to adapt its algorithms to this
context.
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6. Hörmann, S., Kidziński, L., Hallin, M.: Dynamic Functional Principal Components. Journal
of the Royal Statistical Society. Series B: Statistical Methodology vol. 77, issue 2, pp 319-348.
(2002) doi: 10.1111/rssb.12076

7. He, X., Fang, Z., Rigas, G., Vahdati, M.: Spectral proper orthogonal decomposition of com-
pressor tip leakage flow. Physics of Fluids vol. 33, 105105 (2021) doi: 10.1063/5.0065929

8. Lumley, J.L.: Stochastic Tools in Turbulence. Courrier Corporation. Initially published in 1970
in Academic Press, New-York (1970, 2007)

9. Nekkanti, A., and Schmidt, O.T.: Frequency–Time Analysis, Low-Rank Reconstruction and
Denoising of Turbulent Flows Using SPOD. Journal of Fluid Mechanics, 926, A26 (2021)

10. Schmidt, O.T., Colonius, T.: Guide to Spectral Proper Orthogonal Decomposition. AIAA
Journal, 58, 3 pp. 1023-1033 (2020)

11. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. Journal of
Fluid Mechanics, 656, pp. 5-28 (2010)
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