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ABSTRACT. We want to formalize problems of the following kind about holomorphic functions
on the unit disk: given a size condition (that the functionf belongs to a certain growth space),
and a restriction on the growth off on a subsetS of the disk, what restriction do we get on the
global growth off? More explicitly, given0 ≤ γ ≤ β ≤ α ≤ ∞, we want to know when the
norm inequalitysupz∈D(1 − |z|)β |f(z)| ≤ M sups∈S(1 − |s|)γ |f(s)| holds for anyf ∈ A−α.
We study the various implications between those properties for different values of the parameters,
and give a necessary condition in an interesting special case.

1. DEFINITIONS AND STATEMENT OF RESULTS

Boris Korenblum often asks whether someone can find a characterization of the (discrete)
subsets of the unit which have the Phragmén-Lindel̈of property for the spaceA−∞, that is to
say, such that any function inA−∞ that is bounded on the set must necessarily be bounded
everywhere. We cannot answer this question, but we show that a certain generalization of the
notion puts it into a common framework with a number of interesting problems in the area. The
aim of this note is to take stock of the situation to date, and take a first step towards some further
results. In particular, we give a (weak) necessary condition for the Phragmén-Lindel̈of property.

1.1. Definitions, implications. Given0 ≤ α <∞ andS ⊂ D, let

A−α(S) = {f ∈ H(D) : ‖f‖α,S := sup
z∈S

(1− |z|)α|f(z)| <∞} ,

whereH(D) stands for the set of all holomorphic functions inD. In the case whereS = D, we
write ‖f‖α,D = ‖f‖α, and the spacesA−α(D) = A−α are the familiar growth spaces. Let also
A−α+ :=

⋂
β>αA

−β andA−∞ =
⋃
α>0A

−α.

We want to formalize problems of the following kind: given a size condition (that the function
f belongs to a certain growth space), and a restriction on the growth off on a subsetS, what
restriction do we get on the global growth off?

Definition. Let 0 ≤ γ ≤ β ≤ α ≤ ∞, with β < ∞. A setS ⊂ D is of type(α, β, γ),
denotedS ∈ T (α, β, γ), if and only if there exists a constantM > 0 such that for allf ∈ A−α,
‖f‖β ≤M‖f‖γ,S.
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Even though Banach space methods do not apply immediately, this turns out, where it makes
sense, to be the same as the seemingly weaker inclusion property.

Lemma 1. Let0 ≤ γ ≤ β < α ≤ ∞, withβ <∞. A setS ⊂ D is of type(α, β, γ) if and only if

A−α ∩ A−γ(S) ⊂ A−β.

The proof is given in Section 2.

Special cases of the definition above coincide with previously studied properties:

• Whenα = β = γ > 0, we have theA−α-samplingsets studied by Seip [Se93b]. The
caseα = β = γ = 0 corresponds to theH∞(D)-dominating setsdescribed earlier by
Brown, Shields and Zeller [BrShZe60].

• Horowitz, Korenblum, and Pinchuk [HoKoPi97] studiedA−∞ -sampling sets, which in
our terminology would be∩γ>0 ∩ε>0 T (∞, γ + ε, γ), or equivalently, sets such that
A−∞ ∩ A−γ(S) ⊂ A−γ+ for anyγ > 0.

• Weakly sufficient setsare those for which the topology ofA−∞ is determined by the
restrictions off ∈ A−∞ on the set, see [KhTh98], [Sch74]. This corresponds to the sets
S such that for anyγ > 0, there existsβ = β(γ) with S ∈ T (∞, β, γ).

• Bonet and Dománski [BoDo03] studied the sets of type(β, β, γ), which they termed
(γ, β) -sampling sets, and of type(∞, β, γ), which they termed(γ, β)-dominating sets.

We introduce another piece of terminology.

Definition. Let 0 ≤ β < α. A setS ⊂ D is (α, β)-Phragḿen-Lindel̈of if and only if S ∈
T (α, β, β).

Korenblum’s Phragḿen-Lindel̈of sets correspond to our(∞, 0) case. An easy adaptation of
[Sch74, Theorem 3.10] to our situation shows that any weakly sufficient set is(∞, 0)-Phragḿen-
Lindelöf. Also, it is easy to see (taking powers) that any set of type(∞, β, 0) is really (∞, 0)-
Phragḿen-Lindel̈of.

