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Abstract. This is a survey on natural local torus actions which arise in inte-

grable dynamical systems, and their relations with other subjects, including:

reduced integrability, local normal forms, affine structures, classical and quan-
tum monodromy, global invariants, integrable surgery, convexity properties of

momentum maps, localization formulas.
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1. Introduction

To say that everything is a torus would be a great exageration, but to say that
everything contains a torus would not be too far from the truth. According to
ancient oriental philosophy, everything can be described by (a combination of) five
elemental aspects, or phases: regular, transitive, expansive, chaotic, and contrac-
tive, and if we look at these five phases as a whole then they also form cycles.

This survey paper is concerned with regular aspects of things. Mathematically,
they correspond to regular dynamics, or integrable dynamical systems. The motto
of this paper is: an integrable system is a local torus action. The main dynamical
property of a regular dynamical system is its quasi-periodic behavior. Mathemat-
ically, it means that the system is invariant under a (local) torus action. These
torus actions exist near compact regular orbits (Liouville’s theorem). To a great
extent, they exist near singularities of integrable systems as well, and this is one of
the main topics of the paper (Section 3 and Section 4). Even when we don’t see
any torus at first, they are hidden somewhere: for example, multi-soliton solutions
of the Korteweg–de Vries equation can be seen as homo/heteroclinic solutions of
another system (the Neumann system) for which there are plenty of tori, see e.g.
[60].

Other topics discussed in this paper, which can be seen from the table of con-
tents, include: reduced integrability, proper groupoid actions, intrinsic convexity
properties of momentum maps, classical and quantum monodromy, global invari-
ants, localization formulas. Of course, they are all intimately related to local torus
actions.

This paper only deals with finite-dimensional dynamical systems, i.e. ordinary
differential equations, though some ideas and results can probably be extended to
the infinite-dimensional case.

2. Integrability, torus actions, and reduction

2.1. Integrability à la Liouville.
Probably the most well-kown notion of integrability in dynamical systems is the

notion of integrability à la Liouville for Hamiltonian systems on symplectic mani-
folds. Denote by (M2n, ω) a symplectic manifold of dimension 2n with symplectic
form ω, and H a function on M2n. Denote by XH the Hamiltonian vector field of
H on M2n:

(2.1) iXH
ω = −dH .

Definition 2.1. A function H (or the corresponding Hamilonian vector field XH)
on a 2n-dimensional symplectic manifold (M2n, ω) is called integrable à la Liouville,
or Liouville-integrable, if it admits n functionally independent first integrals in
involution. In other words, there are n functions F1 = H,F2, . . . , Fn on M2n such
that dF1 ∧ · · · ∧ dFn 6= 0 almost everywhere and {Fi, Fj} = 0 ∀ i, j.
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In the above definition, {Fi, Fj} := XFi
(Fj) denotes the Poisson bracket of Fi

and Fj with respect to the symplectic form ω. The map

(2.2) F = (F1, . . . , Fn) : (M2n, ω) → Kn

is called the momentum map (K = R or C). The above definition works in many
categories: smooth, real analytic, holomorphic, formal, etc.

The condition XH(Fi) = {H,Fi} = 0 implies that the Hamiltonian vector field
XH is tangent to the level sets of F. Let N = F−1(c) be a regular connected
(component of a) level set of F. Then it is a Lagrangian submanifold of M2n:
the dimension of N is half the dimension of M2n, and the restriction of ω to N is
zero. So we can talk about a (singular) Lagrangian foliation/fibration given by the
momentum map.

The classical result of Liouville [53] says that, in the smooth or real analytic case,
if a connected level set N is compact and does not intersect with the boundary of
M2n, then it is diffeomorphic to a standard torus Tn, and the Hamiltonian system
XH is quasi-periodic on N : in other words, there is a periodic coordinate system
(q1, . . . , qn) on N with respect to which the restriction of XH to N has constant
coefficients: XH =

∑
γi∂/∂qi, γi being constants. For this reason, N is called a

Liouville torus.
The description of a Liouville-integrable Hamiltonian system near a Liouville

torus is given by the following theorem about the existence of action-angle vari-
ables. This theorem is often called Arnold-Liouville theorem, but it was essentially
obtained by Henri Mineur in 1935 [56, 57]:

Theorem 2.2 (Liouville-Mineur-Arnold). Let N be a Liouville torus of a Liouville-
integrable Hamiltonian system with a given momentum map F : (M2n, ω) → Rn.
Then there is a neighborhood U(N) of N and a smooth symplectomorphism

(2.3) Ψ : (U(N), ω) → (Dn × Tn,
n∑
1

dνi ∧ dµi)

(νi - coordinates of Dn, µi (mod 1) - periodic coordinates of Tn) such that F depends
only on Ii = φ∗νi, i.e. F does not depend on φi = φ∗µi.

The variables (Ii, φi) in the above theorem are called action-angle variables. The
map

(2.4) (I1, . . . , In) : (U(N), ω) → Rn

is the momentum map of a Hamiltonian torus Tn-action on (U(n), ω) which pre-
serves F. The existence of this Hamiltonian torus action is essentially equivalent to
Liouville-Mineur-Arnold theorem: once the action variables are found, angle vari-
ables can also be found easily by fixing a Lagrangian section to the foliation by
Liouville tori. The quasi-periodicity of the system on N also follows immediately
from the existence of this torus action.

The existence of action-angle variables is very important, both for the theory of
near-integrable systems (K.A.M. theory), and for the quantization of integrable sys-
tems (Bohr-Sommerfeld rule). Actually, Mineur was an astrophysicist, and Bohr-
Sommefeld quantization was his motivation for finding action-angle variables.
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Mineur [57] also wrote down the following simple formula, which we will call
Mineur–Arnold formula, for action functions:

(2.5) Ii(z) =
∫

Γi(z)

β

where z is a point in U(N), β is a primitive of the symplectic form ω, i.e. dβ = ω,
and Γi(z) is an 1-cycle on the Liouville torus which contains z (and which depends
on z continuously).

In the case of algebraically integrable systems (see e.g. [1]), where invariant tori
can be identified with (the real part of) Jacobian or Prym varieties of complex curves
(spectral curves of the system), the integral in Mineur–Arnold formula corresponds
to Abelian integrals on complex curves, as observed by Novikov and Veselov [70].

As observed by many people (see e.g. [35, 43] and Section 3), Mineur-Arnold
formula is very useful near singularities of the momentum map as well.

2.2. Generalized Liouville integrability.
In practice, one often deals with Hamiltonian systems which admit a non-Abelian

group of symmetries, or Hamiltonian systems on Poisson (instead of symplectic)
manifolds. A typical example is an Euler equation on the dual of a Lie algebra.
For such systems, Liouville integrability needs to be replaced by a more general
and convenient notion of integrability, which nevertheless retains the main feature
of Liouville integrability, namely the existence of local torus actions.

Let (M, Π) be a Poisson manifold, with Π being the Poisson structure. It means
that Π is a 2-vector field on M such that the following binary operation on the
space of functions on M , called the Poisson bracket,

(2.6) {H,F} = 〈dH ∧ dF, Π〉

is a Lie bracket, i.e. it satisfies the Jacobi identity. A symplectic manifold is also a
Poisson manifold. Conversely, a Poisson manifold can be seen as a singular foliation
by symplectic manifolds, see e.g. [75]

Let H be a function on a Poisson manifold (M, Π), and XH the corresponding
Hamiltonian vector field: XH = dHyΠ. Let F be a set of first integrals of XH ,
i.e. each F ∈ F is a function on M which is preserved by XH (equivalently,
{F,H} = 0). Denote by ddim F the functional dimension of F , i.e. the maximal
number of functions in F which are functionally independent almost everywhere.

We will associate to F the space XF of Hamiltonian vector fields XE such that
XE(F ) = 0 for all F ∈ F and E is functionally dependent of F (i.e. the functional
dimension of the union of F with the function E is the same as the functional
dimension of F). Clearly, the vector fields in XF commute pairwise and commute
with XH . Denote by ddim XF the functional dimension of XF , i.e. the maximal
number of vector fields in X which are linearly independent at almost every point.
Note that we always have ddim F + ddim XF ≤ m, because the vector fields in XF
are tangent to the common level sets of the functions in F .

The following definition is essentially due to Nekhoroshev [61] and Mischenko
and Fomenko [59] :

Definition 2.3. A Hamiltonian vector field XH on an m-dimensional Poisson man-
ifold (M, Π) is called integrable in generalized Liouville sense if there is a set of first
integrals F such that ddim F + ddim XF = m.
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The above notion of integrability is also called noncommutative integrability, due
to the fact that the functions in F do not Poisson-commute in general, and in many
cases one may choose F to be a finite-dimensional non-commutative Lie algebra of
functions (under the Poisson bracket). When the functions in F Poisson-commute
and the Poisson structure is nondegenerate, we get back to the usual integrability
à la Liouville.

Denote q = ddim F , p = ddim XF . Then we can find p Hamiltonian vector fields
X1 = XE1 , ..., Xp = XEp ∈ XF and q functions F1, ..., Fq ∈ F such that we have:

(2.7)
XH(Fi) = 0, [XH , Xi] = 0, [Xi, Xj ] = 0, Xi(Fj) = 0 ∀ i, j ,
X1 ∧ . . . Xp 6= 0 and dF1 ∧ . . . dFq 6= 0 almost everywhere.

The existence of such a p-tuple X = (X1, ..., Xp) of commuting Hamiltonian vector
fields and q-tuple F = (F1, ..., Fq) of common first integrals with p + q = m is
equivalent to the integrability in the generalized Liouville sense. When p + q = m,
we will say that H is integrable with the aid of (F,X), and by abuse of language,
we will also say that (F,X) is an integrable Hamiltonian system in generalized
Liouville sense. The map

(2.8) F = (F1, ..., Fq) : (M, Π) → Kq

(where K = R or C) is called the generalized momentum map. The (regular) level
sets of this map are called invariant manifolds: they are invariant with respect to
XH , X and F. They are of dimension p, lie on the symplectic leaves of M , and are
isotropic. When p < 1

2 rank Π, i.e. when the invariant manifolds are isotropic but
non-Lagrangian, one also speaks of degenerate integrability, or superintegrability,
see e.g. [30, 61, 63].

Definition 2.4. With the above notations, a Hamiltonian system XH , on a real
Poisson manifold (M, Π), integrable with the aid of (F,X), is called proper if the
generalized momentum map F : M → Rq is a proper map from M to its image, and
the image of the singular set {x ∈ M,X1 ∧X2 ∧ ...∧Xp(x) = 0} of the commuting
Hamiltonian vector fields under the momentum map F : M → Rq is nowhere dense
in Rq.

Under the properness condition, one get a natural generalization of the classical
Liouville-Mineur-Arnold theorem [61, 59]: outside the singular region, the Poisson
manifold M is foliated by invariant isotropic p-dimensional tori on which the flow
of XH is quasi-periodic, and there exist local action-angle coordinates. The action
variables can still be defined by Mineur-Arnold formula (2.5). There will be p
action and p angle variables (so one will have to add (q − p) variables to get a full
system of variables). In particular, near every isotropic invariant torus there is a
free Hamiltonian Tp-action which preserves the system.

For example, a Hamiltonian Tp-action on a Poisson manifold can be seen as a
proper integrable system – the space of first integrals is the space of Tp-invariant
functions, and in this case we have a global Tp-action which preserves the system.
More generally, one can associate to each Hamiltonian compact group action on
a Poisson manifold a proper integrable system, see Subsection 2.4 and Subsection
5.2.

There is a natural question: is an integrable system in generalized Liouville sense
on a symplectic manifold also integrable à la Liouville ? In general, one expects the
answer to be Yes. See e.g. Fomenko [33] for a long discussion on this question, and
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the related question about the existence of Liouville-integrable systems on given
symplectic manifolds.

Remark 2.5. Another natural question is the following. Let FH denote the
space of all first integrals of H. Suppose that H is integrable in generalized
Liouville sense. Is it true that H is integrable with the aid of (FH ,XFH

), i.e.
ddim FH + ddim XFH

= 0? We expect the answer to be yes for “reasonable” sys-
tems. It is easy to see that the answer is Yes in the proper integrable case, under
the additional assumption that the orbits of XH are dense (i.e. its frequencies are
incommensurable) on almost every invariant torus (i.e. common level of a given
set of first integrals F). In this case XFH

consists of the Hamiltonian vector fields
whose flow is quasi-periodic on each invariant torus. Another case where the answer
is also Yes arises in the study of local normal forms of analytic integrable vector
fields, see Section 3.

2.3. Non-Hamiltonian integrability.
There are many physical non-Hamiltonian (e.g. non-holonomic) systems, who

may naturally be called integrable in a non-Hamiltonian sense, because their be-
havior is very similar to that of integrable Hamiltonian systems, see e.g. [7, 20]. A
simple example is the Chinese top. (It is a spinning top whose lower part looks like
a hemisphere and whose upper part is heavy. When you spin it, it will turn upside
down after a while). The notion of non-Hamiltonian integrability was probably first
introduced by Bogoyavlenskij (see [10] and references therein), who calls it broad
integrability, though other authors also arrived at it independently, from different
points of view, see e.g. [7, 10, 20, 67, 86].

