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AbstractConsidering amultidimensional stationary series, this work aims to present
how the properties of periodicity in distribution and of ergodicity are stable by
filtering.

1 Introduction

The property of weak stationarity of a multidimensional random series is transmitted
by linear filtering (see, for example, Brillinger, 1981, Boudou & Dauxois, 1994). We
know that the properties of periodicity in distribution and of ergodicity are stable by
linear filtering for univariate random series (Priestley,1981, Papoulis & Pillai, 2002).
This paper aims at developing a very general theoretical framework for which these
properties stand. The random series is not necessarily assumed to have a spectral
density and its spectrum may be any. It takes values in a separable Hilbert space, of
any dimension, non necessarily finite.
The Hilbert spaces encountered in this text, 𝐻, 𝐻 ′, 𝐻 ′′, of type 𝐿2

𝐻
(Ω,A, 𝑃)

(which we denote 𝐿2
𝐻
(A) when there is no ambiguity, and 𝐿2 (A) when 𝐻 = C), are

assumed to be separable. So they are equiped with an orthonormal basis and we may
consider Hilbert-Schmidt operators. Of course, ifA ′ is a sub-𝜎−field ofA, 𝐿2

𝐻
(A ′)

is separable as a closed sub-space of 𝐿2
𝐻
(A). If a Hilbert space is separable, it is also

the case for any isometric Hilbert space. When X is an element of L2
𝐻
(𝐸, 𝜏, 𝜂), that

is a map from 𝐸 into 𝐻, measurable and of 𝜂−integrable squared norm, we note 𝑋
or X, its equivalence class, which is consequently an element of 𝐿2

𝐻
(𝐸, 𝜏, 𝜂). When

the context is obvious, we will not make difference between the two notation.

Theorem 1 If 𝑋 is an element of 𝐿2
𝐻
(𝐸, 𝜏, 𝜂), then

i) for any 𝑦 of L2
𝐻
(𝐸, 𝜏, 𝜂), the map X(.)𝑦(.) is measurable and of 𝜂−integrable
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norm;
ii) the map 𝑋 : 𝑦 ∈ 𝐿2 (𝐸, 𝜏, 𝜂) ↦→

∫
X(.)𝑦(.)d𝜂(.) ∈ 𝐻 is a Hilbert-Schmidt

operator;
iii) for any ℎ from 𝐻, 𝑋∗ℎ, element of 𝐿2 (𝐸, 𝜏, 𝜂), has as representative the map
〈ℎ,X(.)〉.

Definition 1 We say that a family (𝑋𝑛)𝑛∈Z of elements of 𝐿2𝐻 (A) is a 𝐻−stationary
series when, for any pair (𝑛, 𝑚) of elements of Z, we have 𝑋𝑛 ◦ 𝑋∗

𝑚 =
∫
X𝑚 (.) ⊗

X𝑛 (.)d𝑃 = 𝑋𝑛−𝑚 ◦ 𝑋∗
0 .

Let us note that when 𝐻 = C and when 𝐸 (𝑋𝑛) = 0, we find the classical definition
of the weak stationarity: cov(𝑋𝑛, 𝑋𝑚) = cov(𝑋𝑛−𝑚, 𝑋0).
In this text, we study the transmission by filtering of properties which are sta-

tistically of interest, as that of periodicity in distribution, strict stationarity, and
ergodicity. As we situate our work in a multidimensional context, these results apply,
for example, to Principal Components Analysis in the frequency domain.
We will often use the following result.

Theorem 2 If 𝑇 is a measurable map from (𝐸, 𝜏, 𝜂) into (𝐸 ′, 𝜏′), then the map
𝑓 ∈ 𝐿2

𝐻
(𝐸 ′, 𝜏′, 𝑇𝜂) ↦→ 𝑓 ◦ 𝑇 ∈ 𝐿2

𝐻
(𝐸,𝑇−1𝜏, 𝜂) is an isometry.

Remark 1 . 𝑇𝜂 : 𝐴′ ∈ 𝜏′ ↦→ 𝜂𝑇−1𝐴′ ∈ [0; 1]. Of course, when 𝐸 ′ is an Hilbert
space, we speak about distribution.

2 The spaces 𝑯Z and HZ

In this section, we define the 𝜎−field B𝐻 of subsets of 𝐻Z, and we study the maps
𝑇𝐻
𝑛 : (ℎ𝑝)𝑝∈Z ∈ 𝐻Z ↦→ ℎ𝑛 ∈ 𝐻 and 𝜃𝐻𝑛 : (ℎ𝑝)𝑝∈Z ∈ 𝐻Z ↦→ (ℎ𝑝+𝑛)𝑝∈Z ∈ 𝐻Z,
which allow us define later the trajectory of a process.

Lemma 1 For any pair (𝑛, 𝑚) of elements of Z, we have 𝑇𝐻
𝑛 ◦ 𝜃𝐻𝑚 = 𝑇𝐻

𝑛+𝑚 and
𝜃𝐻𝑛 ◦ 𝜃𝐻𝑚 = 𝜃𝐻𝑛+𝑚.