We would like to clarify the relationships between those various classes of sets. First notice
that it is trivial thatT (α, β, γ) ⊂ T (α′, β′, γ′) whenα ≥ α′, β ≤ β′, andγ ≥ γ′, and readily
seen by taking powers thatT (α, β, γ) ⊂ T (α/m, β/m, γ/m) wheneverm ∈ N.

Theorem 2. (a) If α ≥ α′, β ≤ β′ + min(α− α′, γ − γ′), andγ ≥ γ′, then

T (α, β, γ) ⊂ T (α′, β′, γ′).

(b) Conversely, ifα < α′; or if γ < γ′ and γ
β
< γ′

β′
, thenT (α, β, γ) 6⊂ T (α′, β′, γ′).

(c) In the special situation of Phragḿen-Lindel̈of sets, we can give a more complete result:
T (α, β, β) ⊂ T (α′, β′, β′) if and only ifα ≥ α′ andβ ≥ β′, and the inclusion is proper
whenα > α′ or β > β′.

The proof is given in Section 2. Notice that a number of cases remain open.

Corollary 3. (a) If S isA−α-sampling, thenS is (α, β)-Phragḿen-Lindel̈of for all β ≤ α.
(b) If S is (α, β)-Phragḿen-Lindel̈of for someβ ≤ α, thenS isA−β-sampling.
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1.2. A necessary condition.We now would like to give some conditions for Phragmén-Lindel̈of
sets in terms of densities.

For an arcI ⊂ T, let |I| = σ(I) stand for its normalized arc-length. We also use a normalized
distance onT:

d(eiθ, eiψ) =
|θ − ψ|
π

, d(ζ, F ) := inf
ξ∈F

d(ζ, ξ) whenF ⊂ T.

For a closed proper subsetF ⊂ T such thatT \ F =
⋃
j Ij, where theIj are disjoint open arcs,

theBeurling-Carleson characteristicof F is

κ̂(F ) :=
∑
j

|Ij|(1 + log
1

|Ij|
) =

∫
T

log
1

d(ζ, F )
dσ(ζ).

The densityof a setS ⊂ D is defined as

D(S) := lim sup
κ̂(F )→∞

∑
s∈S∩Γ(F ) log 1

|s|

κ̂(F )
,

whereΓ(F ) denotes the Korenblum star overF (see precise definition below).

S is a zero-set forA−α+ if and only ifD(S) ≤ α ([Se95], [HeKoZh00, Theorem 4.15, p. 112]).

The Seip densities can be seen as versions of this, made uniform over automorphisms of the
disk. More precisely, for1

2
< r < 1, let

D(S, r) :=

∑
s∈S∩(D\D̄(0, 1

2
)) log 1

|s|

log 1
1−r

.

Theuniform upper and lower densitiesare then defined respectively as

D+
u (S) := lim sup

r→1
sup

ϕ∈Aut(D)

D(ϕ(S), r)

D−
u (S) := lim inf

r→1
inf

ϕ∈Aut(D)
D(ϕ(S), r).

A setS is calledhyperbolically separatedif and only if there existsδ > 0 such that for any
s 6= s′ ∈ S, |ϕs(s′)| ≥ δ, whereϕs is an automorphism ofD sendings to 0.

According to a well-known geometric characterization given by Seip,S is A−α-sampling if
and only if it contains a hyperbolically separated subsetS ′ ⊂ S with D−

u (S ′) > α ([Se93b],
[HeKoZh00, Theorem 5.18, p. 153]).

A set of density less thanα cannot be of type(α, β, γ) (see Lemma 5 below). From Corollary
3 we see also that an(α, β)-Phragḿen-Lindel̈of set must be of uniform lower density greater
thanβ, and since this notion is invariant under automorphisms,everypoint of the boundary must
be a non-tangential limit point of the set.

On the other hand, it follows from examples given in [HoKoPi97] and [KhTh98] that there
exist sets of type(α, β, γ) with lower density equal to0 as soon asβ > γ. But it does follow
from Theorem 2 that all of the sets we are studying are dominating sets forH∞, and therefore
that almost every point of the unit circle is a non-tangential limit point of the set.
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We now define a more quantitative notion of non-tangential density, related to the above den-
sities (see Lemma 8).