Definition 2.6. A vector field X on a manifold M is called integrable in non-
Hamiltonian sense with the aid of (F ,X ), where F is a set of functions on M and
X is a set of vector fields on M , if the following conditions are satisfied :
a) X(F ) = 0 and Y (F ) = 0 ∀ F ∈ F , Y ∈ X ,
b) [Y, X] = [Y, Z] = 0 ∀ Y, Z ∈ X ,
d) dim M = ddim F + ddim X .
In the real case, if, moreover, there is a p-tuple X = (X1, ..., Xp) of vector fields in
X and a q-tuple F = (F1, ..., Fq) of functionally independent functions in F , where
p = ddim X and q = ddim F , such that the map F : M → Rq is a proper map
from M to its image, and for almost every level set of this map the vector fields
X1, ..., Xp are linearly independent everywhere on this level set, then we say that
X is proper integrable with the aid of (F,X), and by abuse of language we will also
say that (F,X) is a proper integrable non-Hamiltonian system of bi-degree (p, q)
of freedom.

So non-Hamiltonian integrability is the same as Hamiltonian integrability; except
for the fact that the vector fields X, X1, . . . , Xp are not required to be Hamiltonian.
It is not surprising that Liouville’s theorem holds for proper non-Hamiltonian inte-
grable systems as well: each regular invariant manifold (connected level set of F) is
a p-dimensional torus on which the system is quasi-periodic, and in a neighborhood
of it there is a free Tp-torus action which preserves the system.

If a Hamiltonian system is (proper) integrable in the generalized Liouville sense,
then of course it is also (proper) integrable in the non-Hamiltonian sense, though
the inverse is not true: it may happen that the invariant tori are not isotropic, see
e.g. [10].
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Remark 2.7. Remark 2.5 also applies to non-Hamiltonian systems: For an inte-
grable vector field X on a manifold M , denote by FX the set of all first integrals
of X, and by XX the set of all vector fields which commute with X and pre-
serve every function in F . Then a natural question is, do we have the equality
ddim FX +ddim XX = dim M ? The answer is similar to the Hamiltonian case. In
particular, if the system is proper and the vector field X is nonresonant (i.e. has a
dense orbit) on almost every invariant torus, then the answer is yes.

2.4. Reduced integrability of Hamiltonian systems.
In the literature, when people speak about integrability of a dynamical system,

they often actually mean its reduced integrability, i.e. integrability of the reduced
(with respect to a natural symmetry group action) system. For example, consider
an integrable spinning top (e.g. the Kovalevskaya top). Its configuration space is
SO(3), so it is naturally a Hamiltonian system with 3 degrees of freedom. But it
is often considered as a 2-degree-of-freedom integrable system (with a parameter),
see e.g. [11].

Curiously, to my knowledge, the natural question about the effect of reduction
on integrability has never been formally addressed in monographs on dynamical
systems. In [88], we studied this question, and showed that, for a Hamiltonian
system invariant under the proper action of a Lie group, integrability is essentially
equivalent to reduced integrability.

It turns out that the most natural notion of integrability to use here is not the
Liouville integrability, but rather the integrability in generalized Liouville sense.
Also, since the category of manifolds is not invariant under the operation of taking
quotient with respect to a proper group action, we have to replace manifolds by
generalized manifolds: in this paper, a generalized manifold is a differentiable space
which is locally isomorphic to the quotient of a manifold by a compact group action.
Due to well-kown results about functions invariant under compact group actions,
see e.g. [62], one can talk about smooth functions, vector fields, differential forms,
etc. on generalized manifolds, and the previous integrability definitions work for
them as well.

Let (M, Π) be a Poisson generalized manifold, G a Lie group which acts properly
on M , H a function on M which is invariant under the action of G. Then the
quotient space M/G is again a Poisson generalized manifold, see e.g. [21]. We will
denote the projection of Π,H, XH on M/G by Π/G, H/G,XH/G respectively. Of
course, XH/G is the Hamiltonian vector field of H/G.

We will assume that the action of G on (M, Π) is Hamiltonian, with an equivari-
ant moment map π : M → g∗, where g denotes the Lie algebra of G, and that the
following additional condition is satisfied: Recall that the image π(M) of M under
the moment map π : M → g∗ is saturated by symplectic leaves (i.e. coadjoint
orbits) of g∗. Denote by s the minimal codimension in g∗ of a coadjoint orbit which
lies in π(M). Then the additional condition is that there exist s functions f1, ..., fs

on g∗, which are invariant on the coadjoint orbits which lie in π(M), and such that
for almost every point x ∈ M we have df1 ∧ ... ∧ dfs(π(x)) 6= 0. For example, when
G is compact and M is connected, then this condition is satisfied automatically.

With the above notations and assumptions, we have :

Theorem 2.8 ([88]). If the system (M/G,XH/G) is integrable in generalized Li-
ouville sense, then the system (M,XH) also is. Moreover, if G is compact and
(M/G,XH/G) is proper, then (M,XH) also is.
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Similar results to Theorem 2.8 have been obtained independently by Bolsinov
and Jovanovic [12, 46], who used them to construct new examples of integrable
geodesic flows, e.g. on biquotients of compact Lie groups.

Examples. 1) The simplest example which shows an evident relationship be-
tween reduction and integrability is the classical Euler top : it can be written as a
Hamiltonian system on T ∗SO(3), invariant under a natural Hamiltonian action of
SO(3), is integrable with the aid of a set of four first integrals, and has 2-dimensional
isotropic invariant tori. 2) The geodesic flow of a bi-invariant metric on a compact
Lie group is also properly integrable : in fact, the corresponding reduced system is
trivial (identically zero). More generally, let H = h ◦ µ be a collective Hamiltonian
in the sense of Guillemin–Sternberg (see e.g. [40]), where µ : M → g∗ is the mo-
mentum map of a Hamiltonian compact group action, and h is a function on g∗. If
h is a Casimir function on g∗, then H is integrable because its reduction will be a
trivial Hamiltonian system.

Since [88] will be available as a preprint only (not submitted for publication as
a separate paper), let us include here a full proof of this theorem.

Proof. Denote by F ′ a set of first integrals of XH/G on M/G which provides
the integrability of XH/G, and by X ′ = XF ′ the corresponding space of commuting
Hamiltonian vector fields on M/G. We have dim M/G = p′+q′ where p′ = ddim X ′
and q′ = ddim F ′.

Recall that, by our assumptions, there exist s functions f1, ..., fs on g∗, which
are functionally independent almost everywhere in π(M), and which are invariant
on the coadjoint orbits which lie in π(M). Here s is the minimal codimension in
g∗ of the coadjoint orbits which lie in π(M). We can complete (f1, ..., fs) to a set
of d functions f1, ..., fs, fs+1, ..., fd on g∗, where d = dim G = dim g denotes the
dimension of g , which are functionally independent almost everywhere in π(M).

Denote by F the pull-back of F ′ under the projection p : M → M/G, and by
F1, ..., Fd the pull-back of f1, ..., fd under the moment map π : M → g∗. Note that,
since H is G-invariant, the functions Fi are first integrals of XH . And of course, F
is also a set of first integrals of XH . Denote by F the union of F with (Fs+1, ..., Fd).
(It is not necessary to include F1, ..., Fs in this union, because these functions are
G-invariant and project to Casimir functions on M/G, which implies that they are
functionally dependent of F). We will show that XH is integrable with the aid of
F .

Notice that, by assumptions, the coadjoint orbits of g∗ which lie in π(M) are of
generic dimension d−s, and the functions fs+1, ..., fd may be viewed as a coordinate
system on a symplectic leaf of π(M) at a generic point. In particular, we have

〈dfs+1 ∧ ... ∧ dfd, Xfs+1 ∧ ...Xfd
〉 6= 0,

which implies, by equivariance :

〈dFs+1 ∧ ... ∧ dFd, XFs+1 ∧ ...XFd
〉 6= 0.

Since the vector fields XFs+1 , ..., XFd
are tangent to the orbits of G on M , and the

functions in F are invariant on the orbits of G, it implies that the set (Fs+1, ..., Fd)
is “totally” functionally independent of F . In particular, we have :

(2.9) ddim F = ddim F ′ + ddim (Fs+1, ..., Fd) = q′ + d− s,

where q′ = ddim F ′. On the other hand, we have
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dim M = dim M/G + (d− k) = p′ + q′ + d− k,

where p′ = ddim XF ′ , and k is the dimension of a minimal isotropic group of the
action of G on M . Thus, in order to show the integrability condition

dim M = ddim F + ddim XF ,

it remains to show that

(2.10) ddim XF = ddim XF ′ + (s− k).

Consider the vector fields Y1 = XF1 , ..., Yd = XFd
on M . They span the tangent

space to the orbit of G on M at a generic point. The dimension of such a generic
tangent space is d− k. It implies that, among the first s vector fields, there are at
least s−k vector fields which are linearly independent at a generic points : we may
assume that Y1 ∧ ... ∧ Ys−k 6= 0.

Let Xh1 , ..., Xhp′ be p′ linearly independent (at a generic point) vector fields
which belong to XF ′ , where p′ = ddim XF ′ . Then we have

Xp∗(h1), ..., Xp∗(hp′ )
, Y1, ..., Ys−k ∈ XF ,

and these p′+s−k vector fields are linearly independent at a generic point. (Recall
that, at each point x ∈ M , the vectors Y1(x), ..., Ys−k(x) are tangent to the orbit of
G which contains x, while the linear space spanned by Xp∗(h1), ..., Xp∗(hp′ )

contains
no tangent direction to this orbit).

Thus we have ddim XF ≥ p′ + s − k, which means that ddim XF = p′ + s − k
(because, as discussed earlier, we always have ddim F + ddim XF ≤ dim M). We
have proved that if (M/G,XH/G) is integrable in generalized Liouville sense then
(M,XH) also is.

Now suppose that G is compact and (M/G,XH/G) is proper: there are q′ func-
tionally independent functions g1, ..., gq′ ∈ F ′ such that (g1, ..., gq′) : M/G →
Rq′ is a proper map from M/G to its image, and p′ Hamiltonian vector fields
Xh1 , ..., Xhp′ in X ′ such that on a generic common level set of (g1, ..., gq′) we have
that Xh1 ∧ ... ∧Xhp′ does not vanish anywhere. Then it is straightforward that

p∗(g1), ..., p∗(gq′), Fs+1, ..., Fd ∈ F
and the map

(p∗(g1), ..., p∗(gq′), Fs+1, ..., Fd) : M → Rq′+d−s

is a proper map from M to its image. More importantly, on a generic level set of this
map we have that the (q′+s−k)-vector Xp∗(h1)∧ ...∧Xp∗(hp′ )

∧Y1∧ ...∧Ys−k does
not vanish anywhere. To prove this last fact, notice that Xp∗(h1)∧...∧Xp∗(hp′ )

∧Y1∧
...∧Ys−k(x) 6= 0 for a point x ∈ M if and only if Xp∗(h1) ∧ ...∧Xp∗(hp′ )

(x) 6= 0 and
Y1∧ ...∧Ys−k(x) 6= 0 (one of these two multi-vectors is transversal to the G-orbit of
x while the other one “lies on it”), and that these inequalities are G×Rp′ -invariant
properties, where the action of Rp′ is generated by Xp∗(h1), ..., Xp∗(hp′ )

. �

Remark 2.9. Recall from Equation (2.10) above that we have ddim XF−ddim XF ′ =
s− k, where k is the dimension of a generic isotropic group of the G-action on M ,
and s is the (minimal) corank in g∗ of a coadjoint orbit which lies in π(M). On the
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other hand, the difference between the rank of the Poisson structure on M and the
reduced Poisson structure on M/G can be calculated as follows :

(2.11) rank Π− rank Π/G = (d− k) + (s− k)

Here (d − k) is the difference between dim M and dim M/G, and (s − k) is the
difference between the corank of Π/G in M/G and the corank of Π in M . It follows
that

(2.12) rank Π− 2ddim XF = rank Π/G− 2ddim XF ′ + (d− s)

In particular, if d−s > 0 (typical situation when G is non-Abelian), then we always
have rank Π− 2ddim XF > 0 (because we always have rank Π/G− 2ddim XF ′ ≥ 0
due to integrability), i.e. the original system is always super-integrable with the aid
of F . When G is Abelian (implying d = s), and the reduced system is Liouville-
integrable with the aid of F ′ (i.e. rank Π/G = 2ddim XF ′), then the original system
is also Liouville-integrable with the aid of F .

Remark 2.10. Following Mischenko-Fomenko [59], we will say that a hamiltonian
system (M, Π, XH) is non-commutatively integrable in the restricted sense with the
aid of F , if F is a finite-dimensional Lie algebra under the Poisson bracket and
(M, Π, XH) is integrable with the aid of F . In other words, we have an equivariant
moment maps (M, Π) → f∗, where f is some finite-dimensional Lie algebra, and if
we denote by f1, ..., fn the components of this moment map, then they are first
integrals of XH , and XH is integrable with the aid of this set of first integrals.
Theorem 2.8 remains true, and its proof remains the same if not easier, if we replace
Hamiltonian integrability by non-commutative integrability in the restricted sense.
Indeed, if M → g∗ is the equivariant moment map of the symmetry group G,
and if M/G → h∗ is an equivariant moment map which provides non-commutative
integrability in the restricted sense on M/G, then the map M → h∗ (which is the
composition M → M/G → h∗) is an equivariant moment map which commutes
with M → g∗, and the direct sum of this two maps, M → f∗ where f = g

⊕
h, will

provide non-commutative integrability in the restricted sense on M .