Let us now examine the 𝜎−field B𝐻 of subsets of 𝐻Z generated by the family
{(𝑇𝐻

𝑛 )−1𝐵; (𝑛, 𝐵) ∈ Z × B𝐻 } (B𝐻 is the Borel 𝜎−field of 𝐻). This 𝜎−field is
sometimes named cylindric measurable 𝜎−field.

Theorem 3 i) The 𝜎−field B𝐻 is the smallest 𝜎−field of subsets of 𝐻Z which makes
the maps 𝑇𝐻

𝑛 measurable;
ii) a map 𝑓 from (𝐸, 𝜏) in 𝐻Z is measurable if and only if, for any 𝑛 of Z, 𝑇𝐻

𝑛 ◦ 𝑓 is
measurable;
iii) for any 𝑛 of Z, (𝜃𝐻𝑛 )−1B𝐻 = B𝐻 .

The last point is easy to check: from𝑇𝐻
𝑛 𝜃

𝐻
𝑚 = 𝑇𝐻

𝑛+𝑚, for any 𝑛 of Z, we can deduce,
from i) and ii), that 𝜃𝐻𝑚 is measurable. So we can write that (𝜃𝐻−𝑚)−1B𝐻 ⊂ B𝐻 , so
that (𝜃𝐻𝑚 )−1 (𝜃𝐻−𝑚)−1B𝐻 ⊂ (𝜃𝐻𝑚 )−1B𝐻 ⊂ B𝐻 , that is (𝜃𝐻𝑚 )−1B𝐻 = B𝐻 .
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Let us now study a bĳection from 𝐻Z onHZ, whereH is the Hilbert space 𝐻 𝑝 ,
𝑝 integer greater or equal to 2. For this, let us consider the maps
𝑝 : 𝑛 ∈ Z ↦→ 𝑛 − 𝑝 [ 𝑛

𝑝
] + 1 ∈ {1, . . . , 𝑝}, where [𝑥] is the integer part of 𝑥,

𝐾𝐻
𝑗
: ℎ ∈ 𝐻 ↦→ (𝛿 𝑗𝑙ℎ)𝑙=1,..., 𝑝 ∈ H ,

F : ℎ ∈ 𝐻Z ↦→ ((∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦ 𝑇𝐻

𝑝𝑛+ 𝑗−1)ℎ)𝑛∈Z ∈ HZ

and L : ℎ ∈ (H)Z ↦→ ((𝐾𝐻
𝑝𝑛
)∗ ◦ 𝑇H

[ 𝑛
𝑝
]ℎ)𝑛∈Z ∈ 𝐻

Z.

We first remark that (𝐾𝐻
𝑗
)∗ ◦ 𝐾𝐻

𝑗′ = 𝛿 𝑗 𝑗′ 𝐼𝐻 , for any pair ( 𝑗 , 𝑗 ′) of elements of
{1, . . . , 𝑝} and that ∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦ (𝐾𝐻

𝑗
)∗ = 𝐼H .

If we note that 𝑇H
𝑛 ◦ F =

∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦ 𝑇𝐻

𝑝𝑛+ 𝑗−1 and that 𝑇
𝐻
𝑛 ◦ L = (𝐾𝐻

𝑝𝑛
)∗ ◦ 𝑇H

[ 𝑛
𝑝
] ,

for any 𝑛 of Z, we deduce that F and L are measurable. Moreover, for any 𝑛 of Z,
we have 𝑇H

𝑛 ◦ F ◦ L =
∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦ 𝑇𝐻

𝑝𝑛+ 𝑗−1 ◦ L =
∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦ (𝐾𝐻

𝑗
)∗ ◦ 𝑇H

𝑛 = 𝑇H
𝑛 ,

and 𝑇𝐻
𝑛 ◦ L ◦ F = (𝐾𝐻

𝑝𝑛
)∗ ◦ 𝑇H

[ 𝑛
𝑝
] ◦ F =

∑𝑝

𝑗=1 (𝐾
𝐻
𝑝𝑛
)∗ ◦ 𝐾𝐻

𝑗
◦ 𝑇𝐻

𝑝 [ 𝑛
𝑝
]+ 𝑗−1 = 𝑇

𝐻
𝑛 .

Theorem 4 The maps F and L are inverse one each other: F ◦ L = 𝐼HZ and
L ◦ F = 𝐼𝐻Z . Moreover, F ◦ 𝜃𝐻𝑝 = 𝜃H1 ◦ F and 𝜃𝐻𝑝 ◦ L = L ◦ 𝜃H1 .

3 𝑯−stationarity

Let us now study the various operators which we can associate with a 𝐻−stationary
series (𝑋𝑛)𝑛∈Z and define the derived filtered 𝐻 ′−stationary series.

Definition 2 Wename shift operator of (𝑋𝑛)𝑛∈Z any unitary operator𝑈 of 𝐿2 (Ω,A, 𝑃)
such that𝑈 ◦ 𝑋∗

𝑛 = 𝑋∗
𝑛+1, for any 𝑛 of Z.

