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ABSTRACT. We consider a free interpolation problem in Nevanlinna and Smirnov classes and
find a characterization of the corresponding interpolating sequences in terms of the existence of
harmonic majorants of certain functions. We also consider the related problem of characterizing
positive functions in the disk having a harmonic majorant. An answer is given in terms of a
dual relation which involves positive measures in the disk with bounded Poisson balayage. We
deduce necessary and sufficient geometric conditions, both expressed in terms of certain maximal

functions.
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Interpolating sequences for the Nevanlinna ClassLet A be a discrete sequence of points

in the unit diskD. For a space of holomorphic functiod§, the interpolation problem consists

in describing the trace oX on A, i.e. the set of restriction&’| A, regarded as a sequence space.
One approach is to fix a target spdcend look for conditions so thaX|A = [. An alterna-

tive approach, known as free interpolation, is to require tXigk be ideal, i.e. stable under
multiplication by />. See [Nik02, Section C.3.1 (Molume 2)], in particular, Theorem C.3.1.4,
for functional analytic motivations. This approach is natural for those spaces that are stable un-
der multiplication byH*, the space of bounded holomorphic functionsanFor Hardy and
Bergman spaces both definitions turn out to be equivalent, with the usual chdiaes @n/?

space with an appropriate weight (see [ShHSh], [Se93]).

The situation changes for the non-Banach classes we have in mind, namélguaelinna
class

_ TR S R i
N_{fEHOMD)',I}_IEg/O log™ | f(re )\d6<oo}

and the relate@mirnov class
1 27 ) 1 2w )
Nt ={feN:lim / log™ | f(re®®)| do = 7/ log" |f(c)] d}.
r—1 271 Jo 27 Jo

We briefly discuss the known results. NaftatlejiNa56] described the sequencesor which
the traceN|A coincides with the sequence spdgg= {(a,)x : sup,(1 — |\|)log" |ax| < oo}
(we state the precise result after Proposition 1.12). The choikg isfmotivated by the fact that
sup, (1 —|z|)log™ | f(2)| < oo for f € N, and this growth is attained. Unfortunately, the growth
condition imposed iriy, forces the sequences to be confined in a finite union of Stolz angles.
Consequently a big class of Carleson sequences (i.e. sequences su¢ft that ¢>°), namely
those containing a subsequence tending tangentially to the boundary, cannot be interpolating in
the sense of Naftale®i This does not seem natural, fEr° is in the multiplier space oNV. In a
sense, the target spakg is “too big”. Further comments on Naftal&s result can be found in
[HaMaO01] and below, after Proposition 1.12.

For the Smirnov class, Yanagihara [Ya74] proved that in order3hgt\ contains the space
Iva = {(ax)x : Za(1 — |A])1og™ |ay| < oo}, it is sufficient thatA is a Carleson sequence.
However there are Carleson sequences such\ffigh does not embed intly, [Ya74, Theorem
3] : the target spacks is “too small”.

We now turn to the definition of free interpolation.

Definition. A sequence spades calledidealif ([ C [, i.e. whenevefa,), € [ and(w,), €
(>, then alsdw,a,), € .

Definition. Let X be a space of holomorphic functionslin A sequence\ C D is calledfree
interpolating for X if X|A is ideal. We denotd € Int X.

Remark 1.1. For any function algebr&” containing the constantX|A is ideal if and only if

> C XA
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The inclusion is obviously necessary. In order to see that it is sufficient notice that, by assump-
tion, for any(w, ), € (> there existy € X such thaty(\) = wy. Thus, if (f(\)), € X]A, the
sequence of valugss, f()), can be interpolated byg € X.

It is then clear thaint Nt C Int V.

Free interpolation for these classes entails the existence of nonzero functions vanishing on all
A except a given\,. Hence the Blaschke condition,c, (1 — |\|) < oo is necessary and will be
assumed throughout this paper.

Given the Blaschke produdty = []yc, ba With zero-sequencd, denoteB, = By =
Ba/by. Hereby = (JA|/A)(A — 2)(1 — Xz)~!. Define then

(2) = log | By(M\)| ! ifz=XeA
LR ) if 2 ¢ A

Definition. We say that a Borel measurable functipdefined on the unit disk admitgsitive
harmonic majorantf and only if there exists a positive harmonic functibon the unit disk such
thath(z) > ¢(z) foranyz € D.

Let Har(DD) denote the space of harmonic functionsDirand Har, (D) the subspace of its
positive functions. Consider also the Poisson kerné&k:in

B B C+z\ 11—z
P = PO = Re( £12) = 1 21

Our characterization of interpolating sequences for the Nevanlinna class is as follows. Note
that the existence of a harmonic majorant occurs at two junctures: first, to decide which se-

guences of points are free interpolating, second, to identify the trace space that arises for those
sequences which are indeed free interpolating.

Theorem 1.2.Let A be a sequence ib. The following statements are equivalent:
(a) A is a free interpolating sequence for the Nevanlinna class
(b) The trace space is given by:
N|A =y :={(a\)r : 3 h € Har, (D) such thath(\) > log™ |ay|, A € A}.

(c) ¢ admits a harmonic majorant.
(d) There exists” > 0 such that for any sequence of nonnegative numpers

Yoaxea(N) =D exlog |Ba(V)[ ™ < Csup Y exPr(().
AeA AEA CedD \eA

We recall that any positive harmonic function on the unit disk is the Poisson integral of a
positive measure on the unit circle,

h(z) = Plul(z) = [ P.(C)dp(C).

We will say that a harmonic function guasi-boundedf and only if it admits an absolutely
continuous boundary measure (for the reasons for this terminology, see [He69, pp. 6-7]). The
analogous result for the Smirnov class will, as can be expected, involve quasi-bounded harmonic
functions.



4 A. HARTMANN, X. MASSANEDA, A. NICOLAU, P. THOMAS

Let do denotes the normalized Lebesgue measur#inAlso, for a nonnegative functiop
on the unit disk, lef\/ © denote the associated non-tangential maximal function (see (1.1) below).

Theorem 1.3.Let A be a sequence ib. The following statements are equivalent:

(@) A is a free interpolating sequence for the Smirnov class
(b) The trace space is given by

NT|A = Iy+ = {(a))x : I h € Har (D) quasi-bounded: h()\) > log" |ax|, A € A}.

(c) px admits a quasi-bounded harmonic majorant.

(d) lim sup > axpa(A) = 0, whereB(A) denotes the set of nonegative sequences
T HIEBM) gy ()20

{ea} such thatsup > Py (¢) < 1.
¢EOD AEA
(e) (i) supto({¢ € D : Mpx(¢) > t}) < o0, and
t>0
(i) lim > CE\")QOA()\) = 0 for any sequence of sequences of nonnegative numbers
n—00 XeA

{c{"} € B(A) such thatlim 3 ¢ Py(¢) = 0 almost everywhere afiD.
70 NeA

The classical Carleson condition characterizing interpolating sequences for bounded analytic
functions in the unit disk isupy px < oo, hence statements (c) in both results above can be
viewed as Carleson-type conditions.

In view of Theorems 1.2 and 1.3, it seems natural to ask whether the measuh that
va < Plu] can be obtained from\ in a canonical way. We do not have an answer to this
guestion, but with Propositions 1.12 and 1.13 it is easy to construct examples that discard natural
candidates, such as the (weighted) sum of Dirac magses Y-, (1 — |A|)dx 5, Or Poisson
balayage measurds = >, (1 — |A|) P\(¢) do(¢) (see definition below).

1.2. Positive harmonic majorants. The conditions in Theorems 1.2 and 1.3 (d) arise in the
solution of a problem of independent interest:

Problem. Which functionsy : D — R, admit a (quasi-bounded) harmonic majorant?

Answers to this problem lead to rather precise theorems about the permissible decrease of the
modulus of bounded holomorphic functions, e.g. Corollary 1.5 below. See [Hay], [LySe97];
[EIES] also provides a survey of such results. The existence of harmonic majorants is relevant
as well to the study of zero-sequences for Bergman and related spaces of holomorphic functions
[Lu96].

An answer to the problem of positive harmonic majorants can be given in dual terms (see
[BNT] for another characterization). THepisson balayagéor swept-out function) of a finite
positive measurg in the closed unit disk is defined as

B(2)(Q) = [ PAQduz) ¢ eom.

