PHRAGM EN-LINDEL OF-TYPE PROBLEMS FOR A,
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ABSTRACT. We want to formalize problems of the following kind about holomorphic functions

on the unit disk: given a size condition (that the functipibelongs to a certain growth space),

and a restriction on the growth gfon a subsef' of the disk, what restriction do we get on the
global growth off? More explicitly, givend < v < § < a < oo, we want to know when the

norm inequalitysup, . (1 — [2])?|f(2)| < M sup,cq(1 — |s)|f(s)| holds for anyf € A=,

We study the various implications between those properties for different values of the parameters,
and give a necessary condition in an interesting special case.

1. DEFINITIONS AND STATEMENT OF RESULTS

Boris Korenblum often asks whether someone can find a characterization of the (discrete)
subsets of the unit which have the PhragmniLindebf property for the spacel~*°, that is to
say, such that any function iA~>° that is bounded on the set must necessarily be bounded
everywhere. We cannot answer this question, but we show that a certain generalization of the
notion puts it into a common framework with a number of interesting problems in the area. The
aim of this note is to take stock of the situation to date, and take a first step towards some further
results. In particular, we give a (weak) necessary condition for the Plgmdyindebf property.

1.1. Definitions, implications. Given0 < a < oo andS C D, let
ATS) ={f € HD) : [ fllas := sgg(l — |2))*|f(2)] < o0},

whereH (D) stands for the set of all holomorphic functionglin In the case wher§ = D, we
write || f|la.p = || f]|, and the spaced~*(D) = A~ are the familiar growth spaces. Let also
AT = Ngaa AP and A= = J,s0 A7

We want to formalize problems of the following kind: given a size condition (that the function
f belongs to a certain growth space), and a restriction on the growftoofa subsef, what
restriction do we get on the global growth f?

Definition. Let0 < v < 8 < a < oo, With § < oco. A setS C D is of type(a, 3,7),
denotedS € 7 (o, 3,7), if and only if there exists a constaff > 0 such that for allf € A~

1Flls < M| Fll.s-
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Even though Banach space methods do not apply immediately, this turns out, where it makes
sense, to be the same as the seemingly weaker inclusion property.

Lemmal. Let0 <y < (< a < oo, With 3 < oco. AsetS C Dis of type(«, 5, ) if and only if
AN AT(S)c AP,

The proof is given in Section 2.
Special cases of the definition above coincide with previously studied properties:

e Whena = § = v > 0, we have thedA~*-samplingsets studied by Seip [Se93b]. The
casex = (§ = v = 0 corresponds to thé/>(ID)-dominating setslescribed earlier by
Brown, Shields and Zeller [BrShZe60].

e Horowitz, Korenblum, and Pinchuk [HoKoPi97] studigld > -sampling setswhich in
our terminology would ben,~o N.~o 7 (00,7 + €,7), or equivalently, sets such that
AN AT(S) c AL foranyy > 0.

e Weakly sufficient setare those for which the topology of~*° is determined by the
restrictions off € A= on the set, see [KhTh98], [Sch74]. This corresponds to the sets
S such that for anyy > 0, there existgl = 3(~) with S € 7 (oo, 3, 7).

e Bonet and Domiaski [BoDo03] studied the sets of tyge, 3,~), which they termed
(v, B) -sampling setsand of type(oo, 3, v), which they termed~, 5)-dominating sets

We introduce another piece of terminology.

Definition. Let0 < < «. AsetS C D is (a, 3)-Phragneén-Lindebdf if and only if S €
T (a, B, B).

Korenblum’s Phrag@n-Lindebf sets correspond to odro, 0) case. An easy adaptation of
[Sch74, Theorem 3.10] to our situation shows that any weakly sufficient Get,i8)-Phragn&n-
Lindelof. Also, it is easy to see (taking powers) that any set of tyge 3, 0) is really (oo, 0)-
Phragngén-Lindebf.

