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Abstract. We prove that the locus of Prym curves (C, η) of genus g > 5 for which
the Prym-canonical system |ωC(η)| is base point free but the Prym–canonical map is
not an embedding is irreducible and unirational of dimension 2g + 1.

1. Introduction

Let g > 2 and Rg be the moduli space of Prym curves, that is, of pairs (C, η), with C
a smooth complex projective genus g curve and η a non–zero 2–torsion point of Pic0(C).
It is well-known that Rg is irreducible of dimension 3g−3 and that the natural forgetful
map Rg →Mg, whereMg denotes the moduli space of smooth genus g curves, is finite
of degree 22g − 1. The complete linear system |ωC(η)| is of dimension g − 2 and it is
base point free unless C is hyperelliptic and η ' OC(p − q), with p and q ramification
points of the g1

2 (cf. Lemma 2.1 below).
In this note we study the locally closed locus R0

g in Rg of Prym curves (C, η) such

that the Prym-canonical system |ωC(η)| is base point free but the morphism C → Pg−2

it defines (the so-called Prym–canonical map) is not an embedding. Note that R0
g is

clearly dense in Rg for g 6 4. Our main result is the following:

Theorem 1.1. Let g > 5. The locus R0
g is irreducible and unirational of dimension

2g + 1 and lies in the tetragonal locus.

By the tetragonal locus R1
g,4 in Rg we mean the inverse image via Rg →Mg of the

tetragonal locus M1
g,4 of Mg.

We also show:

Proposition 1.2. For general (C, η) ∈ R0
g, g > 5, the Prym–canonical map is birational

onto its image, and its image has precisely two nodes.

Although we believe that these results are of independent interest, our main moti-
vation for studying the locus R0

g is that it naturally contains pairs (C, η) where C is a
smooth curve lying on an Enriques surface S such that

φ(C) = min{E · C | E ∈ Pic(S), E > 0, E2 = 0} = 2,

and η = OC(KS), cf. Examples 5.1 and 5.2 and Remark 5.5, in which case the Prym–
canonical map associated to η is the restriction to C of the map defined by the complete
linear system |C| on S. The locus R0

g indeed naturally shows up in our recent work
[6] concerning the moduli of smooth curves lying on an Enriques surface, in which we
use the results in this note. Besides, we show in [6] that R0

g is dominated by curves on
Enriques surfaces for 5 6 g 6 8.
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The paper is organized as follows. Section 2 is devoted to recalling some preliminary
results. The irreducibility and unirationality ofR0

g is proved in §3, whereas its dimension
is computed in §4. We conclude with the proof of Proposition 1.2 together with the
mentioned examples on Enriques surfaces.
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2. Preliminary results

2.1. A basic lemma on Prym curves. The following is an immediate consequence
of the Riemann-Roch theorem (see also [8, §0.1] or [12, Pf. of Lemma 2.1]). We include
the proof for the reader’s convenience.

Lemma 2.1. Let (C, η) be any Prym curve of genus g > 3. Then:
(i) p is a base point of |ωC(η)| if and only if |p + η| 6= ∅. This happens if and only if
C is hyperelliptic and η ∼ OC(p − q), with p and q ramification points of the g1

2. In
particular, p and q are the only base points;
(ii) if |ωC(η)| is base point free, then it does not separate p and q (possibly infinitely
near) if and only if |p + q + η| 6= ∅. This happens if and only if C has a g1

4 and
η ∼ OC(p+ q−x−y), where 2(p+ q) and 2(x+y) are members of the g1

4. In particular,
also x and y are not separated by |ωC(η)|.

Proof. We prove only (ii) and leave (i) to the reader. Assume that |ωC(η)| is base
point free. Then p and q are not separated by the linear system |ωC(η)| if and only
if h0(ωC(η) − p) = h0(ωC(η) − p − q). By Riemann-Roch and Serre duality, this is
equivalent to h0(η + p) + 1 = h0(η + p+ q). By (i), we have h0(η + p) = 0, whence the
latter condition is h0(η + p+ q) = 1. This is equivalent to h0(η + p+ q) > 0, because if
h0(η + p+ q) > 1, then we would have h0(η + p) > 0, a contradiction. This proves the
first assertion.