Givenz ∈ D, let
Iγz =

{
ζ ∈ T : d(ζ, z/|z|) < γ(1− |z|)

}
.

Also, for ζ ∈ T, γ ∈ (0, 1/2], t ∈ (0, 1) andA ⊂ T define:

Γγ(ζ) = {z ∈ D : ζ ∈ Iγz } Γγ
t(ζ) = Γγ(ζ) ∩ D̄(1− t)

Γγ(A) =
⋃
ζ∈A

Γγ(ζ) Γtγ(A) = Γγ(A) ∩ D̄(1− t) ,

whereD(t) = {z ∈ D : |z| < t}. Notice thatΓγ(ζ) is contained in the half disk{z ∈ D :
| arg z − arg ζ| < π/2}.

Given a sequenceS in D, consider the counting function

nγ(ζ, t;S) = #(Γγ
t(ζ) ∩ S) .

Definition. Let S be a sequence inD and letA ⊂ T. Theboundary density ofS in A is

BDγ
S(A) := lim

t↘0
sup
ζ∈A

0<u≤t

nγ(ζ, u;S)

γ| log u|

Theorem 4. LetS ∈ T (∞, 0, 0). Then, for allγ and all I ⊂ T interval

BDγ
S(I) = ∞ .

The proof is given in Section 3. This theorem is quite far from being optimal. It only shows
that any subset ofT in whichS has finite boundary density must be of empty interior. It would
be natural to expect that the boundary density is infinite outside of a small exceptional set, in fact
smaller than merely negligible for the1-dimensional Lebesgue measure.

Indeed, as follows from the proofs in [Hr78, Section 9], or the more explicit version in
[BeCo86] using [Da77] (see also [BeCo88] and [Ko02]), the correct measure should be the Haus-
dorff measureHL associated to the functionL(x) := x| log x|. More precisely, anyf ∈ A−∞

such that
lim sup
r→1

|f(rζ)| <∞, for all ζ ∈ T \ E, with HL(E) = 0,

must belong toH∞(D). And conversely, given a closed setE ⊂ T with HL(E) > 0, one
can find a positive measureµ supported onE ′ ⊂ E such thatf(z) = exp{

∫
T
ζ+z
ζ−zdµ(ζ)} be-

longs toA−α \ H∞(D) (in fact α can be chosen arbitrarily small) and is bounded on the set{
z ∈ D : 1− |z|2 ≤ (d(z, E))2

}
, which is as dense as one could possibly want near the points

of T \ E.

2. INEQUALITIES AND INCLUSIONS

In this section, we prove Lemma 1 and Theorem 2. The existence of regular uniformly dis-
tributed sequences will be useful.
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Proposition A. For anyt > 0 there exists a hyperbolically separated sequencesSt such that

D+
u (St) = D−

u (St) = t .

For such sequences alsoD(St) = t (see [Se93b, Proposition 3.1], [HeKoZh00, Section 5.4]).

We first need an auxiliary result which is of some interest in itself.

Lemma 5. Letα > β ≥ γ. Any setS such thatA−α ∩ A−γ(S) ⊂ A−β is a uniqueness set for
A−α.

Proof. Suppose thatf ∈ A−α \ {0} andf |S = 0. Thenf ∈ A−α ∩ A−γ(S) ⊂ A−β.

Let δ := D(S) ≤ β by the necessary condition on zero-sets. Sinceα > β, we can pick
t ∈ (β − δ, α − δ). Choose thenSt, disjoint fromS, as in Proposition A. ThenD(S ∪ St) =

δ + t ∈ (β, α), and we can findg ∈ A−(δ+t)
+ ⊂ A−α, g not identically zero, such thatg|S∪St = 0.

SinceD(S ∪ St) > β, we haveg /∈ A−β, thus contradicting the inclusion. �

The proof of Lemma 1 now proceeds verbatim as the proof of [KhTh98, Proposition 3, p.
439], where the roles ofα, β, andγ are played respectively byq+2, q, andp. What was denoted
byA−p(S) in [KhTh98] would now be denoted byA−p(S) ∩ A−∞, and one should now choose
pα−βm ≥ 32m in [KhTh98, p. 440, line 6] to take into account our slightly more general range of
exponents.