We will be interested in the class of measures having bounded balayage. Recall that Carleson
measures are those finite positive measures whose balayage has bounded mean oscillation (see
[Gar81, Theorem VI.1.6, p. 229]); this is also an easy consequence @i tH&MO duality

(see [Gar81, Theorem VI.4.4, p. 245]). Hence positive measures with bounded balayage form a
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subclass of the usual Carleson measures. It is easy to see (cf. Section 6) that positive measures
with bounded balayage are precisely those which operate against positive harmonic functions,
that is, those measurgdor which there exists a constafit= C'(x:) such that

| h=)du(z) < Ch(o)

for any positive harmonic function in the unit difk
Define

B := {u positive Borel measures dhsuch thatsup B(u)(¢) < 1}.
¢edD
Theorem 1.4.Lety be a nonnegative Borel function on the unit diskThe following statements
are equivalent:

(a) There exists a (positive) harmonic functibrsuch thatp(z) < h(z) for all z € D.
(b) There exists a constant = C'(y) such that

sup [ o(z) du(z) < C.
ueB JD

The necessity of condition (b) is obvious (e.d.= h(0)), while the sufficiency follows
from a convenient version of a classical result in Convex Analysis, known as Minkowski-Farkas
Lemma. The characterization of interpolating sequences in the Nevanlinna class in dual terms
given by condition (d) in Theorem 1.2 follows from this result.

This can be applied to study the decrease of a non-zero bounded analytic function in the disk
along a given non-Blaschke sequence.

Corollary 1.5. Let A be a separated non-Blaschke sequence(anihc, a sequence of positive
values. Then there exists a non-zero functfos H> (D) with |f(\)| < ex, A € A, if and only
if A is the union of a Blaschke sequence and a sequénice which there exists a universal
constant” = C(I") such that

> e, loga;l < Csup Y e, Py(Q)

verl’ (coD vel’

for any sequence of nonnegative numiers.cr.

In a similar way, Theorem 1.3 (d), (e) are obtained as an application of the following analogue
of Theorem 1.4 for quasi-bounded harmonic functions (i.e. for the Smirnov class).

Theorem 1.6.Lety be a nonnegative Borel function on the unit diskT he following statements
are equivalent:

(a) There exists a (positive) quasi-bounded harmonic fundiiench thaty(z) < h(z) for
all z € D.

(b) There is a convex increasing functign: [0, co) — [0, co) with fhm Y(t)/t = 400 such
thatvy o ¢ admits a harmonic majorant ob; '

(c) lim sup wdu = 0.
0 ueB J{pzn}
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(d) (i) sulog)ta({( €D : Mp(() > t}) < oo, and

n— n—oo

everywhere 0D,

(i) lim / wdu, = 0 for any sequencéu,,} C B such thatlim B(u,)(¢) = 0 almost
> JD

Condition (b) is inspired by a characterization of quasi-bounded harmonic functions given in
Armitage and Gardiner’s book [ArGa, Theorem 1.3.9, p. 10].

For the problem of harmonic majorants it is desirable to obtain criteria which, although only
necessary or sufficient, are more geometric and easier to check than the duality conditions of
Theorems 1.4 and 1.6.

Recall that the Stolz angle with vertéxc 0D and aperturer is defined by
Lo(Q):i={z€D: |z = (| <a(l - [z[)}

In our considerations the angheis of no importance, so we will writ€(({) for the generic Stolz
angle with aperturer. Given a functionf from D to R, the non-tangential maximal function is
defined as

(1.2) Mf(C) :=sup f.
I'(¢)

Recall thair denotes the normalized Lebesgue measur@lanConsider the weak-' space
L. (0D) = {f measurable supto({¢ : |f(¢)| >t} < oo})
t>0

and let
L., ,(0D) = { f measurable lim to({C: |£(C)] > t}) = 0}.

It is well-known that the non-tangential maximal function of the Poisson transform of a pos-
itive finite measure belongs tb., (see [Gar81, Theorem 5.1, p. 28]). A more careful analysis
shows that if is absolutely continuous, then its Poisson transform iE}j,’r@. This and some
easy estimates imply the following result.

Proposition 1.7. (a) If ¢ admits a harmonic majorant, theWy € Ll (OD).
(b) If o admits a positive quasi-bounded harmonic majorant, thep € L}w(aﬂ)).
(c) If My € L'(0D), then the functionp admitsP[M ] := P[Mpdo] as a quasi-bounded
harmonic majorant.

As far as necessary conditions are concerned, there is a way to improve the previous result by
using the Hardy-Littlewood maximal function. Givgin> 0, this is defined as

. 1
fre) =sw o [ 1,
where the supremum is taken over all af@ntainingz.
Fory > 0 define
P1(C) i= sup ()7 (€) = sup p(z) sup T L)
2D 2€D rcer o(l)
wherey is the characteristic function of a setand/, is the “Privalov shadow” interval

(1.2) L:={CedD:zecI(C)}

I
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Proposition 1.8. (@) If  admits a harmonic majorant, thes € L. (D).
(b) If v admits a quasi-bounded harmonic majorant, théhe L} ,(0D).

We will give some examples in Proposition 7.4 that show that this is indeed stronger than
the necessary condition given in the first part of Proposition 1.7, but still falls short of giving a
sufficient condition for the existence of a harmonic majorant.

1.3. Geometric criteria for interpolation. We would like to obtain some geometric implica-

tions of the analytic conditions given in Theorems 1.2 and 1.3. To begin with, we would like to
state the maybe surprising result that separated Blaschke sequences (with respect to the hyper-
bolic distance) are interpolating for the Smirnov class (and hence the Nevanlinna class). Recall
that a sequencé is calledseparatedf 6(A) := /\i;rél/f\/p()\, ) >0, where

zZ—Ww

p(z,w) = [b(w)| = :

1—zw
is the pseudo-hyperbolic distance.

For such sequences, the vallies| B, (\)|~! can always be majorized by the values\at A
of the Poisson integral of an integrable function (see Proposition 4.1), thus the following corollary
is immediate from Theorem 1.3.

Corollary 1.9. Let A be a separated Blaschke sequence. ThenInt N* (henceA € Int N).

More precise conditions can be deduced from Propositions 1.7, 1.8 and (c) in Theorems 1.2
and 1.3.

Corollary 1.10. Let A be a sequence iD.
(a) If A € Int N theny} € L) (OD). If A € Int N* thenp} € L}, ,(OD).
(b) If Mp, € L'(OD) thenA € Int N (and hence\ € Int N).

Notice that the necessary conditions obtained by replaglhpy M, in (a) also hold. This
in an immediate consequence of the estimg{e> M.

This result implies the following Carleson-type conditions.
Corollary 1.11. (@) If A € Int N, then
(1.3) lim (1= [A]) log [ By(})| ™ = 0.

(b) If A € Int N, then
(1.4) sup(1 — |A|) log |Bx(\)| 7t < 0.
AEA

(c) If A is Blaschke and

(1.5) > (1= [ log | BA(N)| ! < oo,
AeA

thenA € Int N* (and soA € Int NV as well).
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Condition (1.3) already appeared in [Ya74, Theorem 1] as a necessary condition for the se-
guence spack, (as defined in the beginning of Section 1.1) to be included in the trad&of
Condition (1.4) is discussed in Proposition 1.12 and the corollary thereafter.

In some situations the conditions above are indeed a characterization of interpolating se-
guences. For instance, the wehk-condition characterizes interpolating sequences lying on
a radius, while for sequences approaching the unit circle very tangentially the characterization is
given by the strond.!-condition. This is collected in the next results.

Proposition 1.12. Assume thad C D lies in a finite union of Stolz angles.

(@) A € Int Nt if and only if (1.3) holds.
(b) A € Int N if and only if (1.4) holds.

It should be mentioned that (b) can also be derived from Naft@&tewesult [Na56, Theorem
3]. On the other hand, his full characterization of the sequences sucN that Iy, can also be
deduced from Theorem 1.2.

Corollary (Naftalevc, 1956) N|A = Iy, if and only if A is contained in a finite union of Stolz
angles and1.4) holds.

Let us consider the other geometric extreme, sequences which in particular only approach the
circle in a tangential fashion. Write
(1.6) pa =Y (1= [A])dx,

A
whered, stands for the Dirac measure)at

Proposition 1.13.If x5 has bounded balayage, théne Int N if and only if A € Int N*, and
if and only if (1.5) holds.

Note that the condition that, has bounded balayage implies in particular thapproaches
the circle tangentially. In Section 8, we will see more concrete conditions of geometric separation
which are sufficient to imply that, has bounded balayage (Proposition 8.2).

When i, has bounded balayage, the trace space will embed into Yanagihara’s target space.
More precisely, the following result holds.

Proposition 1.14. The following are equivalent:

(@) N|A C lya
(b) NF|A C lva
(c) na has bounded balayage, i.€ip cap >a(1 — [A]) PA(¢) < oo.