We would like to clarify the relationships between those various classes of sets. First notice
that it is trivial that7 («, 5,v) C 7(o/,#,7') whena > o/, 8 < 3, andy > +/, and readily
seen by taking powers th@t(«a, 5,v) C 7 (o/m, 5/m,~y/m) whenevem € N.

Theorem2. (a)lfa>d/, < +min(a—ao,v—4),andy > +/, then
T(a,B8,7) CT (), 5,7).

(b) Conversely, ity < o/; or if v <~/ and% < g— then7 (o, B,7v) ¢ T (/, 3',7).

(c) In the special situation of Phragen-Lindebf sets, we can give a more complete result:
T(a,5,08) C T(, 0, 7)ifand only ifa > o/ and 5 > ', and the inclusion is proper
whena > o’ or 3 > (3.

The proof is given in Section 2. Notice that a number of cases remain open.

Corollary 3. (@) If S'is A=*-sampling, thert'is («, 3)-Phragmen-Lindedf for all 5 < a.
(b) If S'is (o, 3)-Phragnén-Lindebf for somes < a, thensS is A=#-sampling.
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1.2. A necessary condition.We now would like to give some conditions for PhragmaLindebf
sets in terms of densities.

Foranard C T, let|I| = o(I) stand for its normalized arc-length. We also use a normalized
distance oit:

d(ew, eiw) = L — Y|
0

, d(¢, F) = gg}gd(g,g) whenF C T.

For a closed proper subsEtC T such thafl' \ /' = {J; I;, where thel; are disjoint open arcs,
the Beurling-Carleson characteristiof F'is

A(F er|1+1og|]| = [ 108 2o ).

The densityof a setS C D is defined as

sesnr(r) 108 1
D(S) := limsup - =
& (F)—o0 R(F)
wherel'(F’) denotes the Korenblum star ovEr(see precise definition below).
S'is a zero-set forl_* if and only if D(S) < a ([Se95], [HeKozZh00, Theorem 4.15, p. 112]).

The Seip densities can be seen as versions of this, made uniform over automorphisms of the
disk. More precisely, fog— <r<l1,let

ZseSn(D\Dw,;)) log |i|

D(S,r) =

log 1;
Theuniform upper and lower densitiese then defined respectively as
DF(S) = limsup sup D(¢(S),7)
r—1  peAut(D)
D, (S) = liminf inf D(¢(S),r).

r—1  peAut(D)

A set S is calledhyperbolically separated and only if there exist$ > 0 such that for any
s# s €8, |ps(s)| > &, wherep, is an automorphism d sendings to 0.

According to a well-known geometric characterization given by Sgig A~*-sampling if
and only if it contains a hyperbolically separated sutiSetc S with D, (S") > « ([Se93b],
[HeKozZh0O0, Theorem 5.18, p. 153)).

A set of density less tham cannot be of typéa, 3, v) (see Lemma 5 below). From Corollary
3 we see also that afa, 5)-Phragnén-Lindebf set must be of uniform lower density greater
thang, and since this notion is invariant under automorphissasrypoint of the boundary must
be a non-tangential limit point of the set.

On the other hand, it follows from examples given in [HoKoPi97] and [KhTh98] that there
exist sets of typéa, (3, ) with lower density equal t0 as soon ag > ~. But it does follow
from Theorem 2 that all of the sets we are studying are dominating sef$°forand therefore
that almost every point of the unit circle is a non-tangential limit point of the set.
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We now define a more quantitative notion of non-tangential density, related to the above den-
sities (see Lemma 8).

