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This is a solution to a corrected version of the text. My apologies for the many
mistakes which obscured the meaning of the questions.

The goal of this problem is to clarify the phrase “argument principle” and to show
that if Ω is a domain, f ∈ O(Ω) admits a holomorphic square root if and only if:

(1) For any closed path γ : [a, b] −→ Ω \ f−1(0),
1

2πi

∫
γ

f ′(ζ)

f(ζ)
dζ ∈ 2Z.

1) Let ϕ be a differentiable map from [a, b] ⊂ R to C\{0}. Let arg stand for any local
continuous determination of the argument of complex numbers in a neighborhood U
of ϕ(t0), i.e. some function such that

for z ∈ U, z = elog |z|+i arg z.

Prove that any two functions with this property must differ by a constant if U is
connected.

Therefore d
dt

(argϕ(t)) is always well defined. Show that

d

dt
(argϕ(t)) = Im

(
ϕ′(t)

ϕ(t)

)
.

Hint: consider the derivative of elog |ϕ(t)|+i argϕ(t).

Suppose that arg1 and arg2 are two continuous determinations of the argument in
the connected open set U . Then for any z ∈ U ,

exp(log |z|+ i arg1(z)) = exp(log |z|+ i arg2(z)),

which implies that there exists kz ∈ Z such that arg1(z) = arg2(z) + 2kzπ. So the
function z 7→ kz = 1

2π
(arg1(z)− arg2(z)) is continous, integer-valued, so it must be

constant on the connected set U (because the connected components of Z are reduced
to a point).

So if we choose a continuous determination of the argument on U , and if it is
differentiable (in the real sense), all other determinations will also be differentiable
and share the same derivative, since they differ by a constant.
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We will at the same time show that argϕ is differentiable and compute its derivative.
Consider

(2) ϕ(t+ h) = exp (log |ϕ(t+ h)|+ i arg(ϕ(t+ h)))

= exp (log |ϕ(t)|+ i arg(ϕ(t))) exp

(
log

∣∣∣∣ϕ(t+ h)

ϕ(t)

∣∣∣∣+ i[arg(ϕ(t+ h))− arg(ϕ(t))]

)
= ϕ(t) exp

(
log

∣∣∣∣ϕ(t+ h)

ϕ(t)

∣∣∣∣+ i[arg(ϕ(t+ h))− arg(ϕ(t))]

)
.

Since ϕ is differentiable, ϕ(t+ h) = ϕ(t) + ϕ′(t)h+ o(h), and

log

∣∣∣∣ϕ(t+ h)

ϕ(t)

∣∣∣∣+ i[arg(ϕ(t+ h))− arg(ϕ(t))] = O(h).

Recall that o(O(x)) = o(x). Thus, using the fact that ew = 1 + w + o(w), equation
(2) yields

ϕ(t)+ϕ′(t)h+o(h) = ϕ(t)

(
1 + log

∣∣∣∣ϕ(t+ h)

ϕ(t)

∣∣∣∣+ i[arg(ϕ(t+ h))− arg(ϕ(t))] + o(h)

)
.

Divide by ϕ(t) on each side (recall that ϕ(t) 6= 0 by hypothesis) and take the imaginary
part of everything. The log term is real and disappears, and we are left with

arg(ϕ(t+ h))− arg(ϕ(t)) = Im

(
ϕ′(t)

ϕ(t)

)
h+ o(h),

which proves differentiability and yields the derivative we wanted.

2) The quantity
∫ b
a

d
dt

(argϕ(t)) dt is called the variation of the argument along the
curve ϕ.

If ϕ is a closed path, i.e. ϕ(a) = ϕ(b), show that this quantity belongs to 2πZ.
Compute the variation of the argument when a = 0, b = 2π, ϕ(t) = eimt, where

m ∈ Z is a parameter (this corresponds to m turns around the unit circle, taking
orientation into account).