Theorem 2.8 has the following inverse (see Remark 2.5):

Theorem 2.11. If G is compact, and if the Hamiltonian system (M,XH) is in-
tegrable with the aid of FH (the set of all first integrals of H) in the sense that
ddim FH + ddim XFH

= dim M , then the reduced Hamiltonian system (M/G,XH)
is also integrable. Moreover, if (M,XH) is proper then (M/G,XH) also is.

Proof. By assumptions, we have dim M = p + q, where q = ddim FH and p =
ddim XFH

, and we can find p first integrals H1, ...,Hp of H such that XH1 , ..., XHp

are linearly independent (at a generic point) and belong to XFH
. In particular, we

have XHi
(F ) = 0 for any F ∈ F and 1 ≤ i ≤ p.

An important observation is that the functions H1, ...,Hp are G-invariant. In
deed, if we denote by F1, ..., Fd the components of the equivariant moment map
π : M → g∗ (via an identification of g∗ with Rd), then since H is G-invariant we have
{H,Fj} = 0, i.e. Fj ∈ FH , which implies that {Fj ,Hi} = 0 ∀1 ≤ i ≤ d, 1 ≤ j ≤ p,
which means that Hi are G-invariant.

The Hamiltonian vector fields XHi
/G belong to XFH/G

: Indeed, if f ∈ FH/G

then p∗(f) is a first integral of H, implying {Hi, p
∗(f)} = 0, or {Hi/G, f} = 0,

where p denotes the projection M → M/G.
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To prove the integrability of XH/G, it is sufficient to show that

(2.13) dim M/G ≤ ddim FH/G + ddim (XH1/G, ...,XHq
/G)

But we denote by r the generic dimension of the intersection of a common level set
of p independent first integrals of XH with an orbit of G in M , then one can check
that

p− ddim (XH1/G, ...,XHq
/G) = ddim XFH

− ddim (XH1/G, ...,XHq
/G) = r

and
q − ddim FH/G = ddim FH − ddim FH/G ≤ (d− k)− r

where (d − k) is the dimension of a generic orbit of G in M . To prove the last
inequality, notice that functions in FH/G can be obtained from functions in FH by
averaging with respect to the G-action. Also, G acts on the (separated) space of
common level sets of the functions in FH , and isotropic groups of this G-action are
of (generic) codimension (d− k)− r.

The above two formulas, together with p+q = dim M = dim M/G+(d−k), im-
plies Inequality (2.13) (it is in fact an equality). The proper case is straightforward.
�

2.5. Non-Hamiltonian reduced integrability.
One of the main differences between the non-Hamiltonian case and the Hamilton-

ian case is that reduced non-Hamiltonian integrability does not imply integrability.
In fact, in the Hamiltonian case, we can lift Hamiltonian vector fields from M/G to
M via the lifting of corresponding functions. In the non-Hamiltonian case, no such
canonical lifting exists, therefore commuting vector fields on M/G do not provide
commuting vector fields on M . For example, consider a vector field of the type
X = a1∂/∂x1 + a2∂/∂x2 + b(x1, x2)∂/∂x3 on the standard torus T3 with periodic
coordinates (x1, x2, x3), where a1 and a2 are two incommensurable real numbers
(a1/a2 /∈ Q), and b(x1, x2) is a smooth function of two variables. Then clearly X
is invariant under the T1-action generated by ∂/∂x3, and the reduced system is
integrable. On the other hand, for X to be integrable, we must be able to find a
function c(x1, x2) such that [X, ∂/∂x1 + c(x1, x2)∂/∂x3] = 0. This last equation
does not always have a solution (it is a small divisor problem, and depends on a1/a2

and the behavior of the coefficients of b(x1, x2) in its Fourier expansion), i.e. there
are choices of a1, a2, b(x1, x2) for which the vector field X is not integrable.

However, non-Hamiltonian integrability still implies reduced integrability. Recall
from Remark 2.7 that if a vector field X on a (generalized) manifold M is integrable,
then under mild additional conditions we have ddim XX + ddim FX = dim M ,
where FX is the set of all first integrals of X, and XX is the set of all vector fields
which commute with X and preserve every function in F .

Theorem 2.12. Let X be a smooth non-Hamiltonian proper integrable system on
a manifold M with the aid of (FX ,XX), i.e. ddim XX +ddim FX = dim M , and G
be a compact Lie group acting on M which preserves X. Then the reduced system
on M/G is also proper integrable.

Proof. Let XG
X denote the set of vector fields which belong to XX and which are

invariant under the action of G. Note that the elements of XG
X can be obtained

from the elements of XX by averaging with respect to the G-action.
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A key ingredient of the proof is the fact ddim XG
X = ddim XX (To see this fact,

notice that near each regular invariant torus of the system there is an effective torus
action (of the same dimension) which preserves the system, and this torus action
must necessarily commute with the action of G. The generators of this torus action
are linearly independent vector fields which belong to XG

X - in fact, they are defined
locally near the union of G-orbits which by an invariant torus, but then we can
extend them to global vector fields which lie in XG

X )
Therefore, we can project the pairwise commuting vector fields in XG

X from M
to M/G to get pairwise commuting vector fields on M/G. To get the first integrals
for the reduced system, we can also take the first integrals of X on M and average
them with respect to the G-action to make them G-invariant. The rest of the proof
of Theorem 2.12 is similar to that of Theorem 2.11. �

3. Torus actions and local normal forms

3.1. Toric characterization of Poincaré-Birkhoff normal form.
It is a simple well-known fact that every vector field near an equilibrium point

admits a formal Poincaré-Birkhoff normal form (Birkhoff in the Hamiltonian case,
and Poincaré-Dulac in the non-Hamiltonian case). What is also very simple but
much less well-known is that these normal forms are governed by torus actions.

Let X be a given analytic vector field in a neighborhood of 0 in Km, where
K = R or C, with X(0) = 0. When K = R, we may also view X as a holomorphic
(i.e. complex analytic) vector field by complexifying it. Denote by

(3.1) X = X(1) + X(2) + X(3) + ...

the Taylor expansion of X in some local system of coordinates, where X(k) is a
homogeneous vector field of degree k for each k ≥ 1.

In the Hamiltonian case, on a symplectic manifold, X = XH , m = 2n, K2n has
a standard symplectic structure, and X(j) = XH(j+1)

The algebra of linear vector fields on Km, under the standard Lie bracket, is
nothing but the reductive algebra gl(m, K) = sl(m, K)⊕K. In particular, we have

(3.2) X(1) = Xs + Xnil,

where Xs (resp., Xnil) denotes the semi-simple (resp., nilpotent) part of X(1).
There is a complex linear system of coordinates (xj) in Cm which puts Xs into
diagonal form:

(3.3) Xs =
m∑

j=1

γjxj∂/∂xj ,

where γj are complex coefficients, called eigenvalues of X (or X(1)) at 0.
In the Hamiltonian case, X(1) ∈ sp(2n, K) which is a simple Lie algebra, and we

also have the decomposition X(1) = Xs + Xnil, which corresponds to the decom-
position

(3.4) H(2) = Hs + Hnil
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There is a complex canonical linear system of coordinates (xj , yj) in C2n in which
Hs has diagonal form:

(3.5) Hs =
n∑

j=1

λjxjyj ,

where λj are complex coefficients, called frequencies of H (or H(2)) at 0.
For each natural number k ≥ 1, the vector field Xs acts linearly on the space of

homogeneous vector fields of degree k by the Lie bracket, and the monomial vector
fields are the eigenvectors of this action:

(3.6) [
m∑

j=1

γjxj∂/∂xj , x
b1
1 xb2

2 ...xbn
n ∂/∂xl] = (

n∑
j=1

bjγj − γl)xb1
1 xb2

2 ...xbn
n ∂/∂xl.

When an equality of the type

(3.7)
m∑

j=1

bjγj − γl = 0

holds for some nonnegative integer m-tuple (bj) with
∑

bj ≥ 2, we will say that the
monomial vector field xb1

1 xb2
2 ...xbm

m ∂/∂xl is a resonant term, and that the m-tuple
(b1, ..., bl−1, ..., bl) is a resonance relation for the eigenvalues (γi). More precisely, a
resonance relation for the n-tuple of eigenvalues (γj) of a vector field X is an m-tuple
(cj) of integers satisfying the relation

∑
cjγj = 0, such that cj ≥ −1,

∑
cj ≥ 1,

and at most one of the cj may be negative.
In the Hamiltonian case, Hs acts linearly on the space of functions by the Poisson

bracket. Resonant terms (i.e. generators of the kernel of this action) are monomials∏
x

aj

j y
bj

j which satisfy the following resonance relation, with cj = aj − bj :

(3.8)
m∑

j=1

cjλj = 0

Denote by R the subset of Zm (or sublattice of Zn in the Hamiltonian case)
consisting of all resonance relations (cj) for a given vector field X. The number

(3.9) r = dimZ(R⊗ Z)

is called the degree of resonance of X. Of course, the degree of resonance depends
only on the eigenvalues of the linear part of X, and does not depend on the choice
of local coordinates. If r = 0 then we say that the system is nonresonant at 0.

The vector field X is said to be in Poincaré-Birkhoff normal form if it commutes
with the semisimple part of its linear part (see e.g. [14, 64]):

(3.10) [X, Xs] = 0.

In the Hamiltonian case, the above equation can also be written as

(3.11) {H,Hs} = 0.

The above equations mean that if X is in normal form then its nonlinear terms
are resonant. A transformation of coordinates (which is symplectic in the Hamil-
tonian case) which puts X in Poincaré-Birkhoff normal form is called a Poincaré-
Birkhoff normalization. It is a classical result of Poincaré, Dulac, and Birkhoff that
any analytic vector field which vanishes at 0 admits a formal Poincaré-Birkhoff
normalization.
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Denote by Q ⊂ Zm the integral sublattice of Zm consisting of m-dimensional
vectors (ρj) ∈ Zm which satisfy the following properties :

(3.12)
m∑

j=1

ρjcj = 0 ∀ (cj) ∈ R , and ρj = ρk if γj = γk

(where R is the set of resonance relations as before). In the Hamiltonian case, Q
is defined by

(3.13)
n∑

j=1

ρjcj = 0 ∀ (cj) ∈ R .

We will call the number

(3.14) d = dimZQ
the toric degree of X at 0. Of course, this number depends only on the eigenvalues
of the linear part of X, and we have the following (in)equality : r + d = n in
the Hamiltonian case (where r is the degree of resonance), and r + d ≤ m in the
non-Hamiltonian case.

Let (ρ1
j ), ..., (ρd

j ) be a basis of Q. For each k = 1, ..., d define the following
diagonal linear vector field Zk :

(3.15) Zk =
m∑

j=1

ρk
j xj∂/∂xj

in the non-Hamiltonian case, and Zk = XF k where

(3.16) F k =
n∑

j=1

ρk
j xjyj

in the Hamiltonian case.
The vector fields Z1, ..., Zr have the following remarkable properties :
a) They commute pairwise and commute with Xs and Xnil, and they are linearly

independent almost everywhere.
b) iZj is a periodic vector field of period 2π for each j ≤ r (here i =

√
−1).

What does it mean is that if we write iZj = <(iZj) + i=(iZj), then <(iZj) is a
periodic real vector field in Cn = R2n which preserves the complex structure.

c) Together, iZ1, ..., iZr generate an effective linear Tr-action in Cn (which pre-
serves the symplectic structure in the Hamiltonian case), which preserves Xs and
Xnil.

A simple calculation shows that X is in Poincaré-Birkhoff normal form, i.e.
[X, Xs] = 0, if and only if we have

(3.17) [X, Zk] = 0 ∀ k = 1, ..., r.

The above commutation relations mean that if X is in normal form, then it
is preserved by the effective r-dimensional torus action generated by iZ1, ..., iZr.
Conversely, if there is a torus action which preserves X, then because the torus is
a compact group we can linearize this torus action (using Bochner’s linearization
theorem in the non-Hamiltonian case, and Guillemin–Sternberg–Marle linearization
theorem in the Hamiltonian case, see e.g. [18, 39]), leading to a normalization of
X. In other words, we have:
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Theorem 3.1 ([85, 86]). A holomorphic (Hamiltonian) vector field X in a neigh-
borhood of 0 in Cm (or C2n with a standard symplectic form) admits a locally
holomorphic Poincaré-Birkhoff normalization if and only if it is preserved by an
effective holomorphic (Hamiltonian) action of a real torus of dimension t, where
t is the toric degree of X(1) as defined in (3.14), in a neighborhood of 0 in Cm

(or C2n), which has 0 as a fixed point and whose linear part at 0 has appropriate
weights (given by the lattice Q defined in (3.12,3.13), which depends only on the
linear part X(1) of X).

The above theorem is true in the formal category as well. But of course, any
vector field admits a formal Poincaré-Birkhoff normalization, and a formal torus
action.