Proof of Theorem 2.(a) By the remarks before the statement of the theorem, there is no loss of
generality to assume thatβ′ ≤ β. This proof is then an adaptation of that of [BoDo03, Theorem
1.4].

(c) SinceT (α, β′, β′) ⊂ T (α′, β′, β′) trivially, it will be enough to proveT (α, β, β) ⊂
T (α, β′, β′) whenβ > β′.

Let f ∈ A−α ∩ A−β′(S) and definefn(z) = znf(z). Forz ∈ S:

(1− |z|)β|fn(z)| ≤ |z|n(1− |z|)β−β
′
‖f‖β′,S ,

and taking the supremum of the right hand side overz,

‖fn‖β,S ≤
ttnn

(t+ n)t+n
‖f‖β′,S wheret := β − β′.

By Lemma 1,‖g‖β ≤ M‖g‖β,S, for anyg ∈ A−α. Thus, forz with |z| = rn,t := n/(n + t)
we find:

ttnn

(t+ n)t+n
(1− |z|)β

′
|f(z)| = (1− |z|)β|fn(z)| ≤ ‖fn‖β ≤M‖fn‖β,S

≤M
ttnn

(t+ n)t+n
‖f‖β′,S ,

i.e. (1− |z|)β
′
|f(z)| ≤M‖f‖β′,S.
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For arbitraryz there existsn such that|z| ∈ [rn,t, rn+1,t), and the maximum principle yields:

(1− |z|)β
′
|f(z)| ≤ (1− rn,t)

β′

(1− rn+1,t)β
′M‖f‖β′,S .

This implies the existence ofC > 0 such that‖f‖β′ ≤ CM‖f‖β′,S, becauselim
n→∞

1−rn,t

1−rn+1,t
= 1.

Given the previous results, to prove the converse and that the inclusions are proper when the
inequalities are strict, it will be enough to see that:

(i) For everyα > α′ there existsS ∈ T (α′, α′, α′) \ T (α, 0, 0).
(ii) If β > β′ there existsS ∈ T (∞, β′, β′) \ T (β, β, β).

Proof of (i). This is a special case of the first statement in (b), see proof below.

Proof of (ii). Let t ∈ (β′, β) and letSt be as in Proposition A. Take also a sequence of radii
{rn} ↗ 1 with lim

n→∞
1−rn+1

1−rn = 0, and a sequenceΛ ⊂ ∪n∈N{z : |z| = rn}, as in [HoKoPi97,
Example 2.5], such that

A−∞ ∩ A−α(Λ) ⊂ Aα+ .

Notice thatD−
u (S0) = 0 for all separated subsequenceS0 ⊂ Λ, henceΛ is not sampling for any

A−α, α > 0.

DefineS = St ∪Λ. It is clear by Seip’s characterization thatS is notA−β-sampling, since for
every separated subsequenceS0 ⊂ S:

D−
u (S0) ≤ D+

u (S0 ∩ St) +D−
u (S0 ∩ Λ) = D+

u (S0 ∩ St) ≤ D+
u (St) = t < β .

To see thatS ∈ T (∞, β′, β′), let f ∈ A−β′(S). For anyδ ∈ (β′, t):

f ∈ A−∞ ∩ A−β′(S) ⊂ A−β
′

+ ⊂ A−δ .

St is A−δ-sampling, because it is hyperbolically separated andD−
u (St) = t > δ. Thus there

existsM = M(δ) > 0 such that

‖f‖δ ≤M(δ)‖f‖δ,St ≤M(δ)‖f‖A−δ(S) .

Since the sampling constantM(δ) depends only onD−
u (St) and the separation ofSt, we can take

the same constantM0 for all δ close toβ′:

‖f‖δ ≤M(δ)‖f‖δ,S ≤M0‖f‖δ,S for δ ↘ β′ .

Letting δ tend toβ′ finishes the proof.

(b) Suppose thatα′ > α. Let t ∈ (α, α′) and letSt be as in Proposition A. ThusSt is A−α-
sampling. Also, by [Se95],St is a zero set forA−α

′
, therefore by Lemma 5 it cannot be of type

T (α′, β′, γ′).