Givenz € D, let
17 ={CeT:d(¢ 2/l2l) < (1 - 2D},
Also, for¢ € T,y € (0,1/2],t € (0,1) andA C T define:
(¢ = {zeb: (e} th(C)ZFw(C)ﬂD(l
NnD

)
I(4) = HR(C) [(A)=T,(A)NnD1-1),

whereD(t) = {z € D : |z| < t}. Notice thatl',(¢) is contained in the half diskz € D :
|arg z — arg (| < w/2}.
Given a sequencg in D, consider the counting function
n,(C18) = #(0, ()N S) .
Definition. Let.S be a sequence ik and letA C T. Theboundary density of in A is
BDI(A) := lim sup (G5 5)

N0 cea  7|logul
O<u<t

-t
-1

Theorem 4. LetS € 7T (00,0,0). Then, for ally and allI C T interval
BDU(I) = 0.

The proof is given in Section 3. This theorem is quite far from being optimal. It only shows
that any subset df' in which S has finite boundary density must be of empty interior. 1t would
be natural to expect that the boundary density is infinite outside of a small exceptional set, in fact
smaller than merely negligible for tHedimensional Lebesgue measure.

Indeed, as follows from the proofs in [Hr78, Section 9], or the more explicit version in
[BeCo086] using [Da77] (see also [BeCo088] and [Ko02]), the correct measure should be the Haus-
dorff measuref{;, associated to the functiob(z) := z|logz|. More precisely, anyf € A~
such that

limsup |f(r()| < oo, forall( e T\ E, with H,(E) =0,
r—1

must belong toH>°(D). And conversely, given a closed set C T with H,(E) > 0, one
can find a positive measuye supported ont’ C E such thatf(z) = exp{/; g_ijdy(g)} be-
longs toA=* \ H*(D) (in fact o can be chosen arbitrarily small) and is bounded on the set
{z eD:1—|z> < (dz, E))Q}, which is as dense as one could possibly want near the points

of T\ E.

2. INEQUALITIES AND INCLUSIONS

In this section, we prove Lemma 1 and Theorem 2. The existence of regular uniformly dis-
tributed sequences will be useful.
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Proposition A. For anyt > 0 there exists a hyperbolically separated sequeri;esich that
D}(S) = Dy (S) =1t

For such sequences als.S;) = t (see [Se93b, Proposition 3.1], [HeKozZh00, Section 5.4]).
We first need an auxiliary result which is of some interest in itself.

Lemma5. Leta > 3 > +. Any setS such thatA=> N A=7(S) c A~" is a uniqueness set for
A,
Proof. Suppose thaf € A=\ {0} andf|s = 0. Thenf € A= *NA~7(S) Cc A™F.

Let§ := D(S) < f by the necessary condition on zero-sets. Simce 3, we can pick
t € (8 — 6, — ). Choose therd;, disjoint from S, as in Proposition A. The® (S U S;) =
§+1t € (B,a), and we can fing € A7 c A==, g not identically zero, such thatsys, = 0.
SinceD(S U S;) > 3, we havey ¢ A=#, thus contradicting the inclusion.

The proof of Lemma 1 now proceeds verbatim as the proof of [KhTh98, Proposition 3, p.
439], where the roles af, 3, and~ are played respectively by+ 2, ¢, andp. What was denoted
by A~7(S) in [KhTh98] would now be denoted hy~7(S) N A=>°, and one should now choose
pe8 > 32min [KhTh98, p. 440, line 6] to take into account our slightly more general range of
exponents.

Proof of Theorem 2(a) By the remarks before the statement of the theorem, there is no loss of
generality to assume that < . This proof is then an adaptation of that of [BoD0o03, Theorem
1.4].