3.2. Some simple consequences and generalizations.
Theorem 3.1 has many important implications. One of them is:

Proposition 3.2 ([85, 86]). A real analytic vector field X (Hamiltonian or non-
Hamiltonian) in the neighborhood of an equilibrium point admits a local real ana-
lytic Poincaré-Birkhoff normalization if and only if it admits a local holomorphic
Poincaré-Birkhoff normalization when considered as a holomorphic vector field.

The proof of the above proposition (see [85]) is based on the fact that the complex
conjugation induces an involution on the torus action which governs the Poincaré-
Birkhoff normalization.

If a dynamical system near an equilibrium point is invariant with respect to a
compact group action which fixes the equilibrium point, then this compact group
action commutes with the (formal) torus action of the Poincaré-Birkhoff normal-
ization. Together, they form a bigger compact group action, whose linearization
leads to a simultaneous Poincaré-Birkhoff normalization and linearization of the
compact symmetry group, i.e. we can perform the Poincaré-Birkhoff normalization
in an invariant way. This is a known result in dynamical systems, see e.g. [81],
but the toric point of view gives a new simple proof of it. The case of equivariant
vector fields is similar. For example, one can speak about Poincaré-Dulac normal
forms for time-reversible vector fields, see e.g. [51].

Another situation where one can use the toric characterization is the case of
isochore (i.e. volume preserving) vector fields. In this case, naturally, the normal-
ization transformation is required to be volume-preserving. Both Theorem 3.1 and
Proposition 3.2 remain valid in this case.

One can probably use the toric point of view to study normal forms of Hamilton-
ian vector field on Poisson manifolds as well. For example, let g∗ be the dual of a
semi-simple Lie algebra, equipped with the standard linear Poisson structure, and
let H : g∗ → K be a regular function near the origin 0 of g∗. The corresponding
Hamiltonian vector field XH will vanish at 0, because the Poisson structure itself
vanishes at 0. Applying Poincaré-Birkhoff normalization techniques, we can kill the
“nonresonant terms” in H (with respect to the linear part of H, or dH(0)). The
normalized Hamiltonian will be invariant under the coadjoint action of a subtorus
of a Cartan torus of the (complexified) Lie group of g. In the “nonresonant” case,
we have a Cartan torus action which preserves the system.

3.3. Convergent normalization for integrable systems.
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Though every vector field near an equilibrium admits a formal Poincaré-Birkhoff
normalization, the problem of finding a convergent (i.e. locally real analytic or
holomorphic) normalization is much more difficult. The usual step by step killing
of non-resonant terms leads to an infinite product of coordinate transformations,
which may diverge in general, due to the presence of small divisors. Positive results
about the convergence of this process are due to Poincaré, Siegel, Bruno and others
mathematicians, under Diophantine conditions on the eigenvalues of the linear part
of the system, see e.g. [14, 64].

However, when the vector field is analytically integrable (i.e. it is an real or com-
plex analytic vector field, and the additional first integrals and commuting vector
fields in question are also analytic), then we don’t need any Diophatine or nonreso-
nance condition for the existence of a convergent Poincaré-Birkhoff normalization.
More precisely, we have:

Theorem 3.3 ([85, 86]). Let X be a local analytic (non-Hamiltonian, isochore,
or Hamiltonian) vector field in (Km, 0) (or in (K2n, 0) with a standard symplectic
structure), where K = R or C, such that X(0) = 0. Then X admits a convergent
Poincaré-Birkhoff normalization in a neighborhood of 0.

Partial cases of the above theorem were obtained earlier by many authors, includ-
ing Rüssmann [65] (the nondegenerate Hamiltonian case with 2 degrees of freedom),
Vey [71, 72] (the nondegenerate Hamiltonian and isochore cases), Ito [42] (the non-
resonant Hamiltonian case), Ito [44] and Kappeler et al. [47] (the Hamiltonian
case with a simple resonance), Bruno and Walcher [15] (the non-Hamiltonian case
with m = 2). These authors, except Vey who was more geometric, relied on long
and heavy analytical estimates to show the convergence of an infinite normalizing
coordinate transformation process. On the other hand, the proof of Theorem 3.3
in [85, 86] is based on the toric point of view and is relatively short.

Following [85], we will give here a proof of the above theorem in the Liouville-
integrable case. The other cases are similar, and of course the theorem is valid for
Hamiltonian vector fields which are integrable in generalized Liouville sense as well.
According to Proposition 3.2, it is enough to show the existence of a holomorphic
normalization. We will do it by finding local Hamiltonian T1-actions which preserve
the moment map of an analytically completely integrable system. The Hamiltonian
function generating such an action is an action function. If we find (n − q) such
T1-actions, then they will automatically commute and give rise to a Hamiltonian
Tn−q-action.

To find an action function, we will use the Mineur-Arnold formula P =
∫
Γ

β,
where P denotes an action function, β denotes a primitive 1-form (i.e. ω = dβ is
the symplectic form), and Γ denotes an 1-cycle (closed curve) lying on a level set
of the moment map.

To show the existence of such 1-cycles Γ, we will use an approximation method,
based on the existence of a formal Birkhoff normalization.

Denote by G = (G1 = H,G2, ..., Gn) : (C2n, 0) → (Cn, 0) the holomorphic
momentum map germ of a given complex analytic Liouville-integrable Hamiltonian
system. Let ε0 > 0 be a small positive number such that G is defined in the ball
{z = (xj , yj) ∈ C2n, |z| < ε0}. We will restrict our attention to what happens inside
this ball. As in Subsection 3.1, we may assume that in the symplectic coordinate
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system z = (xj , yj) we have

(3.18) H = G1 = Hs + Hn + H(3) + H(4) + ...

with

(3.19) Hs =
n−q∑
k=1

αkF k, F k =
n∑

j=1

ρk
j xjyj ,

with no resonance relations among α1, ..., αn−q. We will fix this coordinate system
z = (xj , yj), and all functions will be written in this coordinate system.

The real and imaginary parts of the Hamiltonian vector fields of G1, ..., Gn are in
involution and their infinitesimal Cn-action defines an associated singular foliation
in the ball {z = (xj , yj) ∈ C2n, |z| < ε0}. Similarly to the real case, the leaves
of this foliation are called local orbits of the system; they are complex isotropic
submanifolds, and generic leaves are Lagrangian and have complex dimension n. For
each z we will denote the leaf which contains z by Mz. Recall that the momentum
map is constant on the orbits of the system. If z is a point such that G(z) is
a regular value for the momentum map, then Mz is a connected component of
G−1(G(z)).

Denote by

(3.20) S = {z ∈ C2n, |z| < ε0, dG1 ∧ dG2 ∧ ... ∧ dGn(z) = 0}

the singular locus of the moment map, which is also the set of singular points of the
associated singular foliation. What we need to know about S is that it is analytic
and of codimension at least 1, though for generic integrable systems S is in fact
of codimension 2. In particular, we have the following  Lojasiewicz-type inequality
(see [54]): there exist a positive number N and a positive constant C such that

(3.21) |dG1 ∧ ... ∧ dGn(z)| > C(d(z, S))N

for any z with |z| < ε0, where the norm applied to dG1 ∧ ...∧ dGn(z) is some norm
in the space of n-vectors, and d(z, S) is the distance from z to S with respect to
the Euclidean metric. In the above inequality, if we change the coordinate system,
then only ε0 and C have to be changed, N (the  Lojasiewicz exponent) remains the
same.

We will choose an infinite decreasing series of small numbers εm (m = 1, 2, ...),
as small as needed, with limm→∞ εm = 0, and define the following open subsets Um

of C2n:

(3.22) Um = {z ∈ C2n, |z| < εm, d(z, S) > |z|m}

We will also choose two infinite increasing series of natural numbers am and bm

(m = 1, 2, ...), as large as needed, with limm→∞ am = limm→∞ bm = ∞. It follows
from Birkhoff’s formal normalization that there is a series of local holomorphic
symplectic coordinate transformations Φm, m ∈ N, such that the following two
conditions are satisfied :

a) The differential of Φm at 0 is identity for each m, and for any two numbers
m,m′ with m′ > m we have

(3.23) Φm′(z) = Φm(z) + O(|z|am).

In particular, there is a formal limit Φ∞ = limm→∞ Φm.
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b) The moment map is normalized up to order bm by Φm. More precisely, the
functions Gj can be written as

(3.24) Gj(z) = G(m)j(z) + O(|z|bm), j = 1, ...n,

with G(m)j such that

(3.25) {G(m)j , F
k
(m)} = 0 ∀j = 1, ...n, k = 1, ..., n− q.

Here the functions F k
(m) are quadratic functions

(3.26) F k
(m)(x, y) =

n∑
j=1

ρk
j x(m)jy(m)j

in local symplectic coordinates

(3.27) (x(m), y(m)) = Φm(x, y).

Notice that F k
(m) has the same form as F k, but with respect to a different coor-

dinate system. When considered in the original coordinate system (x, y), F k
(m) is a

different function than F k, but the quadratic part of F k
(m) is F k.

Denote by Γk
m(z) the orbit of the real part of the periodic Hamiltonian vector

field XiF k
(m)

which goes through z. Then for any z′ ∈ Γk
m(z) we have G(m)j(z′) =

G(m)j(z) and |z′| ' |z|, therefore

(3.28) |G(z′)−G(z)| = O(|z′|bm).

(Note that we can choose the numbers am and bm first, then choose the radii εm

of small open subsets to make them sufficiently small with respect to am and bm,
so that the equivalence O(|z′|bm) ' O(|z|bm) makes sense).

On the other hand we have

(3.29)

|dG1(z′) ∧ ... ∧ dGn(z′)|
= |dG(m)1(z′) ∧ ... ∧ dG(m)n(z′)|+ O(|z|bm−1)
' |dG(m)1(z) ∧ ... ∧ dG(m)n(z)|+ O(|z|bm−1)
= |dG1(z) ∧ ... ∧ dGn(z)|+ O(|z|bm−1)

We can assume that bm − 1 > N . Then for |z| < εm small enough, the above
inequality may be combined with  Lojasiewicz inequality (3.21) to yield

(3.30) |dG1(z′) ∧ ... ∧ dGn(z′)| > C1d(z, S)N

where C1 = C/2 is a positive constant (which does not depend on m).
If z ∈ Um, and assuming that εm is small enough, we have d(z, S) > |z|m, which

may be combined with the last inequality to yield :

(3.31) |dG1(z′) ∧ ... ∧ dGn(z′)| > C1|z|mN

Assuming that bm is much larger than mN , we can use the implicit function
theorem to project the curve Γk

m(z) on Mz as follows :
For each point z′ ∈ Γk

m(z), let Dm(z′) be the complex n-dimensional disk cen-
tered at z′, which is orthogonal to the kernel of the differential of the momentum
map G at z′, and which has radius equal to |z′|2mN . Since the second derivatives of
G are locally bounded by a constant near 0, it follows from the definition of Dm(z′)
that we have we have, for |z| < εm small enough :
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(3.32) |DG(w)−DG(z′)| < |z|3mN/2 ∀w ∈ Dm(z′)

where DG(w) denotes the differential of the momentum map at w, considered as
an element of the linear space of 2n× n matrices.

Inequality (3.31) together with Inequality (3.32) imply that the momentum map
G, when restricted to Dm(z′), is a diffeomorphism from D(z′) to its image, and
the image of Dm(z′) in Cn under G contains a ball of radius |z|4mN . (Because
4mN > 2mN + mN , where 2mN is the order of the radius of Dm(z′), and mN
is a majorant of the order of the norm of the differential of G. The differential of
G is “nearly constant” on Dm(z′) due to Inequality 3.32). Thus, if bm > 5mN for
example, then Inequality 3.28 implies that there is a unique point z′′ on Dm(z′)
such that G(z′′) = G(z). The map z′ 7→ z′′ is continuous, and it maps Γk

m(z)
to some close curve Γ̃k

m(z), which must lie on Mz because the point z maps to
itself under the projection. When bm is large enough and εm is small enough, then
Γ̃k

m(z) is a smooth curve with a natural parametrization inherited from the natural
parametrization of Γk

m(z), it has bounded derivative (we can say that its velocity
vectors are uniformly bounded by 1), and it depends smoothly on z ∈ Um.

