UNIVERSITÉ PAUL SABATIER L2 PCP, OPTION CHIMIE, 2013-2014 MATHÉMATIQUES, TD 5

Topologie de \mathbb{R}^2 , Fonctions de plusieurs variables

1. Équivalence de normes sur \mathbb{R}^2 .

Montrer que pour tout $x \in \mathbb{R}^2$, $||x||_{\infty} \le ||x||_2 \le ||x||_1 \le 2||x||_{\infty}$, et aussi que $||x||_2 \le \sqrt{2} ||x||_{\infty}$. Donner des exemples pour montrer qu'aucune de ces inégalités ne peut être améliorée.

2. Inégalité de Cauchy-Schwarz.

On rappelle que pour $x,y\in\mathbb{R}^n,\ x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_n),\ x\cdot y:=$ $\sum_{i=1}^{n} x_i y_i$, et $||x||^2 = x \cdot x$.

Étudier le signe du polynôme en t donné par $P(t) = ||x + ty||^2$, et en déduire l'inégalité de Cauchy-Schwarz:

$$(x \cdot y)^2 \le ||x||^2 ||y||^2,$$

autrement dit

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}.$$

Pour quelles valeurs de x et y cette inégalité devient-elle une égalité ?

- 3. 1) Montrer que pour tous réels a, b, c, d tels que a < b et c < d, alors l'ensemble $\Omega :=]a, b[\times]c, d[$ est un ouvert de \mathbb{R}^2 .
- 2) Montrer que pour tout $a \in \mathbb{R}^2$, pour tout r > 0, la boule ouverte B(a, r) est ouverte (on peut prendre la "boule" au sens de n'importe quelle norme).
- 4. Montrer que si $f: \mathbb{R}^n \longrightarrow \mathbb{R}^p$ et $g: \mathbb{R}^p \longrightarrow \mathbb{R}^q$ sont continues, alors $g \circ f$ est continue.
- 5. Étudier les limites suivantes (qui peuvent exister ou pas) :

 - (1) $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$; (2) $\lim_{(x,y)\to(0,0)} \frac{x^4+y^4}{x^2+y^2}$; (3) $\lim_{(x,y)\to(0,0)} \frac{x^2+y^4}{x^4+y^2}$; (4) $\lim_{(x,y)\to(0,0)} \frac{x^2y(x^2-y^2)}{(x^2+y^2)^2}$; (5) $\lim_{(x,y)\to(0,0)} \frac{x^4+y^4}{(x^2+y^2)^2}$.
- 6. Pour quelles valeurs de $\alpha > 0$ la fonction f définie par

$$f(x,y) := \frac{|xy|^{\alpha}}{x^2 + y^2}, \quad f(0,0) = 0$$

1

est-elle bornée sur la boule B((0,0),1)? Continue sur cette même boule?

- 7. (1) Trouver une équation de la droite y = x en coordonnées polaires.
 - (2) Trouver une équation du cercle de centre (1,0) et de rayon 1 en coordonnées polaires.
 - (3) Trouver une équation de la droite ax + by = 1 en coordonnées polaires. Indication : calculer en fonctions de (a, b) les coordonnées polaires (ρ_0, θ_0) de l'unique point p_0 de cette droite qui est le plus proche de (0, 0). Représenter la droite dans un repère centré en p_0 , avec la droite passant par l'origine et par p_0 comme axe des abscisses.