(c) SinceT (o, ', 3") C T(d, 3,7 trivially, it will be enough to prove7 («, 3,3) C
T(a, 3, 0)whens > .
Let f € A= A% (S) and definef,,(z) = 2" f(z). Forz € S:
(1= 12D fa(2)] < L2171 = 207 | fllgrs
and taking the supremum of the right hand side aver

ttnn

" < ¢ Wheret := 3 — 3.
[ fullps < (t+n)t+n\|f|\ﬂ,s B—p
By Lemma 1,||g||s < M]||g||s, foranyg € A=. Thus, forz with |z| = r,,, :==n/(n +1)

we find:

L (1= 1)1 £)] = (1= |21 fal2)] < lfulls < M| £l

— |2 Z) = — |2 n\Z)| = n ~ n
(t+n)t+n B 6,5
tn™
<M— ,

ie. (1—[2)"]f(2)] < M| fllg.s.
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For arbitraryz there exists: such thatz| € [r,,+, 7,41.¢), @and the maximum principle yields:

/ 1—r )ﬁl
L)) < )" e
(A=D1 E S = 2 M s
This implies the existence @f > 0 such that| f|| < C'M||f|| s, becauselim 71::1’; =1.

Given the previous results, to prove the converse and that the inclusions are proper when the
inequalities are strict, it will be enough to see that:

(i) For everya > o there existsS € 7 (o/, o/, a/) \ 7 (a, 0,0).
(i) If B> ' there existsS € T (o0, 5, 8)\ T (5,3, ).
Proof of (i). This is a special case of the first statement in (b), see proof below.

Proof of (ii). Lett € (5, 3) and letS; be as in Proposition A. Take also a sequence of radii
{rn} /" 1 with nlggol;fi’;:l = 0, and a sequencé C U,en{z : |z| = .}, as in [HOKoPi97,
Example 2.5], such that

AT NAT(A) C AT .

Notice thatD;, (Sy) = 0 for all separated subsequenggC A, henceA is not sampling for any
A% a > 0.

DefineS = S, UA. Itis clear by Seip’s characterization th#ts not A=%-sampling, since for
every separated subsequegeC S

To see thab € T (oo, 3, 3'), let f € A=%(S). For anys € (3, 1):
feA>nA (S cA cA?.

S, is A~%-sampling, because it is hyperbolically separated ByjdsS;) = t > J. Thus there
existsM = M(J) > 0 such that

1 flls < M) flls,se < MO flla-scs) -

Since the sampling constaif(§) depends only o®;, (S;) and the separation ¢, we can take
the same constait/, for all § close to5’:

1flls < M) fllss < Mollflls.s  for 65"
Letting 0 tend to/’ finishes the proof.

(b) Suppose that’ > «a. Lett € (a,a’) and letS; be as in Proposition A. ThuS; is A~“-
sampling. Also, by [Se95]5, is a zero set fold ', therefore by Lemma 5 it cannot be of type

T(alﬂ /8/’7/)'
Suppose now that > ~, andy’ > fy%'. First we deal with the case wheh= /3’: by the proof
of (c), above, we know thef (a, v,v) ¢ 7 (o, 7', 7"), but trivially 7 («, v,7v) C T («, 3,7).
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Assume then that’ > +'. SetM = '/y" € (1,3/v). By [BoD0o03, Example 4.1] (itself a
refinement of [KhTh98, Proposition 5]), there exists a countable union of circles centered at the
origin £, such that for any, 9’ > 0 andt > ¢

At N AT(E) c A ifand only if & > M.
In particular,E € T («, 3,7). But since’ = M~', we haved=' N A~7(E) ¢ A~%.

Note thatE could be replaced by a discrete set (provided the points in each circle are close
enough; we omit the details). |

3. DENSITY AT THE BOUNDARY

We may want to consider the true cones of vedex T and aperturery, 0 < v < 1/m,
defined as the rotation, (¢) := ¢ - I',(1) of

[,(1)={z€D:Rez>0;|Imz| <ny(l-Rez)}lU{zcD:Rez<0;|z| <m}.

By construction there exists = () such that

(1) I,(¢) chy(¢) and  T.(¢)N(D\ D(rg)) C T4(C) .