Define the following action function P k
m on Um :

(3.33) P k
m(z) =

∮
Γ̃k

m(z)

β ,

where β =
∑

xjdyj (so that dβ =
∑

dxj ∧ dyj is the standard symplectic form).
This function has the following properties:

i) Because the 1-form β =
∑

xjdyj is closed on each leaf of the Lagrangian
foliation of the integrable system in Um, P k

m is a holomorphic first integral of the
foliation. (This fact is well-known in complex geometry : period integrals of holo-
morphic k-forms, which are closed on the leaves of a given holomorphic foliation,
over p-cycles of the leaves, give rise to (local) holomorphic first integrals of the
foliation). The functions P 1

m, ..., P
(n−q)
m Poisson commute pairwise, because they

commute with the momentum map.
ii) P k

m is uniformly bounded by 1 on Um, because Γ̃k
m(z) is small together with

its first derivative.
iii) Provided that the numbers am are chosen large enough, for any m′ > m we

have that P k
m coincides with P k

m′ in the intersection of Um with Um′ . To see this
important point, recall that we have

(3.34) P k
m = P k

m′ + O(|z|am)

by construction, which implies that the curve Γk
m′(z) is |z|am−2-close to the curve

Γk
m(z) in C1-norm. If am is large enough with respect to mN (say am > 5mN),

then it follows that the complex n-dimensional cylinder

(3.35) Vm′(z) = {w ∈ C2n | d(w, Γk
m′(z)) < |z|2m′N}

⋂
Mz

lies inside (and near the center of) the complex n-dimensional cylinder

(3.36) Vm(z) = {w ∈ C2n | d(w, Γk
m(z)) < |z|2mN}

⋂
Mz.
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On the other hand, one can check that Γ̃k
m(z) is a retract of Vm(z) in Mz, and the

same thing is true for the index m′. It follows easily that Γ̃k
m′(z) must be homotopic

to Γ̃k
m(z) in Mz, implying that P k

m(z) coincides with P k
m′(z).

iv) Since P k
m coincides with P k

m′ in Um

⋂
Um′ , we may glue these functions

together to obtain a holomorphic function, denoted by P k, on the union U =⋃∞
m=1 Um. Lemma 3.4 in the following subsection shows that if we have a bounded

holomorphic function in U =
⋃∞

m=1 Um then it can be extended to a holomor-
phic function in a neighborhood of 0 in C2n. Thus our action functions P k are
holomorphic in a neighborhood of 0 in C2n.

v) P k is a local periodic Hamiltonian function whose quadratic part is
√
−1F k =√

−1
∑

ρk
j xjyj . To see this, remark that

(3.37)
√
−1F k

m(z) =
√
−1

∑
ρk

j x(m)jy(m)j =
∮

Γk
m(z)

β ,

for z ∈ Um. Since the curve Γ̃k
m(z) is |z|3mN -close to the curve Γk

m(z) by construc-
tion (provided that bm > 4mN), we have that

(3.38) P k(z) =
√
−1F k

m(z) + O(|z|3mN )

for z ∈ Um. Due to the nature of Um (almost every complex line in C2n which
contains the origin 0 intersects with Um in an open subset (of the line) which
surrounds the point 0), it follows from the last estimation that in fact the coefficients
of all the monomial terms of order < 3mN of P k coincide with that of

√
−1F k

m,
i.e. we have

(3.39) P k(z) =
√
−1F k

m(z) + O(|z|3mN )

in a neighborhood of 0 in C2n. In particular, we have

(3.40) P k = lim
m→∞

√
−1F k

m ,

where the limit on the right-and side of the above equation is understood as the
formal limit of Taylor series, and the left-hand side is also considered as a Taylor
series. This is enough to imply that P k has

√
−1

∑
ρk

j xjyj as its quadratic part,
and that P k is a periodic Hamiltonian of period 2π because each

√
−1F k

m is so.
(If a local holomorphic Hamiltonian vector field which vanishes at 0 is formally
periodic then it is periodic). Thus we have found analytic action functions and the
corresponding Hamiltonian torus action. The rest of the proof is straightforward.
�

3.4. A holomorphic extension lemma.
The following lemma on holomorphic extension, which is interesting in its own

right, implies that the action functions P k constructed in the previous subsection
can be extended holomorphically in a neighborhood of 0.

Lemma 3.4. Let U =
⋃∞

m=1 Um, with Um = {x ∈ Cn, |x| < εm, d(x, S) > |x|m},
where εm is an arbitrary series of positive numbers and S is a local proper complex
analytic subset of Cn (codimCS ≥ 1). Then any bounded holomorphic function on
U has a holomorphic extension in a neighborhood of 0 in Cn.

Proof. Though we suspect that this lemma should have been known to specialists
in complex analysis, we could not find it in the literature, so we will provide a proof
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here. When n = 1 the lemma is obvious, so we will assume that n ≥ 2. We divide
the lemma into two steps :

Step 1. The case when S is contained in the union of hyperplanes
⋃n

j=1{xj = 0}
where (x1, ..., xn) is a local holomorphic system of coordinates. Clearly, U contains
a product of non-empty annuli ηj < |xj | < η′j , hence f is defined by a Laurent
series in x1, · · · , xn there. We will study the domain of convergence of this Laurent
series, using the well-known fact that the domain of convergence of a Laurent series
is logarithmically convex. More precisely, denote by π the map (x1, · · · , xn) 7→
(log |x1|, · · · , log |xn|) from (C∗)n to Rn, where C∗ = C\{0}, and set

E = {r = (r1, ..., rn) ∈ Rn | π−1(r) ⊂ U}

Denote by Hull(E) the convex hull of E in Rn. Then since the function f is
analytic and bounded in π−1(E), it can be extended to abounded analytic function
on π−1(Hull(E)). On the other hand, by definition of U =

⋃∞
m=1 Um, there is

a series of positive numbers Km (tending to infinity) such that E ⊃ (
⋃∞

m=1 Em),
where

Em = {(r1, ..., rn) ∈ Rn | (rj < −Km ∀j) , (rj > mri ∀j 6= i)}

It is clear that the convex hull of
⋃∞

m=1 Em, with each Em defined as above, contains
a neighborhood of (−∞, ...,−∞), i.e. a set of the type

{(r1, ..., rn) ∈ Rn | rj < −K ∀j}.

It implies that the function f can be extended to a bounded analytic function in
U

⋂
(C∗)n, where U is a neighborhood of 0 in Cn. Since f is bounded in U

⋂
(C∗)n,

it can be extended analytically on the whole U . Step 1 is finished.
Step 2. Consider now the case with an arbitrary S. Then we can use Hironaka’s

desingularization theorem [41] to make it smooth. In fact, since the exceptional
divisor will also have to be taken into account, after the desingularization process
we will have a variety which may have normal crossings. More precisely, we have
the following commutative diagram

(3.41)
Q ⊂ S′ ⊂ Mn

↓ ↓ ↓ p
0 ⊂ S ⊂ (Cn, 0)

,

where (Cn, 0) denotes the germ of Cn at 0 presented by a ball which is small enough;
Mn is a complex manifold; the projection p is surjective, and injective outside the
exceptional divisor; S′ denotes the union of the exceptional divisor with the smooth
proper submanifold of Mn which is desingularization of S – the only singularities
in S′ are normal crossings; Q = p−1(0) is compact. Mn is obtained from (Cn, 0)
by a finite number of blowing-ups along submanifolds.

Denote by U ′ = p−1(U) the preimage of U under the projection p. One can pull
back f from U to U ′ to get a bounded holomorphic function on U ′, denoted by f ′.
An important observation is that the type of U persists under blowing-ups along
submanifolds.(Or equivalently, the type of its complement, which may be called a
“sharp-horn-neighborhood” of S because it is similar to “horn-type neighborhoods”
used by singularists but it is sharp of arbitrary order, is persistent under blowing-
ups). More precisely, for each point x ∈ Q, the complement of U ′ in a small
neighborhood of x is a “sharp-horn-neighborhood” of S′ at x. Since S′ only has
normal crossings, the pair (U ′, S′) satisfies the conditions of Step 1, and therefore
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we can extend f ′ holomorphically in a neighborhood of x in Mn. Since Q = p−1(0)
is compact, we can extend f ′ holomorphically in a neighborhood of Q in M ′. One
can now project this extension of f ′ back to (Cn, 0) to get a holomorphic extension
of f in a neighborhood of 0. The lemma is proved. �

Remark 3.5. The “sharp-horn” type of the complement of U in the above lemma
is essential. If we replace U by Um (for any number m) then the lemma is false.

3.5. Torus action near a compact singular orbit.
Consider a real analytic integrable vector field X on a real analytic manifold Mm

of dimension m = p + q, with the aid of a p-tuple X = (X1, ..., Xp) of commuting
analytic vector fields and a q-tuple F = (F1, ..., Fq) of analytic common first inte-
grals: [X, Xi] = [Xi, Xj ] = 0, X(Fj) = Xi(Fj) = 0 ∀i, j. In the Hamiltonian case,
when there is an analytic Poisson structure on Mm, we suppose that the system
is integrable in generalized Liouville sense, i.e. the vector fields X, X1, ..., Xp are
Hamiltonian.

The commuting vector fields X1, ..., Xp generate an infinitesimal Rp-action on M
– as usual, its orbits will be called orbits of the system. The map F : Mm → Rq is
constant on the orbits of the system. Let O ⊂ Mm be a singular orbit of dimension
r of the system, 0 ≤ r < p. We suppose that O is a compact submanifold of Mm (or
more precisely, of the interior of Mm if Mm has boundary). Then O is a torus of
dimension r. Denote by N the connected component of F−1(F(O)) which contains
O. A natural question arises: does there exist a Tr-action in a neighborhood of O
or N , which preserves the system and is transitive on O ?

The above question has been answered positively in [89], under a weak condition
called the finite type condition. To formulate this condition, denote by MC a small
open complexification of Mm on which the complexification XC,FC of X and F
exists. Denote by NC a connected component of F−1

C (F(O)) which contains N .

Definition 3.6. With the above notations, the singular orbit O is called of finite
type if there is only a finite number of orbits of the infinitesimal action of Cp in NC,
and NC contains a regular point of the map F.

For example, all nondegenerate singular orbits are of finite type (see Section 4).
It is conjectured that every singular orbit of an algebraically integrable system is
of finite type.

Theorem 3.7 ([89]). With the above notations, if O is a compact finite type singu-
lar orbit of dimension r, then there is a real analytic torus action of Tr in a neigh-
borhood of O which preserves the integrable system (F,X) and which is transitive
on O. If moreover N is compact, then this torus action exists in a neighborhood of
N . In the Hamiltonian case this torus action also preserves the Poisson structure.

Notice that Theorem 3.7, together with Theorem 3.3 and the toric characteri-
zation of Poincaré-Birkhoff normalization, provides an analytic Poincaré-Birkhoff
normal form in the neighborhood a singular invariant torus of an integrable system.

Denote by AO the local automorphism group of the integrable system (F,X) at
O, i.e. the group of germs of local analytic automorphisms of (F,X) in vicinity of
O (which preserve the Poisson structure in the Hamiltonian case). Denote by A0

O

the subgroup of AO consisting of elements of the type g1
Z , where Z is a analytic

vector field in a neighborhood of O which preserves the system and g1
Z is the time-1

flow of Z. The torus in the previous theorem is of course a Abelian subgroup of
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A0
O. Actually, the automorphism group AO itself is essentially Abelian in the finite

type case:

Theorem 3.8 ([89]). If O is a compact finite type singular orbit as above, then
A0

O is an Abelian normal subgroup of AO, and AO/A0
O is a finite group.

The above two theorems are very closely related: their proofs are almost the
same. Let us indicate here the main ingredients of the proof of Theorem 3.7:

For simplicity, we will assume that r = 1, i.e. O is a circle (the case r > 1 is
absolutely similar). Since O is of finite type, there is a regular complex orbit Q in
NC of dimension p whose closure contains O. Q is a flat affine manifold (the affine
structure is given by the Cp-action, so we can talk about geodesics on Q. If we can
find a closed geodesic γQ on Q, then it is a periodic orbit of period 1 of a vector
field of the type

∑
ajXj on Q (with aj being constants) on Q. Since the points of

Q are regular for the map F, using implicit function theorem, we can construct a
vector field of the type

∑
ajXj , with aj now being holomorphic functions which are

functionally dependent on F (so that this vector fields preserves the system), and
which is periodic of period 1 near γQ. With some luck, we will be able to extend
this vector field holomorphically to a vector field in a neighborhood of O so that
O becomes a periodic orbit of it, and we are almost done: if the vector field is not
real-analytic, then its image under a complex involution will be another periodic
vector field which preserves the system; the two vector fields commute (because
the system is integrable) and we can fabricate from them a real-analytic periodic
vector field, i.e. a real-analytic T1-action in a neighborhood of O, for which O is a
periodic orbit.

The difficulties lies in finding the closed geodesic γQ (which satisfies some addi-
tional conditions). We will do it inductively: let O1 = OC (O ⊂ OC), O2, . . . , Ok =
Q be a maximal chain of complex orbits of the system in NC such that Oi lies in
the closure of Oi+1 and Oi 6= Oi+1. Then on each Oi, we will find a closed geodesic
γi, such that each γi+1 is homotopic to a multiple of γi in Oi ∪Oi+1, starting with
γ1 = O. We will show how to go from O = γ1 to γ2 (the other steps are similar).
Without loss of generality, we may assume that O is a closed orbit for X1. Take
a small section D to O in M , and consider the Poincare map φ of X1 on D. Let
Y = O2∩DC. Then Y is a affine manifold (whose affine structure is projected from
O2 by X1). Let y be a point in Y . We want to connect y to φ(y) by a geodesic in
Y . If we can do it, then the sum of this geodesic segment with the orbit of X1 going
from y to φ(Y ) can be modified into a closed geodesic γ2 on O2. Unfortunately, in
general, we cannot connect y to φ(y) by a geodesic in Y , because Y is not “convex”.
But an interesting lemma says that Y can be cut into a finite number of convex
pieces, and as a consequences y can be connected geodesically to φN (y) for some
power φN (N -time iteration) of φ. See [89] for the details. �

Theorem 3.7 reduces the study of compact singular orbits to the study of fixed
points with a finite Abelian group of symmetry (this group arises from the fact that
the torus action is not free in general, only locally free). In the case of corank-1
singularities of Liouville-integrable systems, the local reduced system is a family of
functions on a 2-dimensional symplectic disk which are invariant under the rotation
action of a finite cyclic group Z/Zk, see [83].