Yanagihara considered the sequences suchXhaf\ O Iy,. These are automatically in
Int N*, since for any Blachke sequentg O ¢>. Conversely, Lemma 8.1 (see Section 8)
implies thatly, C Iy+, thus if A € Int N*, then by Theorem 1.3(kV*t|A D lva. Therefore
Theorem 1.3 characterizes in particular the sequences studied by Yanagihara.

Altogether, free interpolation for the Nevanlinna and Smirnov classes can be described in
terms of the intermediate target spa¢gsand/y-+. Notice first that alwaysV*|A C Iy+ and
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NJ|A C Iy (this is proved at the beginning of Section 5). 8os Int N* if and only if N*|A D
Iy+,andA € Int N if and only if N|A D ly. Observe also thd{, C Iy+ C Iy C Ina-

The paper is organized as follows. The next section is devoted to collecting some basic results
on functions in the Nevanlinna class. In Section 3 we prove the sufficiency for interpolation of
the conditions (c) of Theorems 1.3 and 1.2. We essentially use a result by Garnett allowing inter-
polation by H* functions on sequences which are denser than Carleson sequences, under some
decrease assumptions on the interpolated values. In Section 4 we study the necessity of these
conditions. We first observe that in the prodiii(\) appearing in Theorem 1.2, only the fac-
torsb,(\) with )’ close to) are relevant. Then we split the sequence into four pieces, thereby
reducing the interpolation problem, in a way, to that on separated sequences. The trace space
characterization will be discussed in Section 5. In Section 6 we consider measures with bounded
balayage, show that they operate against positive harmonic functions and prove Theorems 1.4
and 1.6. In Section 7, we prove Proposition 1.8, and provide examples to show that the sufficient
condition is not necessary, and the necessary condition not sufficient. Section 8 is devoted to
the proofs of Corollary 1.11, Propositions 1.12, 1.14, and 1.13, as well as the deduction of Naf-
talevic’s result from Theorem 1.2. Also, we give examples of measures with bounded balayage.
In the final section, we exploit the reasoning of Section 3 to construct non-Carleson interpolating
sequences for “big” Hardy-Orlicz classes.

Acknowledgements. The authors wish to express special thanks to Jean-Baptiste Hiriart-
Urruty for introducing them to Farkas’ Lemma, to Stephen Gardiner for pointing out an ef-
ficient characterization of quasi-bounded harmonic functions, and to Alexander Borichev for
Lemma 6.6, and his discussions with us about harmonic majorants.

2. PRELIMINARIES

We next recall some standard facts about the structure of the Nevanlinna and Smirnov classes
(general references are e.g. [Gar81], [NikO2] or [RosRov]).

A function f is calledouterif it can be written in the form

f(z) = Cexp {/am) g i_ 'Z logv(C)dU(C)}a

where|C| = 1,v > 0 a.e. ordD andlogv € L'(dD). Such a function is the quotierfit= f,/ f>
of two bounded outer functiong, fo € H> with || f;||. < 1,7 = 1, 2. In particular, the weight
v is given by the boundary values [, / f»|. Settingw = log v, we have

log |£(2)| = Plul(z) = [ P.()uw(C)do(c).

This formula allows us to freely switch between assertions about outer fungtiand the asso-
ciated measuresdo.

Another important family in this context amener functions:/ € H* such that/| = 1 almost
everywhere o@D. Any inner function/ can be factorized into a Blaschke prodiitt carrying
the zeros\ = {\, },, of I, and a singular inner functioti defined by

s<z>:exp{—/a <+Zdu(<)},

pD(—2
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for some positive Borel measuresingular with respect to Lebesgue measure.
According to the Riesz-Smirnov factorization, any functipg N is represented as
BSf
= X s
F=oy
wheref, f, are outer with| f, ||, || f2|]l« < 1, S is singular innerB is a Blaschke product and
|a| = 1. Similarly, functionsf € N are represented as
BS
f=atth,
Sa.f2
fillo < 1,S; singular inner,B is a Blaschke product arjd| = 1.

with f; outer,

In view of the Riesz-Smirnov factorization described above, the essential difference between
Nevanlinna and Smirnov functions is the extra singular factor appearing in the denominator in
the Nevanlinna case. This is reflected in the corresponding result for free interpolafiohyn
the fact thatp, is bounded by a harmonic function, not necessarily quasi-bounded.

3. FROM HARMONIC MAJORANTS TO INTERPOLATION

For a given Blaschke sequengeC D seté, = |By(\)|. The key result to the proof of the
sufficient condition is the following theorem by Garnett [Gar77], that we cite for our purpose in
a slightly weaker form (see also [Nik02] as a general source, in particular C.3.3.3(g) (Volume 2)
for more results of this kind).

Theorem. Lety : [0,00) — [0, 00) be a decreasing function such thgt «(¢) dt < co. If a
sequence = (a,), satisfies

ax| < u(log ). A€ A,
A
then there exists a functiohe H> such thatf|A = a.

Observe that according to our former notation we Hagée/d,) = 1 + pa(A).

As we have already noted in Remark 1.1, in order to have free interpolation in the Nevanlinna
and Smirnov classes, it is sufficient that C N|A and(> C N*|A respectively. Our aim will
be to accommodate the decrease given in Garnett’s result by an appropriate fungfion¥.
This is the crucial step in the proof given hereafter of the sufficiency of conditions (c) in both
Theorems 1.3 and 1.2.

Proof of sufficiency of 1.3 (c) and 1.2 (cJhe proof will be presented for the more difficult case
of the Nevanlinna class. So, assume that Har, (D) majorizesp,. Thenh is the Poisson
integral of a positive measugeon the circle and the function

C+z
(3.1) 9(z) = dp(C)

Jop ( — z

has positive real part in the disk. By Smirnov’s theorgms an outer function in somé/?,
p < 1, and therefore iVt (see [Nik02], in particular A.4.2.3 (Volume 1)). Alsap(g) isin the
Nevanlinna class. By assumption we h&wg(1/6,) < Reg(\), A € A.
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Take nowy(t) = (1 + t)~2, which obviously satisfies the hypothesis of Garnett's theorem,
and setd = (2 + g)?, which is still outer inN . We have the estimate
1
HON)| =124+ gNVP?>©2+Reg\))?>(1+log =2 =—
[HO) = |2+ ) 2 (2 + Reg(N)* 2 (1t log ) = s
hence the sequence, ), defined by
1

N HN W (log(e/0y))

A EA,

is bounded byi.
In order to interpolate an arbitraty = (w, ), € ¢* by a function inN, split

s exp(—g(\)) ey HQ
o= o e los ) exp(—g(\))’

Since by hypothesigw,v, exp(—g(\))/d,) is bounded, we can apply Garnett’s result to
interpolate the sequence

= WATA eXp(_g()\))éﬂﬁ ©
Ox Ox

by a functionf € H*. Now F' = fH exp(g) is a function inN with F|A = w.

(log

(log—), A€A,

The proof for the Smirnov case is obtained by observing that if the measisrabsolutely
continuous, theilxp(g) is in the Smirnov class and so is the interpolating function [

4. FROM INTERPOLATION TO HARMONIC MAJORANTS

We first show that in order to construct the appropriate function estimatinds,(\)|~' we
only need to consider the factors B, given by points\" € A which are close ta\. This is in
accordance with the results for some related spaces of functions [HaMaO1l, Theorem 1], and it
obviously implies Corollary 1.9.

Proposition 4.1. Let A be a Blaschke sequence. For ang (0, 1), there exists a quasi-bounded
positive harmonic functioh = Pw], w € L'(0D), such that

—tog I I <h(z), zeD,
A:p(A,2)>6

and therefore an outer functiof € N*, whereG = exp(—g) and g is given by(3.1) with
dp = wdo, such that

II )= IGGE) €D

Aip(N\,2)>6

Proof. We shall use the intervals introduced in (1.2). In [NPT, p. 124, lines 3 to 17], it is
proved that the functiow given by

’lU(C) =0C Z X1y (C)a
AEA

wherec, is an appropriate positive constant, is suitable. At this juncture, the separation hypoth-
esis made in [NPT, Lemma 4] is no longer used. |
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Proof of the necessity of 1.3 (c) and 1.2 (&Ye will use a dyadic partition of the disk: for amy
inN, let

(4.1) Lip =1 :0 € 2rk27" 2n(k +1)27™)}, 0 < k < 2™
and the associated Whitney patrtition in “dyadic squares”:
(4.2) Qni = {re? . ¢ ¢ Inp,1—=2"<r<1l-— 2 1,

Observe that the hyperbolic diameter of each Whitney sq@are is bounded between two
absolute constants.