Let us note that any 𝐻−stationary series (𝑋𝑛)𝑛∈Z is associated with a shift operator.
Indeed, for any pair ((𝑛1, ℎ1), (𝑛2, ℎ2)) of elements of Z × 𝐻, we have
〈𝑋∗

𝑛1ℎ1, 𝑋
∗
𝑛2ℎ2〉 = 〈𝑋𝑛2 ◦ 𝑋∗

𝑛1ℎ1, ℎ2〉 = 〈𝑋𝑛2+1 ◦ 𝑋∗
𝑛1+1ℎ1, ℎ2〉 = 〈𝑋∗

𝑛1+1ℎ1, 𝑋
∗
𝑛2+1ℎ2〉.

So there exists an isometry (and only one) 𝑉 from vect{𝑋∗
𝑛ℎ; (𝑛, ℎ) ∈ Z × 𝐻} on

vect{𝑋∗
𝑛+1ℎ; (𝑛, ℎ) ∈ Z × 𝐻} such that 𝑉 (𝑋∗

𝑛ℎ) = 𝑋∗
𝑛+1ℎ, for any (𝑛, ℎ) of Z × 𝐻.

The following property comes from the relation vect{𝑋∗
𝑛ℎ; (𝑛, ℎ) ∈ Z × 𝐻} =

vect{𝑋∗
𝑛+1ℎ; (𝑛, ℎ) ∈ Z × 𝐻}.

Theorem 5 There exists a unitary operator 𝑉 of 𝐻 ′ = vect{𝑋∗
𝑛ℎ; (𝑛, ℎ) ∈ Z × 𝐻}

such that 𝑉 (𝑋∗
𝑛ℎ) = 𝑋∗

𝑛+1ℎ, for any (𝑛, ℎ) of Z × 𝐻.

Let 𝑃 be the projector from 𝐿2 (A) on 𝐻 ′ and by 𝐿 the canonical injection 𝑦 ∈ 𝐻 ′ ↦→
𝑦 ∈ 𝐿2 (A). Then 𝑈 = 𝑃⊥ + 𝐿 ◦ 𝑉 ◦ 𝐿∗ is a unitary operator of 𝐿2 (A) such that
𝑈 (𝑋∗

𝑛ℎ) = 𝑋∗
𝑛+1ℎ, for any (𝑛, ℎ) of Z × 𝐻, so𝑈 ◦ 𝑋∗

𝑛 = 𝑋∗
𝑛+1, for any 𝑛 of Z.

The shift operator is not unique. Moreover, with a double induction, we can show
that𝑈𝑛 ◦ 𝑋∗

0 = 𝑋
∗
𝑛, for any 𝑛 of Z. We name it shift operator because when (𝑋𝑛)𝑛∈Z

is unidimensional (𝐻 = C) and taking real values, then𝑈𝑋𝑛 = 𝑋𝑛+1.
From the shift operator𝑈 and (𝑋𝑛)𝑛∈Z, we define awhole family of shift operators.

For this, we use the notion of ampliation of a bounded operator of 𝐿2 (A).
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Definition 3 We name ampliation of an element 𝐴 of 𝐿 (𝐿2 (A)) the map 𝐴𝐻 defined
by 𝐾 ∈ 𝜎2 (𝐿2 (A), 𝐻) ↦→ 𝐾 ◦ 𝐴∗ ∈ 𝜎2 (𝐿2 (A), 𝐻).
Let us give some properties of the ampliation.

Theorem 6 i) For any 𝐴 of 𝐿 (𝐿2 (A)), 𝐴𝐻 is linear and bounded.
ii) For any 𝐴 of 𝐿 (𝐿2 (A)), (𝐴𝐻 )∗ = (𝐴∗)𝐻 .
iii) For any pair (𝐴, 𝐵) of elements of 𝐿 (𝐿2 (A)), (𝐴 ◦ 𝐵)𝐻 = 𝐴𝐻 ◦ 𝐵𝐻 .
iv) (𝐼𝐿2 (A) )𝐻 = 𝐼𝜎2 .

By I𝐻 ′ we denote the isometry 𝑋 ′ ∈ 𝐿2
𝐻 ′ (A) ↦→ 𝑋̃ ′ ∈ 𝜎2 (𝐿2 (A), 𝐻 ′). Let us

consider𝑈𝐻 ′ = I𝐻 ′ ◦𝑈𝐻 ′ ◦ I𝐻 ′ , which is clearly a unitary operator.

Theorem 7 i) For any 𝑛 of Z,𝑈𝑛
𝐻
𝑋0 = 𝑋𝑛.

ii) For any (𝐾, 𝑋 ′) of 𝐿 (𝐻 ′, 𝐻 ′′) × 𝐿2
𝐻 ′ (A),𝑈𝐻 ′′ (𝐾 ◦ 𝑋 ′) = 𝐾 ◦ (𝑈𝐻 ′𝑋 ′).