We have |p + q + η| 6= ∅ if and only if p + q + η ∼ x + y, for x, y ∈ C. This
implies 2(p + q) ∼ 2(x + y), whence C has a g1

4 with 2(p + q) and 2(x + y) as its
members. Conversely, if 2(p+ q) and 2(x+ y) are distinct members of a g1

4 on C, then
η := OC(p+ q−x− y) is a 2–torsion element of Pic0(C) and satisfies the condition that
|p+ q + η| 6= ∅. �

The lemma says in particular that the locus in Rg of pairs (C, η) for which the Prym-
canonical system |ωC(η)| is not base-point free dominates the hyperelliptic locus via the
forgetful map Rg →Mg.

Recall that the tetragonal locus R1
g,4 is irreducible of dimension 2g + 3 if g > 7 and

coincides with Rg if g 6 6. Lemma 2.1 implies that R0
g ⊆ R1

g,4, thus proving the last
statement in Theorem 1.1.

The lemma also enables us to detect the locus R0,nb
g in R0

g where the Prym–canonical
morphism is not birational onto its image:
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Corollary 2.2. Let (C, η) be any Prym curve of genus g > 4 such that the Prym-
canonical system |ωC(η)| is base point free. If the Prym-canonical map is not birational
onto its image, then it is of degree two onto a smooth elliptic curve.

The locus R0,nb
g is irreducible of dimension 2g − 2 and dominates the bielliptic locus

in Mg. More precisely, R0,nb
g consists of pairs (C, η), with C bielliptic and η := ϕ∗η′,

where ϕ : C → E is a bielliptic map and η′ is a nontrivial 2–torsion element in Pic0(E).

Proof. Let (C, η) be as in the statement. Denote by C ′ the image of the Prym-canonical
morphism ϕ : C → Pg−2. Let µ be the degree of ϕ and d the degree of C ′. Then
dµ = 2g − 2 and, since C ′ is non–degenerate in Pg−2, we must have d > g − 2. Since
g > 4, then 2 6 µ 6 3; moreover µ = 3 implies that g = 4 and ϕ maps C three-to-one
to a conic. The latter case cannot happen: indeed, we would have ωC(η) = 2L, where
|L| is a g1

3. Then 4L = 2ωC . Since |2ωC | is cut out by quadrics on the canonical image
of C in P3, it follows that the only quadric containing the canonical model is a cone.
Then |L| is the unique g1

3 on C and 2L = ωC , thus η is trivial, a contradiction.
Hence µ = 2, and then d = g − 1, so that C ′ is a curve of almost minimal degree. It

is easy to see, using the fact that |ωC(η)| is complete, that C ′ is a smooth elliptic curve
(alternatively, apply [5, Thm. 1.2]). Hence C is bielliptic and any pair of points p and q
identified by ϕ satisfy p+q ∼ ϕ∗(r) for a point r ∈ C ′. Thus 2p+2q ∼ ϕ∗(2r) is a g1

4. By
Lemma 2.1(ii) we have η ∼ OC(p+ q− x− y), where also ϕ(x) = ϕ(y), whence x+ y ∼
ϕ∗(z), for a z ∈ C ′. Hence, again by Lemma 2.1(ii), we have η ∼ p+q−x−y ∼ ϕ∗(r−z)
and r− z is a nontrivial 2–torsion element in Pic0(C ′), because ϕ∗ : Pic0(C ′)→ Pic0(C)
is injective.

Conversely, if C is a bielliptic curve, it admits at most finitely many double covers
ϕ : C → E onto an elliptic curve (cf. e.g., [2]; in fact, for g > 6, it admits a unique
such map), and for any such ϕ and any nontrivial 2–torsion element η′ in Pic0(E), we
have η′ ∼ r − z, for r, z ∈ E. Letting ϕ∗(r) = p + q and ϕ∗(z) = x + y, we see that
2(p+ q) ∼ 2(x+ y) and η = ϕ∗η′ satisfies the conditions of Lemma 2.1(ii).