We split the sequence into four pieces= |J}_, A; such that each pieck, lies in a union of
dyadic squares that are uniformly separated from each other. More precisely, set

Al =AN Q(l)v

where the familyQ™" is given by{ Q2121 }n 1 (fOr the remaining three sequences we respectively
chooSe{ Qo ok +1 b nker {Q2nt1.26 bk ANA{ Q21 2041 }ni)- IN OFder to avoid technical difficulties
we count only thosé) containing points of\ (in caseA N @ is empty there is nothing to prove).

In what follows we will argue on one sequence, 83y The arguments are the same for the other
sequences.

Our first observation is that, by construction, @rL € QW, Q # L,
p(Q,L) (z,w) =0 >0,
for some fixeds. In what follows, the letterg, k... will stand for indices inN? of the form

(n,1),0 <1 < 2". The closed rectangl&3, are compact i so thatA; N @, can only contain
a finite number of points (they contain at least one point, by assumption). Therefore

= iInf
2€EQ,wEL P

0<m;:= \din |BA(M)]

(note that we consider the entire Blaschke prodgictissociated withh \ {)}). Take); € Q;
such thatn; = \BA];(A})\.

Assume now thad € Int N. Since/> C N|A, there exists a functioffy € N such that
{1 if A {Al}

TV =10 Ae A\ (A

By the Riesz-Smirnov factorization we have

hy
4.3 = By, ——
(4.3) fi N Ty

whereT; is singular innerj; is some function inf>° andh, is outer inH>°. Again, we can
assumeé|h;||« < 1,7 = 1,2. Hence

1
L=|fi(A)] < |BA\{/\}}]-()‘11:)‘

R (AL T2(AL)|

and
\BA\{A;}J-(AM > |ho(M)T2(AR)l, keN.
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Sinceh,T» does not vanish and is bounded above by 1, the fundtigih, 75| is a negative
harmonic function. By Harnack’s inequality, there exists an absolute constarntsuch that

1
E“Og |ha (M) T2(AL)]] < |1og |ho(2)Ta(2)|] < c|log |ha(N) T2 (AWI|, 2 € Qx,

hence

ha AT (A < [ha(2)Ta(2)] < [ha(AN)T(ADYC, 2 € Qg
This yields
(4.4) |(R2To) (W) < [(haT2) (M) < [Baypary, (M)

foreveryN € A1 N Q.

Let us now exploit Proposition 4.1. By construction, the seque{m}éaj C A, is separated.
Therefore, there exists an outer functiGnin the Smirnov class such that

’B{A}.}j\{x}c}(kk)’ > |Gi(M\)], keN.

Again, (G; is a quotient of two bounded outer functions and we can supposé:thatouter in
H> with ||G4 ||« < 1. Also, we can use Harnack’s inequality as above to get

GL ()| > G5 (V)]
for every\' € A; U Q,.. This together with (4.4) and our definition &f give
[Bavopry (N > [Bayoy ()] = |BA\{AJ1.}J-(/\11C)| : |B{>\J1.}j\{>\,1€}()‘11c)|
> [(heT2)*(N)] - |GT(N)]
for every\ € Q. and@, € QW. Setg; = (hyG,)° andS; = Ty ; by constructiong, is outer
with ||¢1||.c < 1 ands$; is singular inner.

Construct in a similar way functiong, .S; for the sequences;, i = 2, 3,4, and define the
productsg = [}, ¢; andS = [, S;. Of coursey is outer inH*>, andS is singular inner. So,
whenever\’ € A, there exists € {1,2,3,4} such that'’ € A, and hence

(4.5) [BAMN] = [9£(A)Sk(V)] = |g(A)S (V]

Therefore, the positive harmonic functibn= — log |¢S| satisfiesh(\) > —log |Bx()\)|. The
proof for N* goes along the same lines, except that singular inner factors do not occur in (4.3),
and so will not appear in (4.5) either. |

5. THE TRACE SPACES

In this short section we prove the trace space characterization of free interpolation given in
Theorems 1.2 and 1.3.

In order to see that (b) in each theorem implies free interpolation it suffices to observe that
(> C ly+ C ly and use Remark 1.1.

For the proof of the converse, we will only consider the situation in the Nevanlinna class, since
the case of the Smirnov class is again obtained by removing the singular part of the measure and
the singular inner factors.
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Assume thata,), € N|A and thatf € N is such thatf(\) = a,, A € A. Sincef can be
written asf = f1/(Saf2), wheref; € H*, || fi]l« < 1, Ss is singular inner with associated
singular measureg, and f, € H> is an outer function with| f2||.c < 1, we can define the
positive finite measurg = log(1/|f2|) do + dus which obviously satisfie®[u](\) > log™ |a,],

A €EA

Conversely, suppose that, ), is such that there is a positive finite measungith P[u](\) >
log* |a,|. The Radon-Nikodym decomposition pfis given bydy = wdo + dug, wherew €
L'(0D) is positive andug is a positive finite singular measure. L&tbe the singular inner
function associated withg, and letf be the function defined by

£() = exp ( C*2 ) da(@) . seD,

ap ( — 2
By definition, f is outer nN* andF = f/S € N. Clearly,log™ |ay| < log|F()\)], thus
lax] < |F(N)|. SinceN|A is ideal by assumption, there exigise N interpolating(ay),. ®

6. HARMONIC MAJORANTS AND MEASURES WITH BOUNDED BALAYAGE

Let us start by proving that positive measures with bounded balayage are precisely those which
operate against positive harmonic functions. Recall Bial) (¢) = [, P.(¢)du(¢) and

B := {u positive Borel measures dhsuch thatsup B(u)(¢) < 1}.
(€D

Proposition 6.1. Let i be a positive Borel measure on the disk. Thgnhdy is finite for any
positive harmonic functioh on the disk if and only if there exists some- 0 such thatu has
balayage uniformly bounded lay Furthermore, the relevant constants are related:

sup B(u)(¢) = sup {/ hdp = h € Har, (D), h(0) = 1} ,
¢eol D
and for any positive harmonic functidn

h(0) = max /D hdj.
Proof. Let h = P[v], wherev > 0 is a measure odD. If u has balayage bounded by

[ #@anz) = [ [ P.Odu(z)dv(¢) < ev(9D) = ch(0).

Conversely, since — P,(() is a harmonic function for any fixe¢l |, P.(¢) du(z) is pointwise
defined. Pick a sequencg such that

lim / P.(() du(z) = sup | P.(C)du(z),
n—oo Jb ¢eon JD

where the supremum on the right hand side might a priori be infinite. Since tlie :set{/ ¢
Har (D) : h(0) = 1} is uniformly bounded on compact setslin a normal family argument
shows thatup{ [ hdp : h € E} < oco. Observe that the mapping— P,((,) is in E for every
Cn, n € N. Hencesup,, [p P.(Cn)du(z) < oo.

This proves thaj, has bounded balayage, and the equalities between constants that we had
announced. |
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The next result is a refined version of Theorem 1.4 stated in the introduction.

Theorem 6.2. Let p be a nonnegative Borel function on the unit disk. Then there exists a har-
monic functiom. such thath(z) > ¢(z) for anyz € D if and only if

(6.1) M, :=sup | pdu < oo.
ueB JD

Furthermore,
M, = inf {h(0) : h € Har(D),h > ¢} .

That (6.1) is necessary is clear from the above considerations. In order to prove that it is
sufficient, we will reduce ourselves to a discrete version of it. We will use the dyadic squares
introduced in (4.2). As in the previous section, choose a poipin each square, say

2(Qni) = Zng = (1 —27") exp(2nk27").

Observe that by Harnack’s inequality, there exists a universal constanth that : ifz, 2’ lie
in the same Whitney squatg, ;. (as defined in (4.2)), theR "' P, (¢) < P.(¢) < KP,((), for
any¢ € 0D.

Lemma 6.3. The functiony satisfies condition (6.1) if and only if there exists a consteifjt
such that for any sequence of nonnegative coefficignts} such that

6.2 su il <1,

62) p S enil (O

then

(6.3) > Cngpsupp < M),
n,k- Qn,k

Furthermore C—' M, < M/, < CM,,, whereC' > 1 is an absolute constant.