Let us briefly examine the proves of these properties. They come from the following.
𝑈𝑛

𝐻
𝑋0 = I∗

𝐻
◦ (𝑈𝐻 )𝑛 ◦ I𝐻 𝑋0 = I∗

𝐻
(𝑋0 ◦𝑈−𝑛) = I∗

𝐻
(𝑋𝑛) = 𝑋𝑛;�𝑈𝐻 ′′ (𝐾 ◦ 𝑋 ′) = 𝐾 ◦ 𝑋̃ ′ ◦𝑈−1 = 𝐾 ◦ �(𝑈𝐻 ′𝑋 ′) = �𝐾 ◦ (𝑈𝐻 ′𝑋 ′).

These tools let us define the filter of (𝑋𝑛)𝑛∈Z.
Definition 4 Afilter of (𝑋𝑛)𝑛∈Z is a series of the type (𝑈𝑛

𝐻 ′𝑋
′)𝑛∈Z, where 𝑋 ′ belongs

to 𝐿2
𝐻 ′ (A).

Theorem 8 A filter (𝑈𝑛
𝐻 ′𝑋

′)𝑛∈Z of (𝑋𝑛)𝑛∈Z is a 𝐻 ′−stationary series, and 𝑈 is its
shift operator.

Indeed, for any 𝑛 of Z, we have�𝑈𝑛
𝐻 ′𝑋 ′ = (𝑈𝐻 ′)𝑛 𝑋̃ ′ = 𝑋̃ ′ ◦𝑈−𝑛. (1)

From (1), we deduce that (𝑈𝑛
𝐻 ′𝑋

′)𝑛∈Z is a 𝐻 ′−stationary series:�𝑈𝑛
𝐻 ′𝑋 ′ ◦ �𝑈𝑚

𝐻 ′𝑋 ′∗ = 𝑋̃ ′ ◦𝑈−𝑛 ◦𝑈𝑚 ◦ 𝑋̃ ′∗ = 𝑋̃ ′ ◦𝑈𝑚−𝑛 ◦ 𝑋̃ ′∗ = �𝑈𝑛−𝑚
𝐻 ′ 𝑋 ′ ◦ �𝑈0

𝐻 ′𝑋 ′
∗
,

and that𝑈 is a shift operator of (𝑈𝑛
𝐻 ′𝑋

′)𝑛∈Z:𝑈𝑛 ◦ 𝑋̃ ′∗ = 𝑈𝑛 ◦ �𝑈0
𝐻 ′𝑋 ′

∗
= �𝑈𝑛

𝐻 ′𝑋 ′∗.
Such a filter can have the apearance of a moving average. Indeed, let {𝐴𝑝; 𝑝 ∈ Z}

be a family of elements of 𝐿 (𝐻, 𝐻 ′) such that {𝐴𝑝 ◦ 𝑋−𝑝; 𝑝 ∈ Z} is a summable
family of elements of 𝐿2

𝐻 ′ (A), of sum 𝑋 ′
0, we can affirm that {𝑈

𝑛
𝐻 ′ (𝐴𝑝◦𝑋−𝑝); 𝑝 ∈ Z}

is a summable family of sum 𝑈𝑛
𝐻 ′𝑋

′
0, because 𝑈

𝑛
𝐻 ′ is an isometry. For any 𝑝 of Z,

we have𝑈𝑛
𝐻 ′ (𝐴𝑝 ◦ 𝑋−𝑝) = 𝐴𝑝 ◦ 𝑋𝑛−𝑝 .

4 Trajectory

Let (X𝑛)𝑛∈Z be a series of elements of L2𝐻 (A) such that X𝑛 = 𝑋𝑛, for any 𝑛 of Z.

Definition 5 We name trajectory of the 𝐻−stationary series (𝑋𝑛)𝑛∈Z the map 𝑋 :
𝜔 ∈ Ω ↦→ (X𝑛 (𝜔))𝑛∈Z ∈ 𝐻Z.
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This trajectory may be considered as a random value, as it is measurable: 𝑇𝐻
𝑛 ◦ 𝑋 =

X𝑛. It is relevant to notice that if (X′
𝑛)𝑛∈Z is another series of elements of L2𝐻 (A)

such that X′
𝑛 = 𝑋𝑛, for any 𝑛 of Z, that is such that X𝑛 = X′

𝑛 𝑃−almost anywhere,
then for 𝑃−almost any 𝜔 of Ω, 𝑋𝜔 = 𝑋 ′𝜔, and then 𝑋𝑃 = 𝑋 ′𝑃. Thus the image
probability 𝑋𝑃 does not depend on the choice of the representative X𝑛.

Definition 6 We say that the 𝐻−stationary series (𝑋𝑛)𝑛∈Z has got an order 𝑝 peri-
odicity in distribution when 𝜃𝐻𝑝 𝑋𝑃 = 𝑋𝑃.