Suppose now thatγ′ > γ, andγ′ > γ β
′

β
. First we deal with the case whenγ′ = β′: by the proof

of (c), above, we know thatT (α, γ, γ) 6⊂ T (α, γ′, γ′), but trivially T (α, γ, γ) ⊂ T (α, β, γ).
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Assume then thatβ′ > γ′. SetM := β′/γ′ ∈ (1, β/γ). By [BoDo03, Example 4.1] (itself a
refinement of [KhTh98, Proposition 5]), there exists a countable union of circles centered at the
originE, such that for anyδ, δ′ > 0 andt > δ

A−t ∩ A−δ(E) ⊂ A−δ
′
if and only if δ′ > Mδ.

In particular,E ∈ T (α, β, γ). But sinceβ′ = Mγ′, we haveA−α
′ ∩ A−γ′(E) 6⊂ A−β

′
.

Note thatE could be replaced by a discrete set (provided the points in each circle are close
enough; we omit the details). �

3. DENSITY AT THE BOUNDARY

We may want to consider the true cones of vertexζ ∈ T and apertureπγ, 0 < γ < 1/π,
defined as the rotatioñΓγ(ζ) := ζ · Γ̃γ(1) of

Γ̃γ(1) = {z ∈ D : Rez > 0 ; |Im z| < πγ(1− Rez)} ∪ {z ∈ D : Rez ≤ 0 ; |z| < πγ} .

By construction there existsr0 = r0(γ) such that

Γγ(ζ) ⊂ Γ̃γ(ζ) and Γ̃γ/2(ζ) ∩ (D \D(r0)) ⊂ Γγ(ζ) .(1)

Theorem 4 could also be stated using the densityBD̃γ
S(I) defined asBDγ

S(I) but replacing the
counting functionnγ(ζ, t;S) by ñγ(ζ, t;S) = #(Γ̃tγ(ζ) ∩ S). It is immediate from (1) that for
all γ andI:

BD̃
γ/2
S (I) ≤ BDγ

S(I) ≤ BD̃γ
S(I)(2)

We first state some basic properties of the density.

Lemma 6. GivenS and an intervalI ⊂ T, then

BDγ
S∩Γγ(I)(T) = BDγ

S(I) .

Proof. Let SγI = S ∩ Γγ(I). By definitionBDγ
S(I) = BDγ

Sγ
I
(I), thus it suffices to prove that

BDγ
Sγ

I
(I) = BDγ

Sγ
I
(T). It is clear thatBDγ

Sγ
I
(I) ≤ BDγ

Sγ
I
(T). In order to prove the reverse

inequality letζ /∈ I and take the closest endη ∈ I to ζ. Thennα(ζ, t;S
γ
I ) ≤ nα(η, t;S

γ
I ), hence

taking the supremum and the limit we obtain the desired inequality. �

Lemma 7. LetS ⊂ D and letJ = {eiθ ∈ T : θ ∈ (−π
2
, π

2
)}. Givenγ andI ⊂ T there exists

φ ∈ Aut(D) such that

(a) φ(I) = J ;
(b) BDγ/2

φ(S)(J) ≤ 4 BDγ
S(I).

Proof. It will be more convenient to use the conesΓ̃γ.
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Apply first a rotation so that the interval is transformed into a symmetric intervalI = (e−iα, eiα).
Apply now the automorphismφa(z) = a+z

1+az
, wherea ∈ (−1, 1) is chosen so that (a) is satisfied.

Explicitly, a = − 2 cosα
|1−ieiα|2 .

Let ζ ∈ I. Sinceφa is a Möbius transformation, the straight lines along the sides of the cone
Γ̃γ(ζ) are transformed into circles containing the pointsφa(ζ), φa(∞) = 1/a, and cutting the
unit circle atφa(ζ) with angleγ. Hence

Γ̃γ/2(φa(ζ)) ⊂ φa
(
Γ̃γ(ζ)

)
.