3.6. Explicit Birkhoff coordinates.



24 NGUYEN TIEN ZUNG

It is an important problem to find explicit Birkhoff coordinates for a integrable
Hamiltonian system near a singular point or singular orbit (i.e. a system of coordi-
nates in which the Hamiltonian has Birkhoff normal form), or explicit action-angle
variables near regular tori. (Note that, in the infinite-dimensional case, usually
every finite-dimensional invariant torus is singular). These coordinates are used,
for example, in K.A.M. theory (for perturbations of finite and infinite-dimensional
integrable systems), see e.g. [48].

Among the first results in this direction, one may mention the work of Flaschka–
McLaughlin on action-angle variables for finite-zone solutions of the periodic KdV
equation, [31]. Based on this and other works, Kappeler et al. constructed Birkhoff
coordinates for various integrable systems in both finite and infinite dimension,
including the Toda lattice, the periodic KdV equation, and the integrable defocusing
nonlinear Schrödinger equation, see e.g. [8, 48] and references therein.

An analog of Theorem 3.3 is not yet available for infinite-dimensional integrable
systems, so we don’t know if all analytic infinite-dimensional integrable systems
admit local analytic Birkhoff normal form. But even in the finite dimensional case,
when we know that analytic Birkhoff coordinates exist, to find them explicitly is
a non-trivial task: in general, the action functions for the local Hamiltonian torus
action can be written down explicitly by Mineur-Arnold formula, but Guillemin–
Sternberg–Marle linearization theorem does not give an explicit linearization of
this action. (The proof of this linearization theorem relies on Moser’s path method,
which does not give a practical formula for computing the coordinate transforma-
tion).

In a joint work in progress [49], Kappeler and I are trying to characterize infinite-
dimensional Birkhoff normal forms by infinite-dimensional torus actions, and gen-
eralize Theorem 3.3 to the infinite-dimensional case. We also made the following
observation, useful for the construction of explicit Birkhoff coordinates: if we have
an anti-symplectic involution, then the se of fixed points of this involution can be
used to define Birkhoff coordinates, by the following theorem.

Theorem 3.9 (Kappeler–Zung [49]). If z is a nondegenerate elliptic fixed point of a
real analytic Liouville-integrable Hamiltonian system on a symplectic 2n-dimensional
manifold, and ρ is an anti-symplectic involution which preserves the momentum
map and fixes z, then there is a local analytic system of Birkhoff coordinates (xi, yi)
in a neighborhood of 0, such that the Lagrangian subspace {x1 = · · · = xn = 0}
consists of fixed points of the involution ρ. This local Birkhoff coordinate system is
uniquely defined up to an action of the Weyl group of sp(2n).

The above theorem works well in the case of periodic Toda lattice, and can
probably be applied to periodic KdV and other systems of physical interest too, see
[49]. Normal forms for Hamiltonian torus actions together with an anti-symplectic
involution were first studied by Duistermaat [25], and the above theorem is in fact
a simple consequence of Duistermaat’s results (plus the existence of a torus action).

4. Nondegenerate singularities

In this section, we will consider only smooth Liouville-integrable Hamiltonian
systems, though many ideas and results can probably be extended to other kinds
of integrable systems.
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4.1. Nondegenerate singular points.
Consider the momentum map F = (F1, ..., Fn) : (M2n, ω) → Rn of a smooth

integrable Hamiltonian system on a symplectic manifold (M2n, ω). In this Section,
we will forget about the original Hamiltonian function, and study the momentum
map instead.

For a point z ∈ M , denote rank z = rank dF(z), where dF denotes the differ-
ential of F. This number is equal to the dimension of the orbit of the system (i.e.
the infinitesimal Poisson Rn-action generated by XF1 , ..., XFn) which goes through
z. If rank z < n then z is called a singular point. If rank z = 0 then z is a fixed
point of the system.

If z is a fixed point, then the quadratic parts F
(2)
1 , ..., F

(2)
n of the components

F1, ..., Fn of the momentum map at z are Poisson-commuting and they form an
Abelian subalgebra, Az, of the Lie algebra Q(2n, R) of homogeneous quadratic
functions of 2n variables under the standard Poisson bracket. Observe that the
algebra Q(2n, R) is isomorphic to the symplectic algebra sp(2n, R).

A fixed point z will be called nondegenerate if Az is a Cartan subalgebra of
Q(2n, R). In this case, according to Williamson [79], there is a triple of nonnega-
tive integers (ke, kh, kf ) such that ke + kh + 2kf = n, and a canonical coordinate
system (xi, yi) in R2n, such that Az is spanned by the following quadratic functions
h1, ..., hn:

(4.1)

hi = x2
i + y2

i for 1 ≤ i ≤ ke ;
hi = xiyi for ke + 1 ≤ i ≤ ke + kh ;
hi = xiyi+1 − xi+1yi and
hi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf .

The triple (ke, kh, kf ) is called the Williamson type of (the system at) z. ke is the
number of elliptic components (and h1, ..., hke

are elliptic components), kh is the
number of hyperbolic components, and kf is the number of focus-focus components.
If kh = kf = 0 then z is called an elliptic singular point.

The local structure of nondegenerate singular point is given by the following
theorem.

Theorem 4.1 (Eliasson [28, 29]). If z is a nondegenerate fixed point of a smooth
Liouville-integrable Hamiltonian system then there is a smooth Birkhoff normal-
ization. In other words, the singular Lagrangian foliation given by the momentum
map F in a neighborhood of z is locally smoothly symplectomorphic to the “linear”
singular Lagrangian fibration given by the quadratic map (h1, ..., hn) : R2n → Rn

with the standard symplectic structure on R2n.

The elliptic case of the above theorem is also obtained independently by Dufour
and Molino [23]. The case is one degree of freedom is due to Colin de Verdière
and Vey [16]. The analytic case of the above theorem is due to Vey [71], and is
superceded by Theorem 3.3. Vu Ngoc San [74] obtained the semiclassical version
of the above theorem (quantum Birkhoff normal form).

A direct consequence of Eliasson’s theorem is that, near a nondegenerate fixed
point of Williamson type (ke, kh, kf ), there is a local smooth Hamiltonian Tke+kf -
action which preserves the system: each elliptic or focus-focus component provides
one T1-action. In the analytic case, Birkhoff normalization gives us a Tn-action,
but it acts in the complex space, and in the real space we only see a Tke+kf -action.
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The proof of Eliasson’s theorem [28, 29] is quite long and highly technical: The
first step is to use division lemmas in singularity theory to show that the local
singular fibration given by the momentum map is diffeomorphic (without the sym-
plectic structure) to the linear model. Then one uses a combination of averaging,
Moser’s path method, and technics similar to the ones used in the proof of Stern-
berg’s smooth linearization theorem for vector fields, to show that the symplectic
form can also be normalized smoothly.

4.2. Nondegenerate singular orbits.
Let x ∈ M be a singular point of rank x = m ≥ 0. We may assume without loss

of generality that dF1 ∧ ... ∧ dFm(x) 6= 0, and a local symplectic reduction near x
with respect to the local free Rm-action generated by the Hamiltonian vector fields
XF1 , ..., XFm

will give us an m-dimensional family of local integrable Hamiltonian
systems with n − m degrees of freedom. Under this reduction, x will be mapped
to a fixed point in the reduced system, and if this fixed point is nondegenerate
according to the above definition, then x is called a nondegenerate singular point
of rank m and corank (n − m). In this case, we can speak about the Williamson
type (ke, kh, kf ) of x, and we have ke + kh + 2kf = m.

A nondegenerate singular orbit of the system is an orbit (of the infinitesimal
Poisson Rn-action) which goes through a nondegenerate singular point. Since all
points on a singular orbit have the same Williamson type, we can speak about
the Williamson type and the corank of a nondegenerate singular orbit. We have
the following generalization of Theorem 4.1 to the case of compact nondegenerate
singular orbits:

Theorem 4.2 (Miranda–Zung [58]). If O is a compact nondenenerate singular
orbit of a smooth Liouville-integrable Hamiltonian system, then the singular La-
grangian fibration given by the momentum map in a neighborhood of O is smoothly
symplectomorphic to a linear model. Moreover, if the system is invariant under a
symplectic action of a compact Lie group G in a neighborhood of O, then the above
smooth symplectomorphism to the linear model can be chosen to be G-equivariant.

The linear model in the above theorem can be constructed as follows: De-
note by (p1, ..., pm) a linear coordinate system of a small ball Dm of dimension
m, (q1(mod 1), ..., qm(mod 1)) a standard periodic coordinate system of the torus
Tm, and (x1, y1, ..., xn−m, yn−m) a linear coordinate system of a small ball D2(n−m)

of dimension 2(n−m). Consider the manifold

(4.2) V = Dm × Tm ×D2(n−m)

with the standard symplectic form
∑

dpi ∧ dqi +
∑

dxj ∧ dyj , and the following
momentum map: (p,h) = (p1, ..., pm, h1, ..., hn−m) : V → Rn, where (h1, ..., hn−m)
are quadratic functions given by Equation (4.1). A symplectic group action on
V which preserves the above momentum map is called linear if it on the product
V = Dm × Tm ×D2(n−m) componentwise, the action on Dm is trivial, the action
on Tm is by translations with respect to the coordinate system (q1, ..., qm), and the
action on D2(n−m) is linear.

Let Γ be a finite group with a free linear symplectic action ρ(Γ) on V which
preserves the momentum map. Then we can form the quotient integrable system
with the momentum map

(4.3) (p,h) = (p1, ..., pm, h1, ..., hn−m) : V/Γ → Rn .
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The set {pi = xi = yi = 0} ⊂ V/Γ is a compact orbit of Williamson type (ke, kf , kh)
of the above system. The above system on V/Γ is called the linear model of
Williamson type (ke, kf , kh) and twisting group Γ, or more precisely, twisting ac-
tion ρ(Γ). (It is called a direct model if Γ is trivial, and a twisted model if Γ is
nontrivial). A symplectic action of a compact group G on V/Γ which preserves the
momentum map (p1, ..., pm, h1, ..., hn−m) is called linear if it comes from a linear
symplectic action of G on V which commutes with the action of Γ.

The case with G trivial and n = 2, kh = 1, ke = kf = 0 of Theorem 4.2 is
due to Colin de Verdière and Vu Ngoc San [17], and independently Currás-Bosch
and Miranda [19]. A direct consequence of Theorem 4.2 is that the group of local
smooth symplectic automorphisms of a smooth Liouville-integrable system near a
compact nondegenerate singular orbit is Abelian, see [58].

4.3. Nondegenerate singular fibers.
In this subsection, we will assume that the momentum map F : M2n → Rn is

proper. A singular connected component of a level set of the momentum map will
be called a singular fiber of the system. A singular fiber may contain one orbit (e.g.
in the elliptic nondegenerate case), or many orbits, some of them singular and some
of them regular. A singular fiber Nc is called nondegenerate if ∀z ∈ Nc is either
regular or nondegenerate singular. Of course, if a singular fiber of the system is
nondegenerate then nearby singular fibers are also nondegenerate.

By a singularity of a Liouville-integrable system, we mean the germ of the sys-
tem near a singular fiber, together with the symplectic form and the Lagrangian
fibration. We will denote a singularity by (U(Nc), ω,L), where U(Nc) denotes a
small “tubular” neighborhood of Nc, and L denotes the Lagrangian fibration. If
Nc is nondegenerate then (U(Nc), ω,L) is also called nondegenerate.

A simple lemma [82] says that if Nc is a nondegenerate singular fiber, then all
singular points of maximal corank in Nc have the same Williamson type. We define
the rank and the Williamson type of a nondegenerate singularity (U(Nc), ω,L) to
be the rank and the Williamson type of a singular point of maximal corank in Nc.

The following theorem may be viewed as the generalization of Liouville–Mineur–
Arnold theorem to the case of nondegenerate singular fibers:

Theorem 4.3 ([82]). Let (U(Nc), ω,L) be a nondegenerate smooth singularity of
rank m and Williamson type (ke, kh, kf ). Then
a) There is effective Hamiltonian Tm+ke+kf -action in (U(Nc), ω,L) which preserves
the system. The dimension m + ke + kf is maximal possible. There is a locally free
Tm-subaction of this action.
b) There is a partial action-angle coordinate system.
c) Under a mild additional condition, (U(Nc),L) is topologically equivalent to an
almost direct product of simplest (corank 1 elliptic or hyperbolic and corank 2 focus-
focus) singularities.

Assertion b) of the above theorem means that we can write (U(Nc), ω) as (Dm×
Tm × P 2k)/Γ with

(4.4) ω =
m∑
1

dpi ∧ dqi + ω1
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where ω1 is a symplectic form on P 2k, the finite group Γ acts on the product
component-wise, its action is linear on Tm, and the momentum map F does not
depend on the variables q1, ..., qm.