We have therefore proved that R0,nb
g consists of pairs (C, η), with C bielliptic and

η := ϕ∗η′, where ϕ : C → E is a bielliptic map and η′ is a nontrivial 2–torsion element
in Pic0(E).

The statement about the dimension of R0,nb
g follows since the bielliptic locus has

dimension 2g−2. To prove its irreducibility, consider the map f : R0,nb
g → R1 associating

to (C, η) the pair (E, η′) as above. We study the fibres of this map. Consider the
following obvious cartesian diagram defining H, where U ⊂ Sym2g−2(E) is the open
subset consisting of reduced divisors:

H

��

// Picg−1(E)

⊗2
��

U // Pic2g−2(E)

By Riemann’s existence theorem, H/Aut(E) is in one-to-one correspondence with the
two-to-one covers of E branched at 2g − 2 points. Then the fibre of f over (E, η′) is
isomorphic to H/Aut(E) by what we said above. Now note that H is irreducible, since
it fibres over (an open subset of) Picg−1(E) with fibres that are projective spaces of
dimension 2g − 3. Hence also H/Aut(E) is irreducible.
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The irreducibility of R0,nb
g now follows from the irreducibility of R1. Actually R1 is

irreducible and rational. To see this consider the irreducible family of elliptic curves
y2 = x(x− 1)(x− λ), where λ ∈ C \ {0, 1}. The three non–trivial points of order two of
the fibre Cλ over λ may be identified with the points (0, 0), (1, 0) and (λ, 0). Moreover,
the j-invariant of the fibres defines a six-to-one map j : C \ {0, 1} →M1. Now consider
on this family the two sections defined by the points (0, 0), (1, 0) which stay fixed as λ
varies. It is an exercise to prove that the irreducible family of two-marked elliptic curves
we obtain in this way is isomorphic to the moduli space of pairs (C, (η1, η2)) where C is
a smooth elliptic curve and (η1, η2) is an ordered pair of distinct non–trivial 2–torsion

points of Pic0(C). This moduli space is, in turn, isomorphic to the moduli space M(2)
1

of elliptic curves with a level 2 structure [9, Ex. 2.2.1]. Finally M(2)
1 ' C \ {0, 1} maps

two-to-one dominantly to R1, via the map (C, (η1, η2)) 7→ (C, (η1 + η2)). This proves
the statement. �

2.2. A result on linear systems on rational surfaces. We will need the following:

Theorem 2.3 (cf. [1, Cor. (4.6)]). Let X be a smooth projective rational surface and δ
a non–negative integer. Let L be a complete linear system on X such that:
(i) the general curve in L is smooth and irreducible;
(ii) the genus pa(L) of the general curve in L satisfies pa(L) > δ;
(iii) dim(L) > 3δ;
(iv) if p1, . . . , pδ are general points of X, there is an element C of L singular at p1, . . . , pδ
such that for each irreducible component C ′ of C one has KX · C ′ < 0.

Then, if p1, . . . , pδ are general points of X and L(p2
1, . . . , p

2
δ) is the subsystem of L

formed by the curves singular at p1, . . . , pδ, one has:
(a) the general curve in L(p2

1, . . . , p
2
δ) is irreducible, has nodes at p1, . . . , pδ and no other

singularity;
(b) dim(L(p2

1, . . . , p
2
δ)) = dim(L)− 3δ.

Proof. The proof of (a) is in [1]. As for (b), one has dim(L(p2
1, . . . , p

2
δ)) = dim(L)−3δ+ε,

with ε > 0. Consider the locally closed family of curves in L given by

F :=
⋃

p1,...,pδ

L(p2
1, . . . , p

2
δ),

where the union is made by varying p1, . . . , pδ among all the δ–tuples of sufficiently
general points of X. Of course

dim(F) = 2δ + dim(L(p2
1, . . . , p

2
δ)) = dim(L)− δ + ε.