Proof of Lemma 6.3Pick 2}, . € @, such thatp(z;, ) > (supg, , ¢)/2 and define the measure
[= Yk Cakzr - Then, if{c, ;. } satisfies (6.2),

B1)(Q) = [ PO du(z) = X cunPsy (O) < K 3 cunl (0) < K.

n,k
So if p satisfies (6.1),
ch,k sup ¢ < Qchgkgo(z;;k) = 2/ edu <2KM,.
n.k n.k n.k D

The converse direction is easier, and left to the reader (it also follows from the proof of the
theorem, below). [

We now need a classical result in convex analysis. Recall that the convex hull of a subset
A c R%is defined as

N
Conv(A) := {Z oa;ca; € A, qp > O,Zai = 1}.

i=1 %
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If we write R, A := {\z: A > 0,2 € A}, then the conical convex hull of is defined as
N
Cone(A) := Conv(R, A) = {Z aa;ta; € Ao > O}.
=1

When A is a finite set, the conical convex hull is equal to its closufiene(A) = Cone(A)

(for this and other facts, see [HULL]). The key fact for us will be the generalized form of the
Minkowski-Farkas Lemma (see [HULL, Chapter Ill, Theorem 4.3.4]) that we cite here only for
finite A. Let (-, -) stand for the standard Euclidean scalar produ@t‘n

Theorem 6.4.Let (a;,b;) € R? x R, 1 < j < N, be suchthall := {z € R?: (a;,z) < b;} #
0. DenoteA := {(a;,b;),1 < j < N} C R? x R. Then the following properties are equivalent
for (v,r) € R x R:

(@) Foranyz € X, (v,z) <.
(b) (v,r) € Cone(A).

“We will use the following special case. For a vectoe R?, the coordinates are denoted by
v?, 1 <i < d. Also,R% denotes the set of points Bf' with nonnegative coordinates.

Corollary 6.5. Givena; € R%, 1 < j < N, let X, := {z € R? : (a;,z) < 1}, and suppose
that X, # 0. Then the following properties are equivalent foe R¢:

(@) Foranyz € X, (v,z) < 1.
(b) There existy; > 0,1 < j < N suchthat_), a; = 1and foranyi = 1,...,d,

N
vt < Z a;as.
=1

Proof. Let {e; }1<i<4 be the canonical basis & and consider
A:={(a;,1),1 <j < N}U{(—e;0),1<i<d}.

ThenX, corresponds to th& in Theorem 6.4, from what we see that (a) implies that there exist
a; >0,6,>0,1<j<N,1<i<d, suchthat

(U7 1) = ;aj(aj’ 1) - Zﬁi(ezﬁ 0)

=1

When applied to each coordinate, this yields Zj.\’zl a; and

v =Y s 0 < Zozja}.
=1 i=1
The converse implication is immediate. |

Proof of Theorem 6.2Suppose thap satisfies (6.1). For each nonnegative integexve define

a; = (P

Zn,k

(exp(ij - 27727)) Joznem  fOrO<j <27 —1,
0<k<2m—1
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d:=Y",2"and

d
X+ = {{CnJC}OSnSm < R+ .
0<k<2"—1

> cupPs,(expli-27m2m) < 1, for 1 < j <27 — 1},
0<n<m
0<k<2n—1
Obviously, X is not empty: for instance,, = 1 andc, , = 0 for n > 1 gives a point inX,.
We claim that any{c, ,} € X, will satisfy (6.2) up to a constant. Indeed, for ahy [0, 27),
there is an indey < 2™ so thatj - 2727 < 6 < (5 + 1) - 272, therefore by Harnack’s
inequality, for anyz such thatz| <1 — 27",

Pz(ew) = Pzexp(i(]’.z—mQﬂ-_g))(eXp(ij . 27m277')) S KPZ(eXp(Zj . 27m27_‘_).

Therefore{ K ~'c, ; } satisfies (6.2), and by Lemma 6.3 and the hypothessstisfies (6.3) with
constant M. Corollary 6.5 then implies the existence of positive coeﬁicieéagg)?:g ! with
sum equal ta' M/, such that

2m—1

supp < Y a'P. (exp(ij - 27™2m)) = / p, .dv™,
Qn,k =0 7 oD ’
wherev™ is the discrete measure on the circle given by the following combination of Dirac

masses.
2m—1

V"= Z Oég'né‘exp(ijQ*me)'
=0
Since the mass af™ is uniformly bounded byK M/, we can take a weak* limit of this
sequence of measures, so that for amyk),

sup ¢ < / P, .dv="h(z,x),
Qn,k J oD '

whereh := P[v]. Harnack’s inequality now implies that there is an absolute constasuch
thatC,h(z) > ¢(z) for anyz € D. This proves the theorem, with the inequality

inf {1(0) : b € Har(D), h > o} < C\KM, < CC1K M,
The constantg’, K and(C; only depend on the discretization we have chosen. Picking a dis-
cretization with smaller “squares”, we may make all three constants as clbse twe wish. B

Now we can prove Corollary 1.5.

Proof of Corollary 1.5.Given a non-Blaschke sequenge arguing as in [NPT] one can show
that there exists a functiofi € H>°(D) in the unit disk with|f(\)| < ¢, for any A € A if and
only if A is the union of a Blaschke sequence and a sequércewhich there exists a positive
harmonic functiorm in the unit disk withi(vy) > —loge, for all v € I'. Then the result follows
from Theorem 1.4. |

We finish this section with the proof of Theorem 1.6.
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Proof of Theorem 1.6(a) = (d). Part (i) holds whenevep admits a harmonic majorant, be it
guasi-bounded or not (see Proposition 1.7), while (ii) follows from the dominated convergence
theorem.

(d) = (c). We proceed by contradiction. Suppose that there éxist0 and a sequence of
measureg,, € B,, such that

(6.4) /{ RO
Let fi, = X{y>n}fin- Then
[ Bl)(Qdr(€) = fn(D) = pa (1 = n}).

Sinceyu,, € B, their Carleson norms are uniformly bounded by sarge> 0. We apply the
direct part of [Gar81, Lemma 1.5.5, p. 32] g the lemma is stated for harmonic functions, but
harmonicity plays no role in the proof of the direct part. We obtain

fin(D) = pn ({p 2 n}) < c1Coo({Mp 2 n}) < c1CoCy/n,

by (d) (i). Since the sequen¢®(ji,,)),, tends to) in L!(0D), some subsequence must tend to
almost everywhere, and applying (d) (ii) to that subsequence, we find a contradiction with (6.4).

(c) = (b). We define a functiomw onRR,. by

W(t) = Yu(t) = ant + b, fort € [n,n + 1],

where(a,,) is an increasing sequence of positive numbers tending to infinity, to be determined
later, and(b,,) is given recursively by, = 0 andi,,(n + 1) = ¥,,11(n + 1). Observe that each
Y, 1S defined on the whole real line (they give supporting hyperplanes for the polygonal convex
graph ofy)). We shall also use™ = max(u, 0) for u € R.

We prove that) o ¢ admits a harmonic majorant using Theorem 1.4. bet= px,.>,; and
€n 1= SUP,ep (Jp n du). If p € B, then

[vop)dntz) = X / n 0 n(2)dp(2)

n>0 n<<p<n+1}

= 3 [ W 0 ¢ul2) = 45 0 pun()ldn(2)

n>0

= [ ooz du(x) + X [ [ 0 enlz) = iy 0 pn(2)]du(2)

n>1

< ao/ z)du(z) + Z/ — 1) (pn(2) — n)Tdu(z2)

n>1

S ap€o + Z(an - a'n—l)g’m

n>1

Sincelim, ¢,, = 0, we can choose an increasing sequeficg such thatlim, a,, = oo, but
Y1y — an_1)e, < 00, and we are done.

(b) = (a). First notice thai/ can be replaced by a functian < ¢ with the same properties
asy and the additional explicit description:

D(t) = Pn(t) = ant + by > alt for t € [V, s,
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wherea,, > a], > 0forn > 1, v, = 0 and(~,),>1 is an increasing sequence of positive numbers
tending to infinity fast enough so that 1/a), < cc.
n>1

Definey,, := ©X{y.<p<ynii}; thusi o o = 3, 1, 0 .
The following Lemma is due to Alexander Borichev.

Lemma 6.6. There exists an absolute constant> 0 such that whenever > 0 is bounded and
¢ < hfor someh € Har, (D), then there existd € Har, (D) quasi-bounded such that < &
and

/aD h(¢)do(¢) = h(0) < Ch(0).

In order to prove (a) lek, be a harmonic majorant af o . Eachy, is then bounded and
majorized byh,/a/,, hence by applying the previous lemma we findquasi-bounded such that
©n < hy, andh, (0) < Cho(0)/d.,. The series := 3 h,, converges in.' (9D), sinceh,, > 0 for
all n and

h(0) = 3" ha(0) < Cho(0) Y 1/dl, < oo,

and defines therefore a quasi-bounded harmonic majorant of |

Proof of Lemma 6.6Set M := max(||¢||-, 2h(0)). Let . denote the boundary measurefof
i.e. the measure such that= P[u|. We use the standard dyadic decomposition of the circle
givenin (4.1).