The additional condition in Assertion c) prohibits the bifurcation diagram (i.e.
the set of singular values of the momentum map) from having “pathologies”, see
[82], and it’s satisfied for all nondegenerate singularities of physical integrable sys-
tems met in practice. The almost direct product means a product of the type

(4.5) (T 2m × E2
1 × ...× E2

ke
×H2

1 × ...×H2
kh
×F4

1 × ...×F4
kf

)/Γ

where T 2m is the germ of (Dm ×Tm,
∑m

1 dpi ∧ dqi) with the standard Lagrangian
torus fibration; E2

i ,F2
i and H4

i are elliptic, hyperbolic and focus-focus singularities
of integrable systems on symplectic manifolds of dimension 2, 2 and 4 respectively;
the finite group Γ acts freely and component-wise. Remark that, in general, a
nondegenerate singularity is only topologically equivalent, but not symplectically
equivalent, to an almost direct product singularity.

The above almost direct product may remind one of the decomposition of al-
gebraic reductive groups into almost direct products of simple groups and tori:
though the two objects are very different, there are some common ideas behind
them, namely infinitesimal direct decomposition, and twisting by a finite group.

4.4. Focus-focus singularities.
The singularities E2

i ,H2
i ,F4

i in (4.5) may be called elementary nondegenerate sin-
gularities; they are characterized by the fact that ke + kh + kf = 1 and rank = 0.
Among them, elliptic singularities E2

i are very simple: each elementary elliptic sin-
gularity is isomorphic to a standard linear model (a harmonic oscillator). Elemen-
tary hyperbolic singularities H2

i are also relatively simple because they are given
by hyperbolic singular level sets of Morse functions on 2-dimensional symplectic
surfaces. On the other hand, focus-focus singularities F4

i live in 4-dimensional
symplectic manifolds, so their topological structure is somewhat more interesting.
Let us mention here some results about the structure of these 4-dimensional focus-
focus singularities, see [82, 87] and references therein for more details.

- One of the most important facts about focus-focus singularities is the existence
of a T1-action (this is a special case of Assertion a) of Theorem 4.3); many other
important properties are consequences of this T1-action. In fact, in many inte-
grable systems with a focus-focus singularity, e.g. the spherical pendulum and the
Lagrangian top, this T1-action is the obvious rotational symmetry, though in some
systems, e.g. the Manakov integrable system on so(4), this local T1-action is “hid-
den”. Dynamically speaking, a focus-focus point is roughly an unstable equilibrium
point with a T1- symmetry.

- Each focus-focus singularity has only one singular fiber: the focus- focus fiber,
which is homeomorphic to a pinched torus (take a torus, and ` parallel homotopi-
cally non-trivial simple closed curves on it, ` ≥ 1, then collapse each of these curves
into one point). This fact was known to Lerman and Umanskij [52]

- From the topological point of view, we have a singular torus fibration in a four-
dimensional manifold with one singular fiber. These torus fibrations have been
studied by Matsumoto and other people, see e.g. [55] and references therein, and
of course the case with a singular fiber of focus-focus type is included in their topo-
logical classification. In particular, the number of pinches ` is the only topological
invariant. The monodromy of the torus fibration (over a punched 2-dimensional
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disk) around the focus-focus fiber is given by the matrix
(

1 `
0 1

)
. By the way, the

case with ` > 1 is topologically an `-sheet covering of the case with ` = 1, and
a concrete example with ` = 1 is the unstable equilibrium of the usual spherical
pendulum.

- The above phenomenon of nontrivial monodromy (of the foliation by Liouville
tori) was first observed by Duistermaat and Cushman [24], and then by some other
people for various concrete integrable systems. The general formula for monodromy
around focus-focus singularities was observed in my thesis (see [82]). Now we have
many different ways to look at this monodromy: from the purely topological point
of view (using Matsumoto’s theory [55]), from the point of view of Picard-Lefschetz
theory (see Audin [6] and references therein), or as a consequence of Duistermaat-
Heckman formula with respect to the above-mentioned T1-action (see [87]).

- Quantization of focus-focus singularities leads to quantum monodromy, see Vu
Ngoc San [73] and Subsection 6.1.

Similar results, including the existence of a T1-action, for focus-focus singularities
of non-Hamiltonian systems, have been obtained by Cushman an Duistermaat [20],
see also [87].

5. Action functions and convexity

5.1. Convexity properties of momentum maps.
Probably the most famous theorem about convexity properties of momentum

maps in symplectic geometry is the following

Theorem 5.1 (Atiyah–Guillemin–Sternberg–Kirwan [3, 39, 50]). Let µ : M → g∗

be an equivariant momentum map of a Hamiltonian action of a compact Lie group
G on a connected compact sympletic manifold (M,ω). Let t∗+ denote a positive
Weyl chamber, t∗+ ⊂ t∗ ⊂ g∗ where t∗ is the dual of a Cartan subalgebra. Then
µ(M) ∩ t∗+ is a convex polytope.

The Abelian case of the above theorem (G = Tm is a torus, and t∗+ = t∗ = g∗)
is due to Atiyah [3] and Guillemin–Sternberg [39]. The non-Abelian case (G is not
a torus) is proved by Kirwan [50], using Morse theory and the results of [39].

There are many other convexity theorems. Let us mention just two of them:
- Nonlinear convexity theorem of Flaschka–Ratiu [32]. G is now a compact

Poisson-Lie group, the action of G on the connected compact symplectic manifold
(M,ω) is a Poisson action (i.e. the action map G × M → M is a Poisson map),
the momentum map µ now goes from M to the dual Poisson-Lie group G∗ of G
(momentum map in the sense of Lu). Flaschka–Ratiu theorem says that in this
case, the momentum map µ also has a convexity property similar to the one given
by Theorem 5.1, see [32] for a precise formulation.

- Noncompact convexity theorem of Weinstein [77]. G is now a noncompact real
semisimple Lie group, the Hamiltonian action of G on M is proper, and the image
of the momentum map µ : M → g∗ lies in the “stable region” of g∗ (the region
in which the coadjoint action of G is proper). Then the momentum map µ also
enjoys convexity properties in this case. A special case of Weinstein’s noncompact
convexity theorem (with G = Sp(2n, R)) is the following theorem, directly related
to Hamiltonian dynamics:
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Theorem 5.2 (Weinstein [77]). For any positive-definite quadratic Hamiltonian
function H on R2n, let F (H) be the n-tuple (λ1, . . . λn), where λ1 ≤ · · · ≤ λn are
the frequencies of the normal modes of oscillation for the linear hamiltonian system
generated by H; i.e. F (H) are the coefficients of the normal form

∑n
j=1

λj

2 (q2
j +p2

j )
for H in suitably chosen canonical coordinates. If λ and µ are nondecreasing n-
tuples of positive real numbers, then

(5.1) {F (H1 + H2)|F (H1) = λ and F (H2) = µ}

is a closed, convex, locally polyhedral set.

In [76, 77, 78], and in private communication, Weinstein presented an unified
approach for looking at the convexity theorems, from an intrinsic point of view,
using the language of Poisson geometry. Let us recall some of his ideas here:

- In Kirwan’s non-Abelian convexity theorem (and other non-Abelian convexity
theorems), there is something not very intuitive: the image µ(M) is not convex
in general, only its intersection with t∗+ convex. Weinstein’s idea is that µ(M)
has some intrinsic convexity property, and the convexity of µ(M) ∩ t∗+ is just an
appearance of that.

- Another idea of Weinstein is that proper symplectic groupoid actions generalize
at the same time Hamiltonian compact group actions, Hamiltonian proper noncom-
pact group actions, and Poisson compact group actions, so one can use the language
of proper symplectic groupoid actions to unify the above-mentioned theorems and
other theorems. This idea led Weinstein to his Poisson convexity conjecture, see
[76] and Subsection 5.4, and his study of proper groupoids [78].

In [90, 91], we studied proper groupoids and intrinsic convexity of momentum
maps, developing Weinstein’s ideas. To speak about intrinsic convexity, we need
intrinsic transverse affine structures. It turns out that these affine structures are
given by action functions of integrable systems (in generalized Liouville sense) that
arise naturally. Their local intrinsic convexity is provided by local normal form
theorems, due to the properness (of the groupoids in question). Finally, one can
go from local convexity to global convexity by the local-global principle (used by
Condevaux–Dazord–Molino [18] in their different proof of Theorem 5.1), which says
that, under some hypothese, something locally convex is also globally convex. See
[91] for the details. In the next three Subsections, we will briefly discuss transverse
affine structures, proper groupoids, and intrinsic convexity.

5.2. Action functions and transverse affine structures.
Let V be a (singular) foliation in a symplectic manfiold (M,ω), which is sym-

plectically complete, in the sense that there is another (singular) foliation V⊥ in M ,
such that the tangent space V ⊥x of V⊥ at a generic point x ∈ M is the symplecti-
cally orthogonal to the tangent space Vx of V. Such a V is also called a (singular)
Libermann foliation, and the pair (V,V⊥) is called a dual pair. For example, the
orbits of a Hamiltonian group action on M form a symplectically complete singular
foliation.

Given V, we can create two other (singular) foliations: the coisotropic hull W,
and the isotropy W⊥ of V: at a generic point x we have

(5.2) Wx = Vx + V ⊥x and W⊥
x = Vx ∩ V ⊥x .
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We will say that V has compact isotropy, if the leaves of W⊥ are compact. For
example, the foliation given by the orbits of a Hamiltonian compact group action
on a symplectic manifold has compact isotropy.

If V has compact isotropy, then its coisotropic hull W has a unique natural
transverse affine structure. In fact, in this case, W⊥ is the geometric version of an
integrable Hamiltonian system in generalized Liouville sense, i.e. its regular leaves
are invariant manifolds of an integrable system. In particular, regular leaves of W⊥

are isotropic tori, say of dimension d. Near each such torus, say T d, we can define
d independent action functions I1, . . . , Id, using Mineur-Liouville formula (2.5), by
fixing a basis of H1(T d, Z) and a primitive of the symplectic form near T d. These
action functions are local first integrals of W. They are not defined globally in
general: by going around, we may have to change the primitive form, or the basis
of H1(T d, Z). But these change lead to integral affine transformations of (I1, . . . , Id)
(“integral” means that the coefficients of the linear part of the transformations are
integers). So even though the functions (I1, . . . , Id) are not defined globally, they
define a transverse affine structure to W (the codimension of W is exactly d). This
is the natural transverse affine structure that we were talking about.

For example, consider an effective Hamiltonian torus action of Td on (M,ω). In
this case, the foliation V by the orbits of this action coincides with its isotropy,
and its generic orbits are d- dimensional tori. The generic leaves of the coisotropy
hull are just regular level sets of the momentum map, the action functions are
actually components of the momentum map, and the transverse affine structure is
the pullback of the standard affine structure on Rd by the momentum map.

Another typical example: let G be a compact Lie group. The action of G
on itself by conjugacy lifts to a Hamiltonian action of G on its cotangent bundle
T ∗G, with the momentum map ν : T ∗G → g∗. The leaves of the coisotropy
hull of the corresponding foliation in T ∗G project to coadjoint orbits in g∗ by
the map ν. So the transverse affine structure in T ∗G projects to the transverse
affine structure in g∗ with respect to the foliation given by the coadjoint action
(i.e. the symplectic foliation of g∗). Factoring g∗ by coadjoint action, we get an
affine structure on g∗/Ad∗. This quotient space is naturally isomorphic to a Weyl
chamber t∗+ (because every coadjoint orbit intersects with a fixed Weyl chamber
at exactly one point). Under this identification, the affine structure that we just
defined on g∗/Ad∗ happens to be the same as the affine structure on t∗+ induced
from t∗. That’s why there is another formulation of Kirwan’s theorem, in which one
can use the intrinsic transverse affine structure in g∗ instead of taking intersection
with t∗+.

5.3. Proper groupoids.
A groupoid is a (small) category in which each morphism is invertible: it consists

of a space Γ called the arrow space (the space of morphisms), a subspace B of Γ
called the base space (the space of objects), two maps s : Γ → B and t : Γ → B called
the source map and the target map, a map m : Γ2 → Γ called the multiplication
map (composition of two morphisms), where Γ2 = {(g, h) ∈ Γ×Γ, s(g) = t(h)}, and
a map from Γ to itself called the inversion (each morphism has its inverse), such
that the usual axioms of a category are satisfied. A groupoid is usually denoted
by a double map Γ ⇒ B. For a point x ∈ B, the set Gx = s−1(x) ∩ t−1(x) is a
group and is called the isotropy group of x. The set O(x) = t(s−1(x)) = s(t−1(x))
is called the orbit of x. If O(x) = {x} then x is called a fixed point.
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For example, each group is a groupoid (the base space is just one point). If a
group G acts on a space B, then it gives rise to an action groupoid G × B ⇒ B:
s(g, x) = x, t(g, x) = g.x.

By a proper groupoid, we mean a groupoid Γ ⇒ B which satisfies the following
conditions (see [78]): a) Γ and B are smooth paracompact manifolds and the maps
s, t are smooth submersions; b) The map s is a locally trivial fibration; c) The map
(s, t) : Γ → B ×B is a proper map.