On the other hand, if C is a general element in F , it has nodes at p1, . . . , pδ and no
other singularity by (a), hence the Zariski tangent space to F at C is the linear system
L(p1, . . . , pδ) of curves in L containing p1, . . . , pδ. Since p1, . . . , pδ are general, we have
dim(L(p1, . . . , pδ)) = dim(L)− δ, which proves that ε = 0. �

3. Irreducibility and unirationality of R0
g

In this section we prove a first part of Theorem 1.1, namely:

Proposition 3.1. The locus R0
g is irreducible and unirational for g > 5.



THE LOCUS OF CURVES WHERE THE PRYM–CANONICAL MAP IS NOT AN EMBEDDING 5

The proof is inspired by the arguments in [1] and requires some preliminary consid-
erations. In [1, Theorem (5.3)] the authors prove that some Hurwitz schemes Hg,d are
unirational. Here we focus on the case d = 4 and recall their construction.

Fix g = 2h+ ε > 3, with 0 6 ε 6 1. Then set n = h+ 3 + ε and

δ =

(
n− 1

2

)
−
(
n− 4

2

)
− g = h+ 2ε.

Fix now p, p1, . . . , pδ general points in the projective plane and consider the linear system
Ln(pn−4, p2

1, . . . , p
2
δ) of plane curves of degree n having multiplicity at least n − 4 at p

and multiplicity at least 2 at p1, . . . , pδ. As an application of Theorem 2.3, in [1, Cor.
(4.7)] one proves that the dimension of Ln(pn−4, p2

1, . . . , p
2
δ) is the expected one, i.e.,

dim(Ln(pn−4, p2
1, . . . , p

2
δ)) =

n(n+ 3)

2
− (n− 4)(n− 3)

2
− 3δ = 2h+ 9− ε,

and the general curve Γ in Ln(pn−4, p2
1, . . . , p

2
δ) is irreducible, has an ordinary (n − 4)–

tuple point at p, nodes at p1, . . . , pδ, and no other singularity. The normalization C of
Γ has genus g and it has a g1

4, which is the pull–back to C of the linear series cut out
on Γ by the pencil of lines through p.

Consider then the locally closed family of curves

H :=
⋃

p1,...,pδ

Ln(pn−4, p2
1, . . . , p

2
δ),

where the union is made by varying p1, . . . , pδ among all the δ–tuples of sufficiently
general points of the plane. Then H is clearly irreducible, rational, of dimension
dim(Ln(pn−4, p2

1, . . . , p
2
δ)) + 2δ = 4h + 9 + 3ε, and in [1] it is proved that the natu-

ral map H 99KM1
g,4 is dominant, so that M1

g,4 is unirational.

Proof of Proposition 3.1. To prove our result, we slightly modify the above argument
from [1]. Let us fix g > 5, n, δ as above. Let p, p1, . . . , pδ be general points in the plane.

Claim 3.2. Consider the linear system Ln−2(pn−6, p2
1, . . . , p

2
δ) of plane curves of degree

n− 2, having a point of multiplicity at least n− 6 at p, and singular at p1, . . . , pδ. Then
the dimension of Ln−2(pn−6, p2

1, . . . , p
2
δ) is the expected one, i.e.,

dim(Ln−2(pn−6, p2
1, . . . , p

2
δ)) =

(n− 2)(n+ 1)

2
− (n− 6)(n− 5)

2
− 3δ = 2h− 1− ε.

Proof of Claim A.1. Assume first g = 5, which implies (h, ε, n, δ) = (2, 1, 6, 4). Then one
has Ln−2(pn−6, p2

1, . . . , p
2
δ) = L4(p2

1, . . . , p
2
4), which consists of all pairs of conics through

p1, . . . , p4, and has dimension 2 as desired. We can assume next that g > 6, hence h > 3
and n > 6.