If b1 = ϕ(t0) 6= 0, then the argument admits a continuous determination (and thus
several) in the disc D(b1, |b1|); by continuity of ϕ, there exists δ > 0 such that for
u ∈ (t0 − δ, t0 + δ), ϕ(u) ∈ D(b1, |b1|). The functions∫ u

a

d

dt
(argϕ(t)) dt and arg (ϕ(u))

have the same derivative, and thus must differ by a constant. This is true for any
t0 ∈ [a, b].

To see that
∫ b
a

d
dt

(argϕ(t)) dt ∈ 2πZ when ϕ(a) = ϕ(b), we need to be more precise.
Choose any determination argϕ(a) of the argument of ϕ(a). Let

A(u) := argϕ(a) +

∫ u

a

d

dt
(argϕ(t)) dt.

Consider the set of u such that A(u) is a determination of the argument of ϕ(u), i.e.
ϕ(u)e−iA(u) ∈ R∗+. Since ϕ(u) 6= 0, it is the same as {u ∈ [a, b] : ϕ(u)e−iA(u) ∈ R+},
so it is closed. It is not empty since it contains a. Finally, it is also open by the
argument given above, because in a neighborhood of t0, ϕ(u) = |ϕ(u)|ei arg(ϕ(u)). So
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it must be the whole interval, and A(b) is a determination of the argument of ϕ(b),
therefore A(b) − A(a) = A(b) − argϕ(a) = A(b) − argϕ(b) ∈ 2πZ. In the example,

ϕ′(t) = imeimt, so Im
(
ϕ′(t)
ϕ(t)

)
= m, and

∫ 2π

0
mdt = 2πm.

3) Let γ be a differentiable map from [a, b] ⊂ R to C, and f a differentiable map
from an open set in C to C. Using the definitions of ∂f

∂z
and ∂f

∂z̄
, prove the complex

form of the Chain Rule:

(f ◦ γ)′(t) =
∂f

∂z
(γ(t))γ′(t) +

∂f

∂z̄
(γ(t))γ̄′(t).

Write γ(t) =: γ1(t) + iγ2(t), where the γj are real-valued. Then

(f ◦ γ)′(t) =
∂f

∂x
(γ(t))γ′1(t) +

∂f

∂y
(γ(t))γ′2(t).

Using the definitions of ∂f
∂z

and ∂f
∂z̄

,

∂f

∂x
=

(
∂f

∂z
+
∂f

∂z̄

)
,

∂f

∂y
= i

(
∂f

∂z
− ∂f

∂z̄

)
.

Collecting the terms, we get the formula.

4) If γ is a path in Ω, f is holomorphic on Ω, and if arg f is any determination of
the argument of f , defined in a neighborhood of a where f(a) 6= 0, show that

d

dt
(arg f(γ(t))) = Im

(
f ′(γ(t))

f(γ(t))
γ′(t)

)
.

Hint: consider the path ϕ := f ◦ γ.
If γ is a closed path, show that the variation of the argument along f ◦ γ is

1
i

∫
γ
f ′(ζ)
f(ζ)

dζ.

Since f is holomorphic, we write f ′(z) for ∂f
∂z

, and the formula for the Chain Rule
becomes (f ◦ γ)′(t) = f ′(γ(t))γ′(t) (note that the two derivatives in this formula have
slightly different meanings). Then, using ϕ = f ◦ γ,

d

dt
(arg f(γ(t))) = Im

(
(f ◦ γ)′(t)

f ◦ γ(t)

)
= Im

(
f ′(γ(t))γ′(t)

f(γ(t))

)
,

which yields the result. So, by the above computation, the variation of the argument
along f ◦ γ is∫ b

a

Im

(
f ′(γ(t))

f(γ(t))
γ′(t)

)
dt = Im

(∫ b

a

f ′(γ(t))

f(γ(t))
γ′(t) dt

)
= Im

(∫
γ

f ′(ζ)

f(ζ)
dζ

)
.