Especially, for any 𝑛 of Z, X𝑛+𝑝 (𝑃) = 𝑇𝐻
𝑛+𝑝𝑋𝑃 = 𝑇𝐻

𝑛 𝜃
𝐻
𝑝 𝑋𝑃 = 𝑇𝐻

𝑛 𝑋𝑃 = X𝑛 (𝑃).
When 𝑝 = 1, we talk about strict stationarity. Classically, strict stationarity is defined
differently, but in an equivalent way.
For any 𝑛 of Z, we have (𝑇𝐻

𝑛 )−1B𝐻 ⊂ B𝐻 , so X−1
𝑛 B𝐻 = 𝑋−1 (𝑇𝐻

𝑛 )−1B𝐻 ⊂
𝑋−1B𝐻 . Then the family {X𝑛; 𝑛 ∈ Z} is made of elements of L2

𝐻
(Ω, 𝑋−1B𝐻 , 𝑃)

and the family {𝑋𝑛; 𝑛 ∈ Z} of elements of 𝐿2
𝐻
(Ω, 𝑋−1B, 𝑃). From Theorem 2, we

can affirm the following.

Theorem 9 The map 𝑇𝐻 ′ : 𝑓 ∈ 𝐿2
𝐻 ′ (𝐻Z,B𝐻 , 𝑋𝑃) ↦→ 𝑓 ◦ 𝑋 ∈ 𝐿2

𝐻 ′ (𝑋−1B𝐻 ) is an
isometry.

5 Transmission of strict stationarity and ergodicity by filtering

We show here that the periodicity in distribution of order 1 and ergodicity are
transmitted by filtering. Let (𝑋𝑛)𝑛∈Z be a𝐻−stationary series such that 𝜃𝐻1 𝑋𝑃 = 𝑋𝑃.
As 𝜃𝐻1 𝑋𝑃 = 𝑋𝑃 and (𝜃𝐻1 )

−1B𝐻 = B𝐻 , Theorem 2 lets us establish the following.

Corollary 1 The map 𝑉 : 𝑡 ∈ 𝐿2 (𝐻Z,B𝐻 , 𝑋𝑃) ↦→ 𝑡 ◦ 𝜃𝐻1 ∈ 𝐿2 (𝐻Z,B𝐻 , 𝑋𝑃) is a
unitary operator.

We know that if 𝑇 ′ belongs to L2
𝐻 ′ (𝐻Z,B𝐻 , 𝑋𝑃), then 𝑇 ′ ◦ 𝑋 belongs to

L2
𝐻 ′ (Ω, 𝑋−1B𝐻 , 𝑃). So we have, between the two element, the following relation.

Lemma 2 For any 𝑇 ′ of L2
𝐻 ′ (𝐻Z,B𝐻 , 𝑋𝑃), 𝑇 ′ =

�
𝑇 ′ ◦ 𝑋 ◦ 𝑇C.

Indeed, 〈ℎ′, 𝑇 ′(.)〉 is a representative of 𝑇 ′
∗
ℎ′, and 〈ℎ′, 𝑇 ′(.)〉 ◦ 𝑋 of 𝑇C (𝑇 ′

∗
ℎ′).

But as 〈ℎ′, (𝑇 ′ ◦ 𝑋) (.)〉, that is 〈ℎ′, 𝑇 ′(.)〉 ◦ 𝑋 is a representative of
�
𝑇 ′ ◦ 𝑋

∗
ℎ′, we

can write
�
𝑇 ′ ◦ 𝑋

∗
ℎ′ = 𝑇C (𝑇 ′∗ℎ′), for any ℎ′ of 𝐻 ′, so

�
𝑇 ′ ◦ 𝑋

∗
= 𝑇C ◦ 𝑇 ′

∗
and then�

𝑇 ′ ◦ 𝑋 = 𝑇 ′ ◦ 𝑇∗
C
, that is

�
𝑇 ′ ◦ 𝑋 ◦ 𝑇C = 𝑇 ′. In the particular case where 𝑇 ′ = 𝑇𝐻

𝑛 , we
have the following.

Corollary 2 For any 𝑛 of Z, 𝑇𝐻
𝑛 = 𝑋𝑛 ◦ 𝑇C.
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If 𝑇 ′ belongs to L2
𝐻 ′ (𝐻Z,B, 𝑋𝑃), so it is for 𝑇 ′ ◦ 𝜃𝐻1 . The following property

establishes a relation between the two elements.

Lemma 3 For any 𝑇 ′ of L2
𝐻 ′ (𝐻Z,B𝐻 , 𝑋𝑃), 𝑉 ◦ 𝑇 ′

∗
=
�
𝑇 ′ ◦ 𝜃𝐻1

∗
.

The element𝑇 ′
∗
ℎ′, of 𝐿2

𝐻 ′ (𝐻Z,B, 𝑋𝑃), has as representative 〈ℎ′, 𝑇 ′(.)〉, so𝑉 ◦𝑇 ′
∗
ℎ′

has as representative 〈ℎ′, 𝑇 ′(.)〉 ◦ 𝜃𝐻1 .