Let X be the blow–up of P2 at p. Note that the anticanonical system of X is very
ample. Consider the linear system L proper transform on X of Ln−2(pn−6). One checks
that X and L verify the hypotheses (i)–(iv) of Theorem 2.3. Indeed, (i) and (iv) are
immediate, whereas (ii) and (iii) follow by standard computations and the fact that
h > 3. Then the assertion follows by Theorem 2.3(b). �

Next fix two distinct lines r1, r2 through p and, for 1 6 i 6 2, two distinct points
qij , both different from p, on the line ri, with 1 6 j 6 2. Consider then the linear sys-
tem Ln(pn−4, p2

1, . . . , p
2
δ ; [q11, q12, q21, q22]) consisting of all curves in Ln(pn−4, p2

1, . . . , p
2
δ)

whose intersection multiplicity with ri at qij is at least 2, for 1 6 i, j 6 2.
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Claim 3.3. The linear system Ln(pn−4, p2
1, . . . , p

2
δ ; [q11, q12, q21, q22]) has the expected

dimension, i.e.,

dim(Ln(pn−4, p2
1, . . . , p

2
δ ; [q11, q12, q21, q22])) =

n(n+ 3)

2
− (n− 4)(n− 3)

2
− 3δ − 8

= 2h+ 1− ε,

and the general curve in Ln(pn−4, p2
1, . . . , p

2
δ ; [q11, q12, q21, q22]) is irreducible, has a point

of multiplicity n−4 at p, has nodes at p1, . . . , pδ and no other singularity, and is tangent
at ri in qij, for 1 6 i, j 6 2.

Proof of Claim A.2. Let X be the blow–up of the plane at p, at the points qi,j and at the
infinitely near points to qij along the line ri, for 1 6 i, j 6 2. Note that the anticanonical
system of X has a fixed part consisting of the strict transforms R1, R2 of r1, r2 plus the
exceptional divisor E over p, and a movable part consisting of the pull back to X of the
linear system of the lines in the plane.

Let L be the strict transform on X of Ln(pn−4; [q11, q12, q21, q22]), the linear system of
curves of degree n with multiplicity at least n−4 at p and whose intersection multiplicity
with ri at qij is at least 2, for 1 6 i, j 6 2. One has

dim(L) =
n(n+ 3)

2
− (n− 4)(n− 3)

2
− 8

and an application of Bertini’s theorem shows that the general curve in L is smooth and
irreducible and its genus is

pa(L) =

(
n− 1

2

)
−
(
n− 4

2

)
> δ.

Moreover

dim(L)− 3δ = 2h+ 1− ε > 0

Hence the linear system L(p2
1, . . . , p

2
δ) of curves in L singular at p1, . . . , pδ has dimension

dim(L(p2
1, . . . , p

2
δ)) > 2h+ 1− ε.

We claim that L(p2
1, . . . , p

2
δ) does not have R1, R2 or E in its fixed locus. Indeed, if E is

in this fixed locus, then clearly also R1 and R2 split off L(p2
1, . . . , p

2
δ). If R1 is in the fixed

locus, then by symmetry, also R2 is in the fixed locus. So, suppose by contradiction that
R1, R2 are in the fixed locus. Then, after removing them from L(p2

1, . . . , p
2
δ) we would

remain with L′, the pull–back to X of Ln−2(pn−6, p2
1, . . . , p

2
δ), which, by Claim A.1, has

dimension 2h− 1− ε. Hence we would have

2h− 1− ε = dim(Ln−2(pn−6, p2
1, . . . , p

2
δ)) = dim(L(p2

1, . . . , p
2
δ)) > 2h+ 1− ε,

a contradiction.
Let now C be a general curve in L(p2

1, . . . , p
2
δ). The above argument implies that

no component of C is a fixed curve of the anticanonical system of X. Then for any
irreducible component C ′ of C one has KX · C ′ < 0. In conclusion, L verifies the
hypotheses (i)–(iv) of Theorem 2.3, and Claim A.2 follows by the latter theorem. �

We now end the proof of Proposition 3.1. Consider the locally closed family of curves

G :=
⋃

p1,...,pδ,r1,r2,q11,q12,q21,q22

Ln(pn−4, p2
1, . . . , p

2
δ ; [q11, q12, q21, q22])
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where the union is made by varying p1, . . . , pδ among all δ–tuples of general distinct
points of X, r1, r2 among all pairs of distinct lines through p and qij 6= p among all pairs
of distinct points of ri, for 1 6 i, j 6 2.