Let £y = (0. For anyn > 1, let E,, be the union of the dyadic intervalg,, C 0D \ U, E
such that

w(lng) > Mo (L)
Note thatE,, cannot contain two contiguous intervals such thatu I,, 11 = 1,1, because
thenrl,_, »» C U, E1, a contradiction. Therefore, ff, , C £, then

w(lng) < p(Ipap) < Mo(Ly—1x) = 2Mo(Lng) < 2u(Lng).

For any intervall, let I be the interval of same center and triple length, andlet= U1,
where the union is taken over all the dyadic intervals includefl ia- U, F,,. We write

dji := CoMx 5 do(C) + Xop\e dp = djfiy + djis,
where(C; > 0 is to be chosen. This measure is absolutely continuous with respect to arc length.
The function we are looking for is := Pli]. Indeed, let: € D and suppose that there exist a
dyadic intervall C F, maximal among the dyadic intervals containedtinsuch that
1
(6.5) | PAQdo(©) = .
T C

2

Then clearlyh(z) > M > (). We claim that ifz is such that (6.5) does not hold for any
maximal dyadic interval C E, thenh(z) > h(z), which will finish the proof.

Under that assumption, since the level sets of the Poisson integral in (6.5) are arcs of circles
connecting the extremities df where they make a fixed angle witf) depending orC,, we
must havdz — (| > cso(I) for any¢ € I and any maximal dyadic subintervalof E, so that
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all the valuesP, (¢) for ¢ € I are comparable, say to the value at its cegteiTherefore for any
suchl,

Aa@mmogqacn/w«hn@a@aﬁMw@hﬂﬁﬁME@Mdo

204/P

Sincecs is an increasing function af'y, and therefore, > 1 a decreasing function @f;, we
may choose a value @f, > 1 large enough so thdt, > 2¢2, and therefore, sincg is the union
of its maximal dyadic subintervals,

/p Vdji(C >/P w>zég@wm

By construction [y, i P (C)dfi(C) = Jop\ g P=(¢)du(¢), and we are done. |

7. WEAKER CONDITIONS FOR THE EXISTENCE OF HARMONIC MAJORANTS

In this section we state first a sufficient condition implied by a result of Borichev on a similar
problem. On the other hand, we also prove the necessary condition of Proposition 1.8 and show
that it is not sufficient.

Theorem 7.1.[BNT] Given a collection of nonnegative dafa,, .} C R, there exists a finite
positive measure on dD such that

I/(In k:)
i > n
o(Tny) = Ok
if and only if
(7.1) S=isup{ > @ur0(Ing) : {Ins}mrea is a disjoint familyh < oo.

(n,k)eEA

This is an analogue of the discretized version of Theorem 1.2(d), (as in Lemma 6.3) obtained
by considering only measures of typg := >, 1)ea 0 (1n1)0 and by replacing the Poisson
kernel P, by the “square” kernels

Zn,k?

a(llz) XI. (ew)_

Here I, denote the intervals defined in (1.2) apg stands again for the characteristic function
of E.

The similarity of Theorem 1.2 with this result leads us to an:

K, (e?) = K (e") :=

Open Question. Is condition (d) in Theorem 1.2 still sufficient if we restrict it {0, } such
that for anyA € A, ¢y =0o0r (1 —|A])?

Theorem 7.1 together with the estimdte < P, provide a sufficient (but not necessary) con-
dition for domination by true harmonic functions, which is clearly less restrictive than requiring
that Mo € L'(0D), but easier to check in concrete examples than the characterizing condition
of Theorem 1.4,
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Corollary 7.2. Any positive functionp such thaty,, = sup, , ¢ satisfies(7.1) admits a
harmonic majorant. On the other hand, the positive harmonic functier P.(1) does not
satisfy(7.1) for certain choices ofd.

Proof. It is well known and easy to see that there exists a constanth thatP, > cKj, , for
anyz € @, (the constant depends on the apertuseof the Stolz angle). Therefore, for any

S Qn,k

I,
Plv)(z) > C/{m Ki,  (Q)dv(¢) > CZE[ Z; > Copp = cSup g,

which proves thaf’[(1/c)v] is the harmonic majorant we are looking for.

To see that the condition is not necessary, considerAany {(n,1) : n € N}. Then the
intervalsr,, ; are all disjoint; howeveP. (1) ~ 2" ~ o(I,;)"", so that condition (7.1) will fail
(the sum is comparable tp A). |

In the same way as in Corollary 1.11, Corollary 7.2 and Proposition 1.8 imply the following
result. ForQ) = Q,, write I(Q) = I, (the radial projection of the square to an arc of the
circle).

Corollary 7.3. Assume that\ is contained in a unioml of Whitney square§ of centerz(Q)
and that
su 1—|z sup log |By(\)|!} < oo,
p{ 2 (1= Q) sup log | B(V)I)
where the supremum is taken over &llC A such that{/(Q), Q € A’} is a disjoint family, then
A is interpolating for the Nevanlinna class.

We move next to the proof of the necessary condition in terms of the Hardy-Littlewood maxi-
mal function.

Proof of Proposition 1.8(a) The problem can be localized, so we may work on the upper half
plane,C, := {z + iy : y > 0}, with I, := (x — y,z + y), restricting ourselves to positive
harmonic functions which are Poisson integrals of positive measures with finite mass. Here the
Poisson kernel is given by
1 Y
Poyiy(s) = — ——5——-

+y(5) 7T($—8>2+y2
For convenience we shall write hel@| for the Lebesgue measure of a measurabldiset R.
Also, we only need to look at boundary points in a fixed bounded intervak-8ay = < 1.

Foranyt > 0, letE; := {s € [-1,1] : ¢ (s) > t}. For anys € F,, there exists = z(s) and
J = J(s) D I, such that

(7.2) o) [ xi > 1l e ()L > 1]
By Vitali's covering lemma, there exist an absolute constarg (0, 1) and a disjoint family of
intervalsJ; := J(s;), 1 < j < N,suchthab:; |J;| > ci|Eyl.

Write z; := 2(s;) =: ; + iy;. Note that since the point; is contained in the “tent” over.,
(therefore in the tent ovef;) the pointsz; are separated in the hyperbolic metric.
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Now define new points’ in the following way : lety; := |J;|/2 = y;|J;|/|1.;| > y; and

2= a; + iyj. Note that J; N Ls| > | J;]/2.

We claim thath(2}) > ¢, whereh is a harmonic majorant af. Indeed, writingh = P[],
1 1 1 1 "
h(z))=— | ———dut) > — | ———— du(t) = Z2h(z;),
( j) Wy; R 1 n (t;fj)Q ( ) 77?/3 R 1 n (t—xj)2 ( ) y; ( ])

J Yj
and, by (7.2)h(z;) = ¢(z;) > t[J;|/|1:;| = ty;/y;.
Therefore, sincé/h € L} (R),
C1 1 Oh
§|Et| < §Z|Jg| < Z|Jj ﬂlz§| < |{Mh > t}| < T
J J

(b) Similarly. |

We now give two examples showing that the necessary condition of Proposition 1.8 is strictly
stronger than that of Proposition 1.7 but still not sufficient.

Proposition 7.4.  (a) There are functions such thatp” € L! (0D), but that do not admit a
harmonic majorant.
(b) There are functions such thatM y € L} (0D), butyp ¢ L! (OD).

Proof. The proof rests on the following family of examples. Note that it is easy to turn those
examples into examples of sequences which are (or are not) interpolating for the Nevanlinna
class.

Again we will work onC, . Our functionsy will vanish everywhere on the upper half plane,
except on the sequence := z; + iy, Wherex, = k= andy, = k°. To ensure that
yr < (zrpy1—x1)% we taked > 2(a+1). With this choice, it can be deduced from Proposition 8.2
(or the remark before Lemma 8.4), that a necessary and sufficient condition for the existence of
a harmonic majorant is that’p ¢ L!, that is,

k

We note that

I (@) 2
X7 (z) = —.
Ixi 1 + max(1, 7‘Iy:k‘)

Henceforth we only study datgy,.} := {¢(\x)} which are increasing sequences of positive
numbers tending to infinity. We also assume th@at,yx + vr+1Ye+1)/(zr — k1) }i fOrms an
increasing sequence. Lij(t) := min{k : ¢ < ¢ }. The necessary condition arising from the
factthatM ¢ € L} (R) reads

(;, vt > 0.

