UNIVERSITÉ PAUL SABATIER L2 PARCOURS SPÉCIAL, ALGÈBRE, 2018-19 TD 6 - APPLICATIONS BILINÉAIRES

PASCAL J. THOMAS

10. Applications bilinéaires

10.1. **(B)** On considère, sur l'espace vectoriel $E := \mathbb{C}^2$, la forme bilinéaire $B : E \times E \longrightarrow \mathbb{C}$ donnée par $B(x,y) := x_1y_1 + 2x_2y_1 + 3x_2y_2$. Donner sa matrice, au sens du paragraphe (1.2.2) du cours, dans les bases $\underline{e}, \underline{f}$ avec $\underline{e} = \underline{f} = \{(1,0), (0,1)\}$ (la base canonique).

On considère les nouvelles bases $\underline{e}' = \{(1,1), (1,-1)\}$ et $\underline{f}' = \{(1,1), (1,0)\}$. Donner la matrice de B dans les bases $\underline{e}', \underline{f}'$ et $\underline{e}', \underline{e}'$. Vous pouvez utiliser l'équation (4) dans le paragraphe (1.2.2).

Quelles sont les bases duales \underline{e}^{\vee} , \underline{f}'^{\vee} ? (Les exprimer en fonction des formes linéaires coordonnées X_1 et X_2 données par $X_1(x_1, x_2) := x_1, X_2(x_1, x_2) := x_2$).

10.2. **(B)** On appelle *produit vectoriel* l'unique application $V: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ qui vérifie pour tous $x, y, z \in \mathbb{R}^3$,

$$V(x, y) \cdot z = \det(x, y, z),$$

où $v \cdot w$ représente le produit scalaire euclidien habituel. Montrer que V est bien définie, donner sa formule, vérifier qu'elle est bilinéaire. Faut-il faire le calcul avec les coordonnées ou peut-on utiliser les propriétés du déterminant et du produit scalaire ? Montrer que V est antisymétrique (V(y,x) = -V(x,y)).

Avec les notations du cours, paragraphe (1.1.2), pour tout $x \in \mathbb{R}^3$, $\Phi(V)(x) \in End(\mathbb{R}^3)$. Identifiez cet endomorphisme géométriquement.

10.3. On note $K^{m \times n}$ l'ensemble des matrices (m, n) (m lignes et n colonnes) à coefficients dans le corps K. On définit l'application bilinéaire

$$f: K^{m \times n} \times K^n \longrightarrow K^m$$

$$(2) (M,x) \mapsto M \cdot x,$$

où $M\cdot x$ représente le produit d'une matrice par un vecteur.

Montrer que f est bilinéaire. Que vaut $\Phi(f)(M)$?

10.4. Faire l'exercice 1.1.6 du cours, p. 65–66.

2

11. Formes bilinéaires

11.1. **(B)** On considère, sur l'espace vectoriel $E := \mathbb{R}^2$, la forme bilinéaire donnée par $B(x,y) := x_1y_1 + x_1y_2 + x_2y_2$. On pose $e_1 := (1,0)$. Trouver un vecteur v tel que $e_1 \perp v$ mais $v \perp e_1$ ne soit pas vrai (la relation d'orthogonalité n'est pas symétrique).

Déterminer la forme quadratique Q associée à B et l'unique forme bilinéaire symétrique B_1 associée à Q. Trouver l'orthogonal de $\mathbb{R}e_1$ pour B_1 .

11.2. (B) Soit, pour $N \ge 2$, $E_N := \{P \in \mathbb{C}[X] : P(0) = P(1) = 0, \deg P \le N\}$ (on admet que c'est un espace vectoriel de dimension N-1). On définit

$$B(P,Q) := \int_0^1 P(x)Q'(x)dx.$$

Montrer que c'est une forme bilinéaire antisymétrique sur E_N .

11.3. Soit, pour $N \geq 2$, $E_N := \{P \in \mathbb{R}[X] : \deg P \leq N\}$ (on admet que c'est un espace vectoriel de dimension N+1). On définit

$$B(P,Q) := \int_0^1 P'(x)Q'(x)dx.$$

Montrer que c'est une forme bilinéaire symétrique. Déterminer son noyau. Montrer que la restriction de B à $F_N := \{P \in \mathbb{R}[X] : P(0) = 0, \deg P \leq N\}$ est non-dégénérée.

L'application $\Phi: F_N \longrightarrow \mathbb{R}: P \mapsto P'(0) = \Phi(P)$ est une forme linéaire. Trouver un polynôme Q tel que pour tout $P \in F_3$, $B(P,Q) = \Phi(P)$.

11.4. On rappelle que l'espace $\mathbb{R}_2[X,Y]$ des polynômes à coefficients réels à deux variables de degré ≤ 2 est de dimension 6.

Soit E l'espace des polynômes trigonométriques de degré ≤ 2 , c'est-à-dire des fonctions définies sur \mathbb{R} par $f(x) = P(\cos x, \sin x)$ où $P \in \mathbb{R}_2[X, Y]$.

- a) Déterminer la dimension de E (indication : ce n'est pas 6).
- b) On définit

$$B(f,g) := \frac{1}{2\pi} \int_0^{2\pi} f(x)g(x)dx.$$

Montrer rapidement que c'est une forme bilinéaire symétrique non-dégénérée. Trouver une matrice de B dans une base bien choisie (penser à votre cours d'analyse hilbertienne).

- c) L'application $\Phi: E \longrightarrow \mathbb{R}: P \mapsto P(0) = \Phi(P)$ est une forme linéaire. Trouver une fonction f_0 tel que pour toute $f \in E$, $B(f, f_0) = \Phi(f)$.
- d) En démontrant et utilisant le fait que pour tout $t \in \mathbb{R}$, $\int_0^{2\pi} f(x+t)dx = \int_0^{2\pi} f(x)dx$, trouver pour tout $t \in \mathbb{R}$ une fonction f_t telle que $B(f, f_t) = f(t)$.
- 11.5. (B) Soit E un espace vectoriel muni d'une forme bilinéaire B symétrique nondégénérée. Soit E_1 un sous-espace vectoriel de E. Montrer que $E = E_1 \oplus E_1^{\perp}$ si et seulement la restriction de B à E_1 est non-dégénérée.