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L3 PARCOURS SPÉCIAL, 2016-17

EXERCISE SHEET # 3:
SEQUENCES OF FUNCTIONS, RIEMANN MAPPING THEOREM

PASCAL J. THOMAS

1

Exercises or questions marked with a * are not mandatory. Do them later.

1.1. a) We recall a topological fact: if A is a relatively compact set in a metric space, a
sequence (an)n ⊂ A converges to a limit l if and only if every convergent subsequence
(ank

)k converges to l.
b) Let Ω be a domain and let A ⊂ Ω be a subset with at least one cluster point in Ω

(in other words, A is not discrete). Let (fn)n ⊂ O(Ω) be a locally bounded sequence
of holomorphic functions.

We assume that there exists f ∈ O(Ω) such that for any a ∈ A, fn(a) → f(a).
Show that fn → f , uniformly on compact subsets of Ω (this is known as Vitali’s
Theorem).

1.2. We have already remarked (Exercise 1.5 in Sheet #2) that S \ [−1,+1], is simply
connected. Write an explicit holomorphic bijection from that domain to S \ D. Use
this to deduce a holomorphic bijection between C\ [−1,+1] and C\D (which are not
simply connected).

1.3. Show that if F ⊂ O(Ω) is a normal family, then F ′ ⊂ O(Ω),
where F ′ := {f ′ : f ∈ F}.

Prove by a simple counter-example that the converse fails. What additional hy-
pothesis could you add to the hypothesis “F ′ is a normal family” to imply that F is
a normal family?

1.4. * Let Ω be a domain and (fn)n ⊂ O(Ω). We assume that (fn)n avoids an open
disc D(a, r), i.e. for all n ∈ N, z ∈ Ω, fn(z) /∈ D(a, r).

Prove that there exists a subsequence (fnk
)k such that either

(1) (fnk
)k converges uniformly on compact subsets of Ω;

(2) or |fnk
| → ∞, uniformly on compact subsets of Ω, in the sense that for

any compact set K ⊂ Ω, for any A > 0, there exists N ∈ N such that
k ≥ N, z ∈ K ⇒ |fnk

(z)| > A.

Hints: first find ϕ ∈ H(S) such that ϕ(S \ D(a,R) = D. Then work with ϕ ◦ fn.
Then come back to the original sequence. To deal with the case of convergence to∞,
you will have to use Hurwitz’s Theorem.

1.5. Prove that there is no one-to-one holomorphic bijection between D\{0} and Ω :=
{z : r < |z| < R}, where r > 0 (even though those two domains are homeomorphic).
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Hints: proceed by contradiction; you will need Riemann’s Removable Singularity
Theorem and the Open Mapping Theorem.

1.6. Let Ω1 and Ω2 be two simply connected domains, both distinct from C, and
z0 ∈ Ω1. Let f be a holomorphic bijection from Ω1 to Ω2. Prove that for any
holomorphic map h : Ω1 −→ Ω2 with h(z0) = f(z0), then |h′(z0)| ≤ |f ′(z0)|.
1.7. We recall that we say that f is holomorphic in a neighborhood of ∞ ∈ S if and
only if f ◦ I is holomorphic in a neighborhood of 0.

We would like to know when the class of holomorphic functions O(Ω,D) (the holo-
morphic functions bounded by 1 in modulus) is non-trivial, for a domain Ω ⊂ S. We
consider the class trivial if it contains only constant functions.

a) If Ω1 ⊂ Ω2 are domains, and the class O(Ω1,D) is trivial, prove that the class
O(Ω2,D) is trivial.

If Ω = C or Ω = S, prove that the class is trivial.
b) If Ω = S \ A, where A is a finite set, prove that the class is trivial. Hint: you

can reduce yourselves to the case where ∞ ∈ A.
c) If Ω = S \ [−1,+1], prove that O(Ω,D) is not trivial.
Hint: use exercise 1.2.
*d) We now consider a more complicated situation. Let A ⊂ [−1, 1] be a closed

set.
d-i) We recall from measure theory that a compact set F ⊂ R is of measure 0 if and

only if for any ε > 0, there exists an open set Uε such that F ⊂ Uε and λ1(Uε) < ε,
where λ1 denotes the Lebesgue measure on R.

Show that λ1(A) = 0 if and only if for any ε > 0, there exists a finite collection
I1, . . . , IN of disjoint open intervals such that Ij = (aj, bj) and

N∑
j=1

(bj − aj) < ε.

d-ii) Show that for any ε > 0, there is a path γ made up of a finite union of
rectangles with sides parallel to the axes, run through in the trigonometric direction,
such that each point in A is inside exactly one of those rectangles, and for each a ∈ A,
Inda(γ) = 1 (the index of γ with respect to a), and that the total length of γ is < ε.

d-iii) Suppose that f ∈ O(Ω,D). We want to prove that f is constant. Show that
you can reduce yourselves to the case where f(∞) = 0.

d-iv) Let z ∈ C and R > |z|. Let C(0, R) be the circle of center 0, radius R, run
through once in the trigonometric direction. Using the Cauchy formula, show that
we can find γ as in question d-ii) such that

2πif(z) =

∫
C(0,R)

f(ζ)

ζ − z
dζ −

∫
γ

f(ζ)

ζ − z
dζ.

d-v) Deduce from the above formula that f(z) = 0.
Comment: this is a simplified form of Painlevé’s Theorem (Painlevé lived in the

days when major political figures could also be first-rate mathematicians, look him up
on Wikipedia). More refined versions of the problem have kept some mathematicians
busy until the early years of the 21st century, until they were solved by the Catalan
mathematican Xavier Tolsa Domènech (born 1966).