The circle|z| = τ is transformed into a circle passing throughφa(τ) = a+τ
1+aτ

andφa(−τ) =
a−τ
1−aτ and cutting the real line at these points with angleπ/2. Thus, ifa ≤ 0, that is,|I| ≤ 1/2,

takingt = 1− τ andu = t 1−a
1+a−at we haveΓ̃uγ/2(φa(ζ)) ⊂ φa

(
Γ̃tγ(ζ)

)
, and

1

γ/2

ñγ/2(φa(ζ), u;φa(S))

| log u|
≤ 2

γ

ñγ(ζ, t;S)

| log u|
=

2

γ

ñγ(ζ, t;S)

log 1
t

log 1
t

log 1
t
− log 1−a

1+a−at
.

Hence

BD̃
γ/2
φa(S)(φa(I)) ≤ 2 lim

T↘0
sup
ζ∈I
t≤T

ñγ(ζ, t;S)

γ log 1
t

log 1
t

log 1
t
− log 1−a

1+a−at

≤ 2 BD̃γ
S(I) lim

T↘0

log 1
T

log 1
T
− log 1−a

1+a−aT
= 2BD̃γ

S(I) .

The conclusion is then an immediate consequence of (2). In the case wherea > 0, an analogous
computation withu = t 1+a

1−a+at will yield the same result. �

Lemma 8. LetS ⊂ D. ThenD(S) ≤ BDγ
S(T) for all γ > 0.

Proof. Let S = (sk)k and define the measureµ =
∑
k δsk

. Then, forE ⊂ D:

γ
∑
sk∈E

1− |sk| =
∫
E

∫
Iγ
z

dσ(ζ) dµ(z) =
∫

T

∫
E∩Γγ(ζ)

dµ(z) dσ(ζ) =

=
∫

T
#(S ∩ E ∩ Γγ(ζ)) dσ(ζ) .

TakeF ⊂ T finite or countable, andE = Γγ(F ). By construction, there existscγ such that
Γγ(F ) ∩ Γγ(ζ) ⊂ Γcγd(ζ,F )

γ (ζ). Thus

γ
∑

sk∈Γγ(F )

(1− |sk|) ≤
∫

T
#(S ∩ Γγ(F ) ∩ Γγ(ζ)) dσ(ζ) ≤

∫
T
nγ(ζ, cγd(ζ, F );S) dσ(ζ) .

By hypothesis, givenε > 0 there existstε > 0 such that

nγ(ζ, t;S) ≤ γ(BDγ
S(T) + ε)| log t| for all 0 < t < tε and allζ ∈ T.
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We separate the integral above into two terms. Forζ such thatcγd(ζ, F ) ≥ tε we have
Γcγd(ζ,F )
γ (ζ) ⊂ D(1− cγd(ζ, F )) ⊂ D(1− tε). Hence

γ
∑

sk∈Γγ(F )

(1− |sk|) =
∫

T
#(S ∩D(1− tε)) dσ(ζ) +

∫
{ζ: cγd(ζ,F )≤tε}

nγ(ζ, cγd(ζ, F );S) dσ(ζ)

≤ C1(ε, S) + γ(BDγ
S(T) + ε)

∫
T

log
( 1

cγd(ζ, F )

)
dσ(ζ)

≤ C2(ε, S) + γ(BDγ
S(T) + ε) κ̂(F )

and, as desired,

lim sup
κ̂(F )→∞

∑
sk∈Γγ(F )(1− |sk|)

κ̂(F )
≤ BDγ

S(T) + ε for all ε > 0 .

�

Proof of Theorem 4 .Assume there existsI ⊂ T with BDγ
S(I) < ∞. We want to construct

H ∈ A−∞ \H∞ such thatsupS |H| <∞, so thatS /∈ T (∞, 0, 0).

By Lemma 7 we can assume thatI = J . TakeΩ = D(−1,
√

2) ∪ D, so that the intersection
angle betweenT and∂D(−1,

√
2) at±i isπ/4. Consider then a conformal mappingψ : Ω −→ D

with ψ(J) = J . Explicitly ψ = ψ3 ◦ψ2 ◦ψ1, whereψ1(z) =
i+ z

i− z
, ψ2(z) = (iz)

4
5 (the argument

of iz running from0 to 5π/4), ψ3(z) = i
z − i

z + i
, from which we see thatψ(i) = i, ψ(−i) =

−i, ψ(1) = 1 and there exists a constantη > 0 such that

1− |ψ(w)| ≥ η(1− |w|) for all w ∈ D, and(3)

ψ(D) ⊂ Γγ′(J) ∪D(r0) for somer0 andγ′ ≤ π

2
− π

5
.(4)

Similarly to (4) we haveψ(D) ⊂ Γ̃γ′(J).