As for�𝑇 ′ ◦ 𝜃𝐻1
∗
ℎ′, one of its representatives is 〈ℎ′, 𝑇 ′◦𝜃𝐻1 (.)〉, but as 〈ℎ′, 𝑇 ′(.)〉 ◦

𝜃𝐻1 = 〈ℎ′, 𝑇 ′ ◦ 𝜃𝐻1 (.)〉, we deduce that 𝑉 ◦𝑇 ′
∗
ℎ′ =

�
𝑇 ′ ◦ 𝜃𝐻1

∗
ℎ′. As it is exact for any

ℎ′ of 𝐻 ′, we have 𝑉 ◦ 𝑇 ′
∗
=
�
𝑇 ′ ◦ 𝜃𝐻1

∗
.

Lemma 3 and corollary 2 let us find a shift operator of the 𝐻−stationary series
(𝑋𝑛)𝑛∈Z.
Lemma 4 𝑇C ◦𝑉 ◦ 𝑇∗

C
is a shift operator of (𝑋𝑛)𝑛∈Z.

Indeed, 𝑇C ◦𝑉 ◦ 𝑇∗
C
◦ 𝑋𝑛

∗
= 𝑇C ◦𝑉 ◦ 𝑇𝐻

𝑛

∗
= 𝑇C ◦

�
𝑇𝐻
𝑛 ◦ 𝜃𝐻1

∗
= 𝑇C ◦ 𝑇𝐻

𝑛+1

∗
= �𝑋𝑛+1

∗
.

From these properties, we can prove the following.

Theorem 10 For any 𝑇 ′ of L2
𝐻 ′ (𝐻Z,B𝐻 , 𝑋𝑃),𝑈𝐻 ′ (𝑇 ′ ◦ 𝑋) = 𝑇 ′ ◦ 𝜃𝐻1 ◦ 𝑋 .

Indeed,𝑈𝐻 ′ (𝑇 ′ ◦ 𝑋) = I∗
𝐻 ′◦(𝑇C◦𝑉◦𝑇∗

C
)𝐻 ′◦I𝐻 ′𝑇 ′ ◦ 𝑋 = I∗

𝐻 ′ (
�
𝑇 ′ ◦ 𝑋◦𝑇C◦𝑉−1◦𝑇∗

C
) =

I∗
𝐻 ′ (𝑇 ′ ◦𝑉−1 ◦ 𝑇∗

C
) = I∗

𝐻 ′ (
�
𝑇 ′ ◦ 𝜃𝐻1 ◦ 𝑇∗

C
) = I∗

𝐻 ′ (
�

𝑇 ′ ◦ 𝜃𝐻1 ◦ 𝑋) = 𝑇 ′ ◦ 𝜃𝐻1 ◦ 𝑋 .
With a double induction, we can generalize the previous result.

Theorem 11 For any 𝑇 ′ of L2
𝐻 ′ (𝐻Z,B𝐻 , 𝑋𝑃) and for any 𝑛 of Z, we have

𝑈𝑛
𝐻 ′𝑇 ′ ◦ 𝑋 = 𝑇 ′ ◦ 𝜃𝐻𝑛 ◦ 𝑋 .

Now we have got the necessary tools to examine the trajectory 𝑋̂ ′ of a filter
(𝑈𝑛

𝐻 ′𝑋
′)𝑛∈Z as a function of the trajectory 𝑋 of the 𝐻−stationary series (𝑋𝑛)𝑛∈Z.

Theorem 12 There exists a measurable map 𝐹 from 𝐻Z in 𝐻 ′Z such that
i) 𝑋̂ ′ = 𝐹 ◦ 𝑋;
ii) 𝜃𝐻 ′

1 ◦ 𝐹 = 𝐹 ◦ 𝜃𝐻1 .
Let then (𝑈𝑛

𝐻 ′𝑋
′)𝑛∈Z be a 𝐻 ′−stationary series, filter of (𝑋𝑛)𝑛∈Z. Let 𝑇 ′ be an

element of L2
𝐻 ′ (𝐻Z,B𝐻 , 𝑋𝑃) such that 𝑇𝐻 ′𝑇 ′ = 𝑇 ′ ◦ 𝑋 = 𝑋 ′

0.
Let us consider the map 𝐹 : ℎ ∈ 𝐻Z ↦→ (𝑇 ′𝜃𝐻𝑛 ℎ)𝑛∈Z ∈ 𝐻 ′Z. This map is

measurable, because for any 𝑛 of Z, we have 𝑇𝐻 ′
𝑛 ◦ 𝐹 = 𝑇 ′ ◦ 𝜃𝐻𝑛 , and it is such that

𝜃𝐻
′

1 ◦ 𝐹 = 𝐹 ◦ 𝜃𝐻1 (𝐹 ◦ 𝜃𝐻1 ℎ = (𝑇 ′𝜃𝐻𝑛 𝜃
𝐻
1 ℎ)𝑛∈Z = (𝑇 ′𝜃𝐻

𝑛+1ℎ)𝑛∈Z = 𝜃
𝐻 ′

1 (𝑇 ′𝜃𝐻𝑛 ℎ)𝑛∈Z =
𝜃𝐻

′

1 𝐹ℎ).

