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FROM UNBALANCED OPTIMAL TRANSPORT TO THE
CAMASSA-HOLM EQUATION

FRANÇOIS-XAVIER VIALARD

In the first part of the talk, we present a natural extension of the Wasserstein L2 metric
on the space of probablility measures to the space of positive Radon measures that do
not have the same total mass. This generalization can be seen as a Riemannian analog of
the flat norm on the space of measures. We introduce it as the infimal convolution of the
Wasserstein and the Fisher-Rao metric using a dynamic formulation. We then show its
equivalent static formulation efficient for computations. In the second part, we present,
via a generalization of Otto’s Riemannian submersion the link between this new metric on
the space of probabilities and the Camassa-Holm equation. The Camassa-Holm equation
is a geodesic equation for a right-invariant metric on the group of diffeomorphisms. Our
point of view gives an isometric embedding of the group in a Hilbert manifold which has
interesting analytical consequences.

INTEGRAL MENGER CURVATURE

DAMIAN DĄBROWSKI

In knot theory, knots are equivalence classes of a certain equivalence relation. Each knot
class consists of many different representatives, some of them being more complicated,
some others – less complicated. In order to find the simplest, optimal shapes for knots,
one considers certain functionals known as knot energies. An example of such functional
is integral Menger curvature

Mp(γ) =

∫
γ

∫
γ

∫
γ

1

R(x, y, z)p
dH1(x)dH1(y)dH1(z),

where R(x, y, z) denotes radius of the unique circle passing through x, y, z.
In the talk I will discuss some basic properties of Mp, as well as the connection to

Sobolev-Slobodeckij spaces. Stress will be put on the scale invariant case p = 3.

DIFFERENTIATION OF REAL FUNCTIONS ALONG RECTANGLES

LAURENT MOONENS

Given a family R of rectangles in Rn of the form [0, α1] × · · · × [0, αn], we let B :=
{τ(I) : I ∈ R, τ translation} be the associated (translation-invariant) differentiation basis
and define a maximal operator MR by:

MRf(x) := sup
I∈B,I3x

1

|I|

∫
I

|f |.

Given X ⊆ L1(Rn) an Orlicz space, it is often the case that the two following properties
are equivalent:

(A) MRf(x) < +∞ for a.e. x ∈ Rn;



(B) R differentiates X in the sense that for all f ∈ X, one has:

f(x) = lim
x∈I∈R,diam I→0

1

|I|

∫
I

f,

for a.e. x ∈ Rn.
In this talk we shall discuss some geometrical properties on R that guarantee or not

the validity of properties (A) & (B) above for some classical Orlicz spaces X. We shall
particularly focus on the case n = 2, survey the classical results obtained in this case,
and see how things change in the plane when rectangles from R are allowed to rotate
around their lower left vertex, with an angle belonging to some small set. If time allows
us to do so, we shall also discuss recent results obtained jointly with E. D’Aniello in the
n-dimensional case.

DIMENSION REDUCTION FOR OPTIMAL POINT CONFIGURATIONS

MIRCEA PETRACHE

I will present some new techniques developed with L. Betermin for studying the struc-
ture of minimising point configurations for long-range interactions, amongst lattices and
more general point configurations.

In all cases the problem is simplified by looking at layers within the configurations and
reducing the dimension of the problem.

I will mention the links to Computer Science problems, to the Thompson problem, and
to crystallization conjectures in Statistical Physics.

VARIFOLDS AND DISCRETE SURFACES

BLANCHE BUET

We aim at connecting tools from geometric measure theory (varifolds) to practical issues
in discrete geometry (notion of discrete curvature, geometric motions, surface comparison,
etc.).

Varifolds have been introduced by F. Almgren in 1965 to study minimal surfaces. They
have been widely used in order to study existence and regularity of solutions to geometric
variational problems, but in general for theoretical purpose. The structure of varifold is
flexible enough so that both regular surfaces and discrete surfaces (point clouds, triangu-
lated surfaces or volumetric representations for instance) can be provided with a varifold
structure, allowing to study surfaces and their different discretizations in a consistent
unified setting. In this framework, we propose a notion of discrete mean curvature ob-
tained by regularization of the first variation, which has nice estimation and convergence
properties. We illustrate this notion on 2D and 3D examples.

H-DISTRIBUTIONS AND COMPENSATED COMPACTNESS

MARIN MIŠUR

H-measures, introduced independently by Luc Tartar and Patrick Gerard, are matrix
Radon measures describing the behaviour of weak limits of quadratic quantities. They
proved to be very successful tool in investigations of asymptotic limits of quadratic quan-
tities. However, they turned insufficient for nonlinear problems.

H-distributions were introduced by Antonić and Mitrović as an extension of H-measures
to the Lp−Lq setting. Their variants have been successfully applied to problems in velocity
averaging (Lazar-Mitrović 2012) and compensated compactness with variable coefficients



(Mišur-Mitrović 2015). Unlike H-measures, which are nonnegative Radon measures, H-
distributions are distributions in the Schwartz sense, which follows from the standard
Schwartz kernel theorem.

To give a precise description of H-distributions, we will introduce the notion of anisotropic
distributions – distributions of different order with respect to different coordinate direc-
tions. In order to show that H-distributions are anisotropic distributions of finite order
with respect to every coordinate direction, we will prove a variant of Schwartz kernel
theorem.

In the second part of the talk, we will show a variant of compensated compactness using
a variant of H-distributions. Namely, we will investigate conditions under which, for two
sequences (ur) and (vr) weakly converging to u and v in Lp(Rd;RN) and Lq(Rd;RN),
respectively, 1/p+1/q ≤ 1, a quadratic form q(x;ur,vr) =

∑N
j,m=1 qjm(x)ujrvmr converges

toward q(x;u,v) in the sense of distributions. The conditions involve fractional derivatives
and variable coefficients, and they represent a generalization of the known compensated
compactness theory. We will apply the developed techniques to a nonlinear (degenerate)
parabolic equation.

This talk will present results of joint works with Nenad Antonić, Marko Erceg and
Darko Mitrović.
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