Theorem 4 could also be stated using the deri?i@/g(l) defined asB D (I) but replacing the
counting function, (¢, ¢; S) by n,(¢, t;S) = #(I'(¢) N S). Itis immediate from (1) that for
all v and[:

@) BDY(I) < BDY(I) < BDY(I)
We first state some basic properties of the density.
Lemma 6. GivenS and an intervall C T, then
BDg”ﬂFW(I)(T) = BDg([) :
Proof. Let S} = SN I, (I). By definition BD}(I) = BDg?(I), thus it suffices to prove that

BDg?(I) = BDg?(']I‘). It is clear thatBDg?(I) < BDg?(T). In order to prove the reverse

inequality let¢ ¢ I and take the closest emde I to (. Thenn,((,t;S7) < n.(n,t;S]), hence
taking the supremum and the limit we obtain the desired inequality. |

Lemma7.LetS Cc DandletJ = {¢” € T: 60 € (-%,%)}. GivenyandI C T there exists
¢ € Aut(D) such that

@) ¢(1) = J;
(b) BD}/3(J) < 4 BDY(I).

Proof. It will be more convenient to use the coriés
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Apply first a rotation so that the interval is transformed into a symmetric intérva(e =™, ™).
Apply now the automorphism, (z) = (=, wherea € (-1, 1) is chosen so that (a) is satisfied.
Explicitly, ¢ = — 22,

[1—ieie|?

_ Let¢ € I. Sinceg, is a Mobius transformation, the straight lines along the sides of the cone
I',(¢) are transformed into circles containing the point$¢), ¢,(cc) = 1/a, and cutting the
unit circle at¢,(¢) with angley. Hence

T, 2(6a(C)) € 0a(T4(0)) -

The circle|z| = 7 is transformed into a circle passing througf{r) = l‘faTT andgba( T) =

takingt = 1 — 7 andu = t == we havel“:/g(gba({’)) C qﬁa(fg(g‘)), and

1 ﬁ7/2(¢a(g)>u; ¢a<s)) < %ﬁw(Cat;S) _ g ﬁv(gat S) IOgi
v/2 | log u| v |logul ~y log% log — log 1+a !
Hence
i (¢, log
D'Y/2 (¢a( )) < 2 limsup iy (¢, ’15) 8¢
™0 ¢cer  vlog 3 log — log 1+a -
t<T
log%

< 2BDY(I) lim

= 2BD(I) .
T\0 logT log st)

1+a aT

The conclusion is then an immediate consequence of (2). In the casewhdigan analogous
computation withuy = ¢ 1+a . Will yield the same result. [ |

Lemma 8. LetS € D. ThenD(S) < BD}(T) forall v > 0.

Proof. Let S = (si), and define the measure= ", J,,. Then, forE C D:

T 1—|sk| = / ﬂda ) du(z / / du(z) do(¢

_ /T#(s NENT,(Q)) do(() .

Take F' C T finite or countable, and’ = I',(F'). By construction, there exists, such that
L. (F) NI, (¢) c To4eh(¢). Thus

7Y (=lsd < [#HENTLF)NTQ) do(Q) < [ 1 (G ed(C F): ) do(C)
spely (F) T T
By hypothesis, givena > 0 there exist$. > 0 such that
ny (¢, t;.8) < y(BDY(T) + ¢)| log t| forall0 <t <t.andall¢ € T.



PHRAGMEN-LINDELOF-TYPE PROBLEMS FORA™®. 9

We separate the integral above into two terms. auch thatc,d(¢, F) > t. we have
redehn(¢) € D(1—¢,d(¢, F)) € D(1 —t.). Hence

y Y (1—ysky):A#(SmD(1_t6)) do(¢) + / 1,(C, e,d(C, F); S) do(C)

SkGFW(F) {C C'yd(ng)Sts}
< Ci(e, $) +7(BDY(T) +¢) [ log

< C(e,5) +v(BD(T) +¢) A(F)

1
)

and, as desired,

1—|s
D St (e )

- < BDL(T) +¢ foralle > 0.
A(F)—o0 R(F) 5(T)

Proof of Theorem 4 Assume there exists C T with BD!(I) < oo. We want to construct
H € A=\ H* such thatupg |H| < oo, so thatS ¢ 7 (o0, 0, 0).