For any 𝑛 of Z, we have𝑈𝑛
𝐻 ′𝑋

′
0 = 𝑈

𝑛
𝐻 ′𝑇 ′ ◦ 𝑋 = 𝑇 ′ ◦ 𝜃𝐻𝑛 ◦ 𝑋 .

So 𝑇 ′ ◦ 𝜃𝐻𝑛 ◦ 𝑋 , element of L2
𝐻 ′ (Ω, 𝑋−1B𝐻 , 𝑃), is a representative of 𝑈𝑛

𝐻 ′𝑋
′
0,

element of 𝐿2
𝐻 ′ (Ω, 𝑋−1B𝐻 , 𝑃). The trajectory 𝑋̂ ′ of (𝑈𝑛

𝐻 ′𝑋
′
0)𝑛∈Z is then such that

𝑋̂ ′(𝜔) = (𝑇 ′𝜃𝐻1 𝑋𝜔)𝑛∈Z = 𝐹𝑋𝜔, for any 𝜔 of Ω, so we have 𝑋̂ ′ = 𝐹 ◦ 𝑋 .
This factorization lets us prove the strict stationarity of the filtered series.
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Corollary 3 𝜃𝐻 ′

1 𝑋̂ ′𝑃 = 𝑋̂ ′𝑃.

Indeed, 𝜃𝐻 ′

1 𝑋̂ ′𝑃 = 𝜃𝐻
′

1 𝐹𝑋𝑃 = 𝐹𝜃𝐻1 𝑋𝑃 = 𝐹𝑋𝑃 = 𝑋̂ ′𝑃.
We recall that a 𝐻−stationary series (𝑋𝑛)𝑛∈Z is said to be ergodic when, for any

𝐵 of B𝐻 , 𝑃(𝑋−1𝐵Δ(𝜃𝐻1 )
−1𝑋−1𝐵) = 0 implies either 𝑋𝑃𝐵 = 𝑃𝑋−1𝐵 = 0, either

𝑋𝑃𝐵 = 1, where Δ is the symmetric difference.

Theorem 13 If (𝑋𝑛)𝑛∈Z is ergodic, so it is is for (𝑈𝑛
𝐻 ′𝑋

′
0)𝑛∈Z.

For any 𝐵′ of B𝐻 ′ , we have 𝑋̂ ′𝑃(𝐵′Δ(𝜃𝐻 ′

1 )−1𝐵′) = 𝐹𝑋𝑃(𝐵′Δ(𝜃𝐻 ′

1 )−1𝐵′) =

𝑋𝑃(𝐹−1 (𝐵′Δ(𝜃𝐻 ′

1 )−1𝐵′)) = 𝑋𝑃(𝐹−1𝐵′Δ𝐹−1 (𝜃𝐻 ′

1 )−1𝐵′) = 𝑋𝑃(𝐹−1𝐵′Δ(𝜃𝐻1 )
−1𝐹−1𝐵′).

If 𝑋̂ ′𝑃(𝐵′Δ(𝜃𝐻 ′

1 )−1𝐵′) = 0, then 𝑋𝑃(𝐹−1𝐵′Δ(𝜃𝐻1 )
−1𝐹−1𝐵′) = 0.

Either 𝑋𝑃𝐹−1𝐵′ = 0, and then 0 = 𝐹𝑋𝑃𝐵′ = 𝑋̂ ′𝑃𝐵′, either 𝑋𝑃𝐹−1𝐵′ = 1, and
then 1 = 𝑋̂ ′𝑃(𝐵′Δ(𝜃𝐻 ′

1 )−1𝐵′) = 𝐹𝑋𝑃𝐵′ = 𝑋̂ ′𝑃𝐵′ = 0.

6 Deployment

Definition 7 We name deployment of order 𝑝 of the 𝐻−stationary series (𝑋𝑛)𝑛∈Z
the series (𝑌𝑛)𝑛∈Z = (∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦ 𝑋𝑝𝑛+ 𝑗−1)𝑛∈Z.

It is easy to establish the following.

Theorem 14 The deployment of order 𝑝 of a 𝐻−stationary series is a H−stationary
series.

From𝑌𝑛 (𝜔) =
∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦ 𝑋𝑝𝑛+ 𝑗−1 (𝜔) =

∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦𝑇𝑝𝑛+ 𝑗−1𝑋 (𝜔), we deduce, with

obvious notation, that
𝑌 (𝜔) = (𝑌𝑛 (𝜔))𝑛∈Z = ((∑𝑝

𝑗=1 𝐾
𝐻
𝑗
◦ 𝑇𝑝𝑛+ 𝑗−1)𝑋 (𝜔))𝑛∈Z = F ◦ 𝑋 (𝜔).

Hence the relations between the trajectories of (𝑋𝑛)𝑛∈Z with that of its deployment
of order 𝑝 (𝑌𝑛)𝑛∈Z:

𝑌 = F ◦ 𝑋 and L ◦ 𝑌 = 𝑋 .

Theorem 15 If 𝑈 is a shift operator of (𝑋𝑛)𝑛∈Z, then 𝑈 𝑝 is a shift operator of
(𝑌𝑛)𝑛∈Z issued from a deployment of order 𝑝.