Lemma 9. Letψ be the conformal mapping above. Then

BD
γ/2
ψ(S)(J) ≤ 2 BDγ

S(J) .

Proof. By construction ofψ there existsr0 such that for anyζ ∈ J
Γtγ/2(ψ(ζ)) ⊂ ψ(Γηtγ (ζ)) ∪D(r0) .

Thus
nγ/2(ψ(ζ),t;ψ(S))

γ
2
| log t| ≤ 2

nγ(ζ,ηt;S)+Cr0

γ| log t| , and taking the supremum and the limit we obtain the
desired inequality. �

Using this and Lemma 6

BD
γ/2
ψ(S)∩Γγ(J)(T) = BD

γ/2
ψ(S)(J) ≤ 2 BDγ

S(J) .
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Applying Lemma 8 we getD
(
ψ(S) ∩ Γγ/2(J)

)
≤ 2BDγ

S(J), therefore there existsf ∈ A−α+ \
{0}, α = 2BDγ

S(J), such thatf ≡ 0 onψ(S) ∩ Γγ/2(J).

We want to multiplyf by a functiong with a suitable decrease onD \ Γγ/2(J). By (4), if
z ∈ ψ(S), there existsδ > 0 such that1− |z| ≥ δd(z/|z|, J).

Define, for a certain constantc1 > 0 to be chosen later on, the function

g(z) = exp
{
−c1

∫
T\J

ζ + z

ζ − z
log

1

d(ζ, J)
dσ(ζ)

}
.

Then

− log |g(z)| = c1

∫
T\J

Pz(ζ) log
1

d(ζ, J)
dσ(ζ) ,

wherePz(ζ) stands for the Poisson kernel, and in particular‖g‖∞ ≤ 1.

For z /∈ Γγ/2(J) there existc2, c3 > 0 such that

Ic2(z) =: {ζ ∈ T : d(z/|z|, ζ) < c2(1− |z|)} ⊂ T \ J

andd(Ic2(z), J) ≥ c3(1− |z|). Thus, for somec4 = c4(c2, γ):

− log |g(z)| ≥ c1

∫
Ic2 (z)

Pz(ζ) log
1

d(ζ, J)
dσ(ζ)

≥ c1c3 log
1

d(Ic2(z), J)
≥ c1c4 log

1

(1− |z|)
.

Hence|g(z)| ≤ (1− |z|)c1c4 for z /∈ Γγ/2(J).

For anyeiθ ∈ J ,

lim
z→eiθ,z∈Γγ/2(eiθ)

|g(z)| = 1.

By Privalov’s theorem, we can chooseeiθ ∈ J such that

lim sup
z→eiθ,z∈Γγ/2(eiθ)

|f(z)| > 0.

Thus for anyk > 0

lim sup
z→eiθ,z∈Γγ/2(eiθ)

|f(z)g(z)|
(1− |z|)k

= ∞ .(5)

Choose nowc1 > 0 such thatc1c4 > 2BDγ
S(J) + k. DefineF (z) = f(z)g(z)

(1−e−iθz)k andH = F ◦ ψ,
whereθ is as before.

Let us check the required properties forH:

(i) sup
S
|H| < ∞. If w is such thatψ(w) ∈ ψ(S) ∩ Γγ/2(J) we have thenf(ψ(w)) = 0, and

obviouslyH(w) = 0.
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If w is such thatψ(w) ∈ ψ(S) ∩ (D \ Γγ/2(J)), andz = ψ(w); then

|H(w)| = |f(z)g(z)|
|1− e−iθz|k

≤ |f(z)|(1− |z|)c1c4

(1− |z|)k
≤ ‖f‖A−c1c4+k <∞ ,

sincec1c4 − k > α.

(ii) H ∈ A−∞. It is clear thatF ∈ A
−(α+k)
+ , sincef ∈ A−α+ andg ∈ H∞. The statement

follows then from (3).

(iii) H /∈ H∞. This follows from (5), since|1− e−iθz| ' (1− |z|) onΓγ/2(e
iθ). �
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