By Lemma 7 we can assume thiat= .J. TakeQ2 = D(—1,/2) U D, so that the intersection
angle betweeff andoD(—1, v/2) at+i is7/4. Consider then a conformal mapping Q — D

with ¢ (J) = J. Explicitly ¢ = 301,011, wherey,(z) = Lt

i—2z'
of iz running fromO0 to 57/4), ¥3(z) = iz —_|- *, from which we see that (i) = i,¢¥(—i) =
z 7
—i,1(1) = 1 and there exists a constant> 0 such that
(3) 1—|Y(w)| > n(l—|w|) for all w € D, and
™

4) YD) C I'y(J)UD(ro) for somery andy’ < g — 5

Wy(2) = (iz)5 (the argument

Similarly to (4) we have)(D)  T/(J).
Lemma 9. Let+ be the conformal mapping above. Then

BD} % (J) <2 BDY(J) .

Proof. By construction of) there exists, such that for any € J
I7 2 (¥(C)) € (I (¢)) U D(ro) -
ThUSnW2(¢(C)7t7¢(S)) < 2 n"/(Cﬂ?t;S)“FCTO

TTogd] < oer - @nd taking the supremum and the limit we obtain the
2
desired inequality. [ |

Using this and Lemma 6
2 2
BD[yer,(T) = BDY(E)(J) <2 BDY(J)
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Applying Lemma 8 we geD (¢(S) N PW(J)) < 2BD(J), therefore there exists € A7\
{0}, a = 2BDY(J), such thatf = 0 onv(S) N T, a(J).

We want to multiply f by a functiong with a suitable decrease dh\ I',5(.J). By (4), if
z € Y(9), there exist$ > 0 such thatl — |z| > dd(z/|z], J).

Define, for a certain constant > 0 to be chosen later on, the function

C+z 1
e logd(Q 7 da(()}.

9(2) = eXp{_Cl

Then

~loglo(2)| = a1 [ PO Ior s o)

whereP,({) stands for the Poisson kernel, and in particligf.. < 1
Forz ¢ I, »(J) there exist;, c; > 0 such that

Iey(2) = {C €T d(2/[2], Q) < (1= |2} €T\ J
andd(I.,(z),J) > c3(1 — |z|). Thus, for some, = 04(02,7):

—log |g(z Zc/ P.(() log ——— do (¢
9] = e[ PAO) o gy da(O)
1
Z C1C3 logi Z C1Cy4 10g .
d(1e,(2), J) (1 —1z])
Hence|g(z)| < (1 — |z])7 for z ¢ T, jo(J).
For anye® € J,
li =1.
et 1B l9(2)]
By Privalov’s theorem, we can choos# < .J such that
limsup  |f(z)] > 0.
z—ei 2T, 5(et?)
Thus for anyk > 0
5) limsup ]J;(z)g(z)k] —
z—et0 2T /5 (etf) ( - ‘ZD
Choose now; > 0 such thatc, > 2BDY(J) + k. DefineF(z) = (lf(e)_ﬁ andH = F o,

wheref is as before.

Let us check the required properties fér

(i) sup |[H| < oo. If wis such that)(w) € ¢(5) NI, /2(J) we have therf((w)) = 0, and
obviouZIyH(w) = 0.
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If w is such that)(w) € ¢¥(S) N (D\ T, 2(J)), andz = (w); then
|H(w)| = |f(2)g(2)] < |F(2)](1 = |z])

|
[1—ezfb = (1= [2])

S ”fHA—c1c4+k < X0 s

sincecicy — k > a.

(i) H € A=, ltis clear thatF' € A;(“““), sincef € A7* andg € H*. The statement
follows then from (3).

(iiiy H ¢ H®>. This follows from (5), sincél — e"z| ~ (1 — |z|) on T, 5(e"). ]
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