If γ is a path from a fixed a to z,
∫
γ
f ′(ζ)
f(ζ)

dζ provides a determination of log f(z)

(locally).
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If γ is a closed path, the whole integral is the difference between two determinations
of the logarithm, therefore a multiple of 2πi; in particular,

Im

(∫
γ

f ′(ζ)

f(ζ)
dζ

)
=

1

i

∫
γ

f ′(ζ)

f(ζ)
dζ.

5) Prove that if f admits a holomorphic square root, i.e. if there exists a holo-
morphic function g ∈ O(Ω) such that f(z) = g(z)2, for all z ∈ Ω, then (1) holds.

Since f(z) = g(z)2, f ′(z) = 2g(z)g′(z), so

1

i

∫
γ

f ′(ζ)

f(ζ)
dζ = 2

1

i

∫
γ

g′(ζ)

g(ζ)
dζ ∈ 2 · 2πZ,

by the previous question applied to g.

6) Suppose now that f ∈ O(Ω) verifies (1).
Let z0 ∈ Ω, and for each z ∈ Ω, with f(z) 6= 0, let γz be a path from z0 to z in

Ω \ f−1(0). Prove that the function

z 7→ exp

(
1

2

∫
γz

f ′(ζ)

f(ζ)
dζ

)
=: h(z)

is well defined, i.e. it does not depend on the choice of γz, and continuous on Ω\f−1(0).
Suppose that γ1,z and γ2,z are two paths from z0 to z. Then γ̃ = γ1,z − γ2,z (i.e. the

path γ1,z, followed by the path γ2,z in the reverse direction) is a closed path, so

1

2

∫
γ1,z

f ′(ζ)

f(ζ)
dζ − 1

2

∫
γ2,z

f ′(ζ)

f(ζ)
dζ =

1

2

∫
γ̃z

f ′(ζ)

f(ζ)
dζ =

1

2
4kπi = 2kπi.

Passing to the exponentials, since exp(2kπi) = 1, we find

exp

(
1

2

∫
γ1,z

f ′(ζ)

f(ζ)
dζ − 1

2

∫
γ2,z

f ′(ζ)

f(ζ)
dζ)

)
= 1.

To prove continuity, if z′ ∈ D̄(z, r) with r > 0 chosen so that D̄(z, 2r) ⊂ Ω \ f−1(0),
we can replace γz′ by γz + [z, z′], where [z, z′] is the oriented line segment from z to
z′, so that

h(z′)

h(z)
= exp

(
1

2

∫
[z,z′]

f ′(ζ)

f(ζ)
dζ

)
.

If m := minD̄(z,r) |f | > 0 and M := maxD̄(z,2r) |f |, then maxD̄(z,r) |f ′| ≤ M/r and the
integral inside the exponential is bounded above by M |z′ − z|/(rm) < ε for r small
enough. Then use the fact that h is locally bounded by M ′, and |h(z′) − h(z)| ≤
M ′
∣∣∣h(z′)
h(z)
− 1
∣∣∣.

7) Prove that h(z) is holomorphic and extends to Ω, and that it verifies h(z)2 =
Cf(z), for a constant C.

The function h is holomorphic because it is the exponential of a function that is
holomorphic, by the usual proof (once we know it is well defined). Furthermore,
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(h2)′(z)
h2(z)

= f ′(z)
f(z)

. So we have

d

dz

(
h(z)2

f(z)

)
=

1

f(z)

f ′(z)

f(z)
h(z)2 − h(z)2f ′(z)

f(z)
= 0,

therefore h(z)2 = Cf(z). Choosing C1 such that C2
1 = C, we find that g(z) := h(z)/C1

provides a holomorphic square root for f on Ω \ f−1(0).

Since g is bounded (because |g| =
√
|f |), and the zeroes of f are isolated, Riemann’s

Removable Singularity Theorem implies that g extends to a holomorphic function on
Ω. By continuity, it is still equal to a square root of f .