(7.4) Y ek () <

kE>ko(t)

This condition will be assumed for both examples.
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Now, for k > ko(t), defineJ, := {z : gpxi(z) > t} ~ (vx — yepr/t, r + yrpr/t), and let
ki(t) := min{k : J, N Jx1 # 0}. Then,

U Je= (0,240 +yk1()(pk;(t)):(O,k;a(t)Jrk;ﬁ(t)@)
k>k1(t)
and
I B 90 ) QD 2 kl(t)
(75) [o:o"(@) >t} = ko) + k7 (1) Z 75 OESIDY
k;

t k=ko(t)

In order to prove (a), chooss, := ¢,k° . Sincet ~ e, ko(t)°~*, condition (7.4) becomes
that (e, ), remains bounded above, while the necessary and sufficient condition (see (7.3)) is

€k

With ¢, := (log k)~ this condition fails, so thap admits no harmonic majorant.

Howeverk(t) ~ (tlogt)/ ¥~V Sincery—ay1 ~ k=71, thenl/k; (£)*+! ~ ey, 1)/ (thi (1)),
thusk; (t) ~ (t/er, ) "*, andk, (t) ~ (tlogt)'/*.

Therefore equation (7.5) becomes

k1(t)
L2 1 2 (loghi(t)
{z: " (x) >t} - + —log (
‘ ‘ t kz log kot logt ¢ log ko(t)
Lo o

<
~ tlogt + t — t’
and this choice op does satisfy the necessary condition given in Proposition 1.8.

To prove the second statement in the Lemma, chepse 1. With similar but easier calcula-
tions one sees that(t) ~ t*/(*~V andk, (t) ~ t'/*. Therefore (7.5) becomes

10 0
‘{x:ng(a:)>t}‘21 _%:]i 1 210g<l]zzgg>zltgt,

so the weak.! condition fails forp?, even thoughy satisfies the necessary condition in Propo-
sition 1.7. |

8. PROOFS OF THE GEOMETRIC CONDITIONS

Proof of Corollary 1.11.Since
Iy {¢CedD: Mpa(C) = log|B(V)[T'}, AeA,

to prove (a) and (b) it suffices to apply condition (a) of Corollary 1.10. Statement (c) follows
from the next Lemma applied to, .

Lemmas8.1.Lety : D — R, satisfy> ", cp(1—|A|)¢(N) < oo. Thenp admits a quasi-bounded
harmonic majorant.
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Proof. Let u = 3, ¢(A)xr,. By assumption: € L'(9D) and obviouslyM¢ < u, hence the
result follows from Corollary 1.10(b) and Theorem 1.3. |

Parts (b) and (c) also follow directly from Theorem 1.2(d), by a simple argument based on the
01, ¢ duality. |

Proof of Proposition 1.12It is enough to consider the case whéres contained in only one
Stolz angle. Indeed, it = U;_; A, with A; C I'¢,, I =1,...,n,and¢; # ¢, then

o 1B, (2)| =1, j#14,
so thatlog | B,(A\)| ™! behaves asymptotically likeg |Ba, ;1 (A)| 71 in T, (hereX € A;). Also,
we can assume that the sequence is radial (this means that we replace the initial sequence by one
which is in a uniform pseudo-hyperbolic neighborhood of the initial one; by Harnack’s inequality
such a perturbation does not change substantially the behavior of positive harmonic functions).

According to Corollary 1.11 it is enough to prove the sufficiency of the conditions. Let us
first show that condition (1.3) implies interpolation M*. In order to construct a function
w € L'(0D) meeting the requirement of Theorem 1.3(c) assumethat {\,}, C [0,1) is
arranged in increasing order and sgt= (1 — |\,|)log|B,,(A\,)| . Clearly there exists a
decreasing sequenge, ), with &, < ¢,, n € N, andlim, ¢, = 0. Now, if I,, = I, , set
Jn = Iy \ Lns1, Bn = €0 — €ny1, and set

w(@) =Y -2y, (), ¢ oD.

n O(Jn)
Thenw € L'(0D), and
Plolv) 2 [ PO ;ﬁ)mo w002 ¥ = ), 0
Yesn Bk En En .

= log | By, (M)

This and Theorem 1.3 prove the assertion.

The proof for the Nevanlinna class is even simpler. &et= 6;, the Dirac mass o € JD.
From (1.4) we get

log | By, (M) 7! S 1— [\ S Plus)(An),

and we finish by applying Theorem 1.2. |

Proof of Proposition 1.13By Corollary 1.11(c), we already know that (1.5) is a sufficient condi-
tion for A to be interpolating forvV+. Conversely, suppose thatis interpolating forV, that is,

v admits a harmonic majorant. Singg has bounded balayage, thénpadua < oo, which is
exactly (1.5).1

Proof of Proposition 1.14lt is obvious that (a) implies (b). If we assume (g), will act against
any positive harmonic function. Suppogec N. As seen in Section 5, there exists a positive
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harmonic functiom so thatlog* || < h. Thus, takingu, as in (1.6),

> (1= A log* [FO)| = [ log" [P dpa(X) < [ AN dpa(3) < oo.

AEA D D

Finally, to prove that (b) implies (c), suppose that (c) doesn’t holdgihe~= >, (1 — |A|) Py is
unbounded. Sincg, is lower semi-continuous, this implies that ¢ L>(9D). SinceL* is the
dual of L!, there exists’ € L'(9D) such thatf,, fga = oco. Taking an outer functio” € N
with log | F'| = P[f] we see that

S (1= )log [ F)| = (1= A) [ Pf = [ foa=oo,

AEA AEA
so (b) doesn’t holdl

Proof of Naftalewt’s theorem.Assume that\ is contained in a finite union of Stolz angles and
(1.4) holds. By Proposition 1.12, € Int NV, hence the trac&’|A is given by the majorization
condition of Theorem 1.2(b). Taking as majorizing function the Poisson integral of the sum of
the Dirac masses at the vertices, we see M@t O Iya.

Conversely, ifN|A = Iy, then the trace is ideal, sb is free interpolating and by Corollary
1.11(b) (1.4) holds. According to Theorem 1.2(b) and the definitidppthe function

{(1—\)\|)—1 if 2=\ A

2@ =1 if 2 ¢ A

admits a harmonic majorant Leth(z) = P[u](z) and consider the intervals
IT={CedD:zeT,(Q}
There exist constantsandC,, such thay(7%) > C,, for anyz such thati(z) > (1 — |z|) .

If A is not contained in a finite union of Stolz angles, then there is an accumulation point
¢ € oD of A’ C A such that\’ ¢ I's(¢) for any 5. Pick 3 > «; then for\ e A', I}, # ¢ and
we can construct an infinite subsequen¢eC A’ such that the Privalov shadowss; } <~ are
disjoint. This preventé from being the Poisson integral of a finite positive measire.

We now give an example of a concrete separation condition implyingithdtas bounded
balayage.

Proposition 8.2. Assume thad C D is contained in the union of a familyy of Whitney squares
such that

| Arg(2(Q)) — Arg(2(L))] > ¢ (1 — [2(Q)])
forany@, L € A, Q # L, wherez(Q) is the center of) andg is a positive function, with(x)/x
decreasing and

oo
0 T

ThenA € Int N if and only if A € Int N, and if and only if

> (1=12(Q)]) sup log|By(A)|™' < ¢
Q€eA AEANQ
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Note that this covers some cases whggedoes not have bounded balayage, even though
another measure associated with the sequence will (see the proof).

In order to prove Proposition 8.2 consider the “Carleson wind@\{&*, r) centered at®, of
sider:
Qe r):={zeD:1—|z| <r|Arg(z) — 0] <r}.
The next result is a Carleson-type condition which implies boundedness of the balayage.
Lemma 8.3. Suppose that(Q (¢, r)) < g(r), whereg is a nondecreasing function df, 2)
with
g(x)

0o x?
Theny is a measure with bounded balayage.

dr < 00.

A discrete version of this condition is

> 2" sup p(Q(e”,27")) < o0,
" R

as can be checked by writing a Riemann sum.

Proof. For anyt > 0, let Q,(0) := {z € D : P.(¢¥) > t}. This is a disk, tangent to the unit
circle at the point, of radius1/(t + 1). ThereforeQ,(9) C Q(e?,C/t) for t > 1, say, with
C' > 0 an absolute constant.