Let Γ ⇒ B be a proper groupoid and x a point in B. Then the isotropy group
Gx is a compact Lie group, and the orbit O(x) of x is an embedded submanifold
in B. Let D be a small disk such that D cuts O(x) transversally at x, and define
ΓD = {g ∈ Γ | s(g) ∈ D, t(g) ∈ D}. Then D can be chosen (arbitrarily small)
so that ΓD ⇒ D is again a proper groupoid. This groupoid is called the slice of
Γ ⇒ B at x; it has x as a fixed point. Weinstein’s slice theorem (Theorem 9.1
of [78]), together with the following local structure (i.e. local linearization near a
fixed point) theorem, give a normal form (i.e. linearization) for a proper groupoid
in the neighborhood of an orbit.

Theorem 5.3 ([90]). A proper groupoid ΓD ⇒ D with a fixed point x is locally
isomorphic to the action groupoid Gx ×D ⇒ D of a linear action of Gx on D.

The proof of Theorem 5.3 is based on the averaging method. The main point is
to find a homomorphism from ΓD to Gx, whose restriction to Gx = s−1(x)∩ t−1(x)
is identity. One starts with a near-homomorphism from ΓD to Gx (which always
exists after shrinking D if necessary), then averages it with respect to a Haar system
on Γ to get a new map from ΓD to Gx which is closer to a homomorphism than
the original near-homomorphism. By repeating the process and taking the limit,
one finds a true homomorphism from ΓD to Gx. This proof is similar to the proof
of Grove–Karcher–Ruh theorem [37], which says that a near-homomorphism from
a compact Lie group to another compact Lie group can be approximated by a
homomorphism.

Symplectic groupoids have been introduced independently by Karasev, Wein-
stein, and Zakrzewski, in relation with symplectic realization and quantization of
Poisson manifolds, see e.g. [75] and references therein. A groupoid Γ ⇒ B is called
a symplectic groupoid if Γ is equipped with a symplectic form σ, and if we denote
by Γ the manifold Γ with the opposite symplectic form −σ, then the graph of the
multiplication map

(5.3) {(g, h, g.h) ∈ Γ× Γ× Γ | (g, h) ∈ Γ2}

is a Lagrangian submanfiold of Γ × Γ × Γ. For example, if G is a group, then we
have the standard symplectic groupoid T ∗G ⇒ g∗ (= T ∗e G), where the two maps
are left and right translations.

If (Γ, ω) ⇒ B is a symplectic groupoid, then B has a unique natural Poisson
structure, for which the source map is a Poisson map, and the target map is anti-
Poisson. In the case of T ∗G ⇒ g∗, the induced Poisson structure on g∗ is the
standard linear Poisson structure.

A symplectic groupoid (Γ, σ) ⇒ B is called proper if it is a proper groupoid. A
slice of a proper symplectic groupoid is again a proper symplectic groupoid, and its
local structure is given by the following theorem, whose proof follows from Theorem
5.3 and Moser’s path method.
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Theorem 5.4 ([91]). A proper symplectic groupoid ΓD ⇒ D with a fixed point x
is locally isomorphic to the standard symplectic groupoid T ∗G ⇒ g∗, where G = Gx

is a compact Lie group.

A groupoid Γ ⇒ B can act on a space M equipped with a map µ : M → B, called
the momentum map of the action. By definition, the action is a map (g, y) 7→ g.y
from Γ ∗ M = {(g, y)|s(g) = µ(y)} to M satisfying the condition t(g.y) = t(g)
and the usual laws for an action. A symplectic groupoid action of a symplectic
groupoid (Γ, σ) ⇒ B on a symplectic manifold (M,ω) is a groupoid action such
that the graph {(g, y, z) | z = g.y} is a coisotropic submanifold of Γ×M ×M . The
momentum map µ : M → B is then a Poisson map. For example, actions of the
standard symplectic groupoid T ∗G ⇒ g∗ correspond to Hamiltonian actions of G.

5.4. Intrinsic convexity.
Suppose now that a proper symplectic groupoid (Γ, σ) ⇒ B acts on a symplectic

manifold (M,ω). Weinstein’s Poisson convexity conjecture [76] says that, in this
case, the corresponding momentum map µ : M → B must have convexity proper-
ties. The original formulation of this conjecture is a little bit vague, so let us spell
it out, and sketch an intrinsic proof of it.

The orbits of the action of (Γ, σ) ⇒ B on M form a singular symplectically
complete foliation on M , which we will denote by V. The coisotropic hull of V is
denoted by WM .

The singular foliation of B by the symplectic leaves is denoted by WB . The
foliation on Γ which is the pullback of WB by the source map is denoted by WΓ.
WΓ is a coisotropic singular foliation. Since (Γ, σ) ⇒ B is proper, WΓ has compact
isotropy, so it admits a transverse integral affine structure, which projects to a
transverse integral affine structure for WB in B. Similarly, WM also has a natural
transverse affine structure in M .

The momentum map µ : M → B sends WM to WB , i.e. it sends each regu-
lar leaf of WM onto exactly one leaf of WB . An important point is that µ is a
transversally affine map: due to the properness, we can form the quotient map
µ̂ : M/WM → B/WB , and it’s an affine map with respect to the corresponding
induced affine structures. (M/WM and B/WB are orbifolds with boundary and
corners in general).

Due to Theorem 5.4, the transverse affine structure of (Γ,WΓ) near each point is
locally isomorphic to a positive Weyl chamber of a compact Lie group; in particular
we have the local intrinsic convexity of this affine structure.

Similarly, due to Theorem 5.4, proper symplectic groupoid actions are locally
just like Hamiltonian actions of compact Lie groups. In particular, we can apply
Guillemin–Sternberg-Marle local linearization theorem of Hamiltonian actions and
Guillemin–Sternberg local convexity theorem (see [39]) to conclude that the trans-
verse affine structure of (M,WM ) is also locally convex. Moreover, the momentum
map µ is locally transversally injective.

So we have the image of something (transversally) locally convex affine under a
(transversally) locally injective affine map, into a (transversally) affine space which
is also locally convex. This is what we call intrinsic convexity. Under some mild
conditions, one can conclude that the image must be convex too.
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6. Global aspects of local torus actions

6.1. Sheaf of local T1-actions.
Consider a smooth proper integrable system on a manifold M with a given p-

tuple of commuting vector fields X = (X1, ..., Xq) and q-tuple of common first
integrals F = (F1, ..., Fq).

We will call the space of connected components of the level sets of the map F
the base space of the integrable system, and denote it by B. Since the system is
proper, the space B with the induced topology from M is a Hausdorff space. We
will denote by P : M → B the projection map from M to B.

For each open set U of B, denote by R(U) the set of all T1-actions in P−1(U)
which preserve the integrable system (F,X) (in the Hamiltonian case, due to gener-
alized Liouville-Mineur-Arnold theorem, elements of R(U) will automatically pre-
serve the Poisson structure). R(U) is an Abelian group: if two elements ρ1, ρ2 of
R(U) are generated by two periodic vector fields Y1, Y2 respectively, then Y1 will
automatically commute with Y2, and the sum Y1 + Y2 generates another T1-action
which can be called the sum of ρ1 and ρ2. Actually, R(U) is a free Abelian group,
and its dimension can vary from 0 to p (the dimension of a regular invariant torus
of the system), depending on U and on the system. If U is a small disk in the
regular region of B then dimZR(U) = p.

The association U 7→ R(U) forms a free Abelian sheaf R over B, which we will
call the toric monodromy sheaf of the system. This sheaf was first introduced in [84]
for the case of Liouville-integrable systems, but its generalization to the cases of
non- Hamiltonian integrable systems and integrable systems in generalized Liouville
sense is obvious.

If we restrict R to the regular region B0 of B (the set of regular invariant tori of
the system), then B is a locally trivial free Abelian sheaf of dimension m (one may
view it as a Zp-bundle over B0), and its monodromy (which is a homomorphism
from the fundamental group π1(B0) of B0 to GL(p, Z)) is nothing but the topological
monodromy of the torus fibration of the regular part of the system. This topological
monodromy, in the case of Liouville-integrable system, is known as the monodromy
in the sense of Duistermaat [24], and it is a topological obstruction to the existence
of global action-angle variables. In the case of Liouville-integrable systems with
only nondegenerate elliptic singularities, studied by Boucetta and Molino [13], R is
still a locally free Abelian sheaf of dimension p = 1

2 dim M .
When the system has non-elliptic singularities, the structure of R can be quite

complicated, even locally, and it contains a lot more information than the mon-
odromy in the sense Duistermaat. For example, in the case of 2-degree-of-freedom
Liouville-integrable systems restricted to isoenergy 3-manifolds, R contains infor-
mation on the “marks” of the Fomenko-Zieschang invariant, which is a complete
topological invariant for such systems, see e.g. [34, 11]. In fact, as found out by
Fomenko, these isoenergy 3-manifolds are graph-manifolds, so the classical theory
of graph-manifolds can be applied to the topological study of these 2-degree-of-
freedom Liouville-integrable systems. A simple explanation of the fact that these
manifolds are graph-manifolds is that they admit (natural) local T1-actions.

In the case of Liouville-integrable systems, the base space B has a natural strat-
ified integral affine structure (rational affine functions on B are action functions for
the system), and the structure of R can be read off the affine structure of B, see
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[84]. One can think of Bohr-Sommerfeld quantization as a disretization of the inte-
gral affine structure of B (see e.g. [87] ad references therein): after quantization, in
place of a stratified integral affine manifold, we get a “stratified nonlinear lattice”
(of joint spectrum of the system). The monodromy of this joint spectrum stratified
lattice (of the quantized system) is called quantum monodromy, and it naturally
resembles the monodromy of the classical system.

The second cohomology group H2(B,R) plays an important role in the global
topological study of integrable systems: In fact, if two integrable systems have
the same base space, the same singularities, and the same toric monodromy sheaf,
then their remaining topological difference can be characterized by an element in
H2(B,R), called the (relative) Chern class. We refer to [84] for a precise defini-
tion of this Chern class for Hamiltonian integrable systems (the definition is quite
technical when the system has non-elliptic singularities), and the corresponding
topological classification theorem. In the case of systems without singularities or
with only elliptic singularities, this Chern class was first defined and studied by
Duistermaat [24], and then by Dazord–Delzant [22] and Boucetta–Molino [13].

6.2. Integrable surgery.
The idea of integrable surgery, introduced in [84], is as follows: if we look at in-

tegrable systems from differential topology point of view (singular torus foliations),
instead of dynamical point of view (quasi-periodic flows), then we can perform
surgery on them, in order to modify them, and obtain new integrable systems from
old ones. Integrable surgery may be useful also for the study of topology an sym-
plectic geometry of ambient manifolds (which arise as phase spaces of integrable
systems). Some simple examples of integrable surgery can be found in [84], in-
cluding a construction of exotic symplectic spaces, and a construction of integrable
systems on symplectic manifolds diffeomorphic to K3 surfaces.

Symington [68, 69] recently obtained several interesting results concerning sym-
plectic 4-manifolds, using integrable surgery.

6.3. Localization formulas.
A general idea in analysis and geometry is to express global invariants in terms

of local invariants, via localization formulas.
Various global topological invariants, including the Chern classes (of the tangent

bundle), of the symplectic ambient manifold of a Liouville-integrable system, can be
localized at singularities of the system. Some results in this direction can be found in
recent papers of Gross [36] and Smith [66], though much still waits to be worked out
for general integrable systems. For example, consider a 4-dimensional symplectic
manfiold with a proper integrable system whose fixed points are nondegenerate.
Then to find c2 (the Euler class) of the manifold, one simply needs to count the
number of fixed points with signs: the plus sign for elliptic-elliptic (ke = 2, kh =
kf = 0 in Williamson type), hyperbolic-hyperbolic (kh = 2) and focus-focus points,
and the minus sign for elliptic-hyperbolic (ke = kh = 1) points.

In symplectic geometry, there is a famous localization formula for Hamiltonian
torus actions, due to Duistermaat and Heckman [27]. There is a topological ver-
sion of this formula, in terms of equivariant cohomology, due to Atiyah–Bott [4]
and Berline–Vergne [9], and a non-Abelian version due to Witten [80] and Jeffrey–
Kirwan [45]. We refer to [5, 26, 38] for an introduction to these formulas. It would
be nice to have analogs of these formulas for proper groupoid actions and general
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integrable systems.

Acknowledgements: This paper is written at the invitation of my Russian
colleagues Alexei Bolsinov, Anatoly Fomenko and Andrey Oshemkov, and I would
like to thank them.

Many people helped me find the tori. I would like to thank them all, and espe-
cially (here I list only some people with whom I had many mathematical discussions
on the subject – I hope that other people will forgive me) Michèle Audin, Alexei
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Ann. Sci. Éc. Norm. Supér., IV. Sér., 29 (1996), No.6, 787-809.

33. A.T. Fomenko, Integrability and nonintegrability in geometry and mechanics, Kluwer,
Dordrecht, 1988.

34. A.T. Fomenko, H. Zieschang, A topological invariant and a criterion for the equivalence of

integrable Hamiltonian systems with two degrees of freedom, Math. USSR-Izv. 36 (1991),
no. 3, 567–596.
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