Indeed, 𝑈 𝑝 ◦ 𝑌𝑛
∗
= 𝑈 𝑝 ◦ ∑𝑝

𝑗=1 𝑋
∗
𝑝𝑛+ 𝑗−1 ◦ (𝐾𝐻

𝑗
)∗ =

∑𝑝

𝑗=1 𝑋
∗
𝑝𝑛+𝑝+ 𝑗−1 ◦ (𝐾𝐻

𝑗
)∗ =∑𝑝

𝑗=1 𝑋
∗
𝑝 (𝑛+1)+ 𝑗−1 ◦ (𝐾𝐻

𝑗
)∗ = 𝑌 ∗

𝑛+1.
Let us consider a 𝐻 ′−stationary series (𝑋 ′

𝑛)𝑛∈Z, filtered from (𝑋𝑛)𝑛∈Z, 𝑋 ′
𝑛 =

𝑈𝑛
𝐻 ′𝑋

′
0. With obvious notation, (𝐾

𝐻 ′
𝑗
ℎ′ = (𝛿 𝑗𝑙ℎ′)𝑙=1,..., 𝑝), its deployment of order 𝑝

is the series (𝑌 ′
𝑛)𝑛∈Z = (∑𝑝

𝑗=1 𝐾
𝐻 ′
𝑗

◦ 𝑋 ′
𝑝𝑛+ 𝑗−1)𝑛∈Z.

Theorem 16 The H ′−stationary series (H ′ = 𝐻 ′𝑝) (𝑈𝑛
H′𝑌

′
0)𝑛∈Z is a filtered series

of the H−stationary series (𝑌𝑛)𝑛∈Z.

Indeed, for any 𝑛 ofZ, we have𝑈𝑛
H′𝑌

′
0 = (I∗

H′◦(𝑈 𝑝)H′◦IH′)𝑛𝑌 ′
0 = I∗

H′◦((𝑈 𝑝)H′)𝑛◦
𝑌 ′
0 = I∗

H′ ((𝑈 𝑝)𝑛)H′
𝑌 ′
0 = I∗

H′𝑌
′
0 ◦𝑈

−𝑝𝑛 = I∗
H′𝑌

′
𝑛 = 𝑌 ′

𝑛.
So the deployment (𝑌 ′

𝑛)𝑛∈Z is equal to (𝑈𝑛
H′𝑌

′
0)𝑛∈Z, that is a filtered of the de-

ployment (𝑌𝑛)𝑛∈Z. We summarize these result in Figure 1.
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(𝑋𝑛)𝑛∈Z
deployment
−−−−−−−−→ (𝑌𝑛)𝑛∈Zy filter y filter

(𝑋 ′
𝑛)𝑛∈Z

deployment
−−−−−−−−→ (𝑌 ′

𝑛)𝑛∈Z

Fig. 1 Summary of relations deployment-filtering

7 Transmission of the periodicity in distribution

Let us now assume that (𝑋𝑛)𝑛∈Z is periodic of order 𝑝 in distribution, so 𝜃𝐻𝑝 𝑋𝑃 =

𝑋𝑃.
The trajectory 𝑌 of the deployment of order 𝑝 is such that 𝑌 = F ◦ 𝑋 .
So we have 𝜃H1 𝑌𝑃 = 𝜃H1 F 𝑋𝑃 = F 𝜃𝐻𝑝 𝑋𝑃 = F 𝑋𝑃 = 𝑌𝑃.
This means that the series (𝑌𝑛)𝑛∈Z, deployment of order 𝑝 of (𝑋𝑛)𝑛∈Z, is periodic

in distribution of order 1, and then so it is for the filter (𝑌 ′
𝑛)𝑛∈Z of (𝑌𝑛)𝑛∈Z (the

periodicity in distribution of order 1 is transmitted by filtering).
So we have 𝜃H′

1 𝑌
′𝑃 = 𝑌 ′𝑃 (with obvious notation, F ′ is a map from 𝐻 ′Z into

H ′Z and L ′ its reverse). So the trajectory 𝑋̂ ′ of (𝑋 ′
𝑛)𝑛∈Z is such that 𝑋̂ ′ = L ′ ◦ 𝑌 ′.

Then we have 𝜃𝐻 ′
𝑝 𝑋̂ ′𝑃 = 𝜃𝐻

′
𝑝 L ′𝑌 ′𝑃 = L ′𝜃H

′

1 𝑌
′𝑃 = L ′𝑌 ′𝑃 = 𝑋̂ ′𝑃. As a conclu-

sion, the filtered series (𝑌 ′
𝑛)𝑛∈Z is periodic of order 𝑝 in distribution. The periodicity

in distribution of order 𝑝 is transmitted by filtering. More generally, we can prove
that the strict stationarity is also transmitted by filtering for any series (𝑋𝑔)𝑔∈𝐺 ,
where 𝐺 is an abelian locally compact group (e.g. R𝑘 ,Z𝑘 ).
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