Using the distribution functiom(2,(¢)) and the fact that the measytes bounded, we get
the following estimate for the balag of.:

/D P.(e®)du(z) = / 1(Q(0))dt < 01+/ (Qu( 0))dt < 01+/ Q(, C/t))dt

< 01+/ C/tdt<Cl+C/ gl

We will now compare measures satisfying the condition in Lemma 8.3, measures with bounded
balayage and Carleson measures. Each set is included in the next, and the examples will show
that both inclusions are strict.

Example 1. Let « = {«,} be a sequence of nonnegative reals. Lgtbe the measure
concentrated on the circles centered at the origin of radiu® " given in dual terms by

/f jta(2) i= 3 s / F((1 = 27™)e)dg.

n>1
One can check that, is a Carleson measure if and only if it has bounded balayage and this
happens if and only i}",, a,, < co. Also p,, satisfies the condition in Lemma 8.3 if and only if

don Zan ap < 0.

Example 2. Let m be a nonnegative-valued function on the interiall). Let x,, be the
measure concentrated on the ray from the origih ¢iven by

/Df(z)dﬂm(z) = /Olf(:c)m(x)dx.
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One can check that,, is a Carleson measure if and only if there exists a congtasiich that
1
/ m(z)dz < K6, Vo >0
1-6
andy,, is a measure with bounded balayage if and only if it satisfies the condition in Lemma 8.3,
which happens if and only if
1
/ m(z) dr < 0.
1—=2

In particular, if we takey, = k77, with 1 < v < 2, u,, IS @a measure with bounded balayage
but it does not satisfy the condition in Lemma 8.3; if we takér) = 1, u,, is a Carleson
measure, but it does not have bounded balayage.

In view of Proposition 1.13, among other things, it is interesting to understand for which
separated sequencasthe corresponding measupg has bounded balayage. It is easy to see
that this is the case when/|\| — X /|X|| > (1 — [A|)'/2, X # X, but more is true.

Lemma 8.4. Suppose thaj is a positive valued function such thgt:)/x is increasing and

g(f)dx < 00.
0 T
Let ¢! stand for the inverse function of Then, if we have a sequentec D such that
A N
S| 29T (L= AD, YN # A
ALV

the measurei, has bounded balayage.

Examples of such functiongare given byz(log 1)~'~, with ¢ > 0. In that caseg ' (t) ~
t(log 1)'*e.
On the other hand, we can see that for the above lemma to hold, we mustHase>> ¢.
More precisely, take the sequence in the upper half-plane given by
e i=e Py ik~/2e k.
Then, Re\, —Re \,;1 ~ e %, so the sequendg\, }, verifies the separation condition in Lemma
8.4 withg~!(z) ~ x(log 1)'/2, but

xT

k k

Proof of Lemma 8.4Let § € [0, 27). By hypothesis, there is at most ohe= A such that
1 _ 1 _
0 € Jy:=(Arg()) — 50 (L= |A), Arg(A) + 597 (1~ D).
Let/,L/ = Z/\/#)\(l — |/\/|)6)\/. Then

| P dua(z) = (1= ADPAE) + [ Ple)p'(2) < C+ [ Pyt (2).

By the proof of Lemma 8.3 for this specific valuethfwe see that it will be enough to check that
for some absolute constarnds, C-, one has

1 (Q(e? 1)) < Crg(Cyr), foro < r < 2.
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Considery, := {N # X : X € Q(¢”,r)}. Forany)\ € X, we have
a(Jy) =g 11— |N]) <2|6 — Arg(\)| < 2r,

so the intervalg/, are all contained if — 3r, § + 3r]. Since they are disjoint,>> o (Jy) < 6r.

NeX,
Using thatg(z)/z is increasing we have
1— Y] _ ol gap o) _ g(2r)
su .
,\/eg o(Jy) = supo(Jy) — 2r
NeX,
Finally,
. 1—1|N 2
HQE ) = 3 1= < sup AL S o) < 226 — g o)

NES, vex, o(Jv) V&, 2r

Proof of Proposition 8.2For each Whitney squai@ in A, let \(Q)) be the point inA N @ such
that

log | By)(M@))|™! = max{log |[BA\(A)| " : A € ANQ}.

Let 3 be the sequence formed By (Q) : @ € A}. By Lemma 8.4 the corresponding measure
us, has bounded balayage. Therefore, there exists a positive harmonic fulnetitn(\(Q)) >
log | Bxng)(A(Q))|~! if and only if

S (1= [MQ)]) log | Baoy(MQ)| ™! < 0.

According to condition (c) in Theorem 1.2 one deduces thatInt NV if and only if the last sum
converges. Furthermore, when this is the case, the funktoam always be taken quasi-bounded
(see Lemma 8.1), so that interpolation can actually be performed in the Smirnov class il

9. HARDY-ORLICZ CLASSES

Let¢ : R — [0, o) be a convex, nondecreasing function satisfying

(i) limyoo @(t)/t = 00
(i) Ag-condition:¢(t +2) < Mo(t) + K, t > t, for some constantd/, K > 0 andt, € R.

Such a function is called strongly convex (see [RosRov]), and one can associate with it the
correspondingdardy-Orlicz class

Ho={f € N*: [ ollog|£(0)]) dor(<) < oo},

wheref(() is the non-tangential boundary valuefoht( € 0D, which exists almost everywhere.
In [Har99], the following result was proved.

Theorem. Let ¢ be a strongly convex function satisfying (i), (ii) and fliecondition:

20(t) < Pt +a), t>t
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wherea > 0 is a suitable constant and € R. ThenA C D is free interpolating forH,, if and
only if A is a Carleson sequence, and in this case

HolA = {a = (ax)x - [al, = AZA(l — [AD¢(log |as]) < oo}.

The conditions onp imply that there exisp, ¢ € (0,00) such thatH? C H, C H? In
particular, thel’;-condition implies the inclusiodf” C H,, for somep > 0. This V2-condition
has a strong topological impact on the spaces. In fact, it guarantees that metric bounded sets
are also bounded in the topology of the space (and so the usual functional analysis tools still
apply in this situation; see [Har99] for more on this and for further references). It was not clear
whether this was only a technical problem or if there existed a critical growtly firelow
exponential growth)(¢) = e?* corresponding td?? spaces) giving a breakpoint in the behavior
of interpolating sequences ff,,.

We can now affirm that this behavior in fact changes between exponential and polynomial
growth. Let¢ be a strongly convex function with associated Hardy-Orlicz sgéage Assume
moreover that satisfies

(9.1) ¢(a+b) < c(d(a) + ¢(b)),

for some fixed constant > 1 and for alla,b > t¢;,. The standard example in this setting is
¢,(t) = t? for p > 1. We have the following result.

Theorem 9.1.Let¢ : R — [0, c0) be a strongly convex function such tt§at1) holds. If there
exists a positive weight € L'(9D) such thatyow € L' (0D) andp, < Plw], thenA € Int H,.

Proof. Note first that (9.1) implies th&t,, is an algebra contained iN*, hence it is sufficient
to interpolate bounded sequences (see Remark 1.1). As in Section 3, we set
C+=z
9(z) = w(C)do(¢).

o ( — z

The reasoning carried out in Section 3 leads to an interpolating function of theffirexp(g),
with f € H>*, andH = (2 + g)? outer in H? for all p < 1 (note that the measuredefiningg
here is absolutely continuous, in fact= w do). Also, H? C 'H, for anyp > 0 by our conditions
on ¢. By construction, ¢(log|expg|) = [ ¢ o w < oo so thatexp(g) € Hy. SinceH, is an
algebra, we deduce thft exp(g) € H,. |

Example 9.2. We give an example of an interpolating sequenceHgrwhich is not Carleson,
thus justifying our claim that there is a breakpoint between Hardy-Orlicz spaces verifying the
V,-condition and those that do not.

Consider the functiong, and letA, = {)\, },, C D be a Carleson sequence verifyihg I, =
0, n # k, wherel, are the arcs defined in (1.2). Singeg,(1 — |\,|) < oo, there exists a
strictly increasing sequence of positive numbeys),, such thaty", (1 — |\,|)y. < oo and

lim,, o 7, = 00. Setting
w = Z,}/ylz/pXI,n

we obtainf ¢, cw = 3, (1 — |A\u])wm < co andw € L'(9D) sincep > 1. Associate with
Ao a second Carleson sequentte= {), },, such that the pseudo-hyperbolic distance between
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corresponding points satisfigs, (\,)| = " Sincew, — oo the elements of the sequence
A = Ay U A; are arbitrarily close and cannot be a Carleson sequence. By construction,
log | Bx(\)|7! < P[w]()\) (as before, we may possibly have to multiplyvith some constantto
have that condition also in the point§, but this operation conserves the integrability condition),
and thereforé\ c Int H,.
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