Of course G is irreducible and rational, and we have a map α : G 99K R0
g which

sends a general curve Γ ∈ G to (C, η), where C is the normalization of Γ, and η =
OC(q11 + q12 − q21 − q22), where, by abusing notation, we denote by qij their inverse
images in C, for 1 6 i, j 6 2. Since H 99KM1

g,4 is dominant by [1, §5], then α is also

dominant by Lemma 2.1.1 This proves the proposition. �

4. Dimension of R0
g

In this section we finish the proof of Theorem 1.1 with the:

Proposition 4.1. The irreducible locus R0
g has dimension 2g + 1 if g > 5.

Proof. Let Hg,4 denote the Hurwitz scheme parametrizing isomorphism classes of genus
g degree 4 covers of P1. We have a commutative diagram

G

α
��

ϕ
// Hg,4

π
��

R0
g

ψ
//M1

g,4,

where π and ψ are the forgetful maps, α is the dominant map from the last part of the
proof of Proposition 3.1 and ϕ maps a general curve Γ ∈ G to the degree 4 cover defined
by 2(q11 + q12) ∼ 2(q21 + q22), using the notation of the proof of Proposition 3.1. Note
that ψ is finite, whence the dimension of R0

g equals the dimension of the image of π ◦ϕ.
The image of ϕ coincides with the locus D ⊂ Hg,4 parametrizing covers with two

pairs of distinct ramification points each over the same branch point. By Riemann’s
existence theorem, D has codimension 2 in Hg,4 (whence dim(D) = 2g + 1). Since G is
irreducible (cf. the proof of Proposition 3.1), so is D. Moreover, as the bielliptic locus in
Mg has dimension 2g− 2 and each bielliptic curve has a one-dimensional family of g1

4s,
the locus in Hg,4 with bielliptic domain curve has dimension 2g − 1. Thus, the general
element in the image of π ◦ ϕ is not bielliptic, whence the general element (C, η) in the
image of α has Prym–canonical image birational to C, by Corollary 2.2 (and necessarily
singular, by Lemma 2.1(ii)). It follows that the fibre over C of the restriction of π to
D is finite. Indeed, C has finitely many preimages (C, η) in the image of α, and the
Prym–canonical model of each of those has finitely many singular points, determining
by Lemma 2.1(ii) only finitely many covers in D ⊂ Hg,4 mapping to C by π. Thus,
the restriction of π to D is generically finite, whence the image of π ◦ ϕ has dimension
2g + 1. �

5. Proof of proposition 1.2 and some examples

Consider again the locus D ⊂ Hg,4 from the proof of Proposition 4.1 parametrizing
isomorphism classes of covers with two pairs of distinct ramification points each over
a single branch point. By Riemann’s existence theorem again, the general point in D
corresponds to a cover with only two such branch points. By Lemma 2.1(ii), if the

1 In fact this statement requires additional arguments. We provide those in an Addendum (Section A).
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domain curve has only one g1
4, which is automatic if g > 10, then the Prym–canonical

model of such a curve has precisely two nodes. It cannot have fewer singularities by
Lemma 2.1. Thus, Proposition 1.2 is proved for g > 10.

Instead of embarking in a more refined treatment for g 6 9, we note that certain
curves on Enriques surfaces provide examples, for any genus g > 5, of curves with
two–nodal Prym–canonical models, thus finishing the proof of Proposition 1.2:

Example 5.1. The general Enriques surface S contains no smooth rational curves [3]
and contains smooth elliptic curves E1, E2, E3 with Ei ·Ej = 1 for i 6= j (and E2

i = 0 by
adjunction), for 1 6 i, j 6 3, cf. e.g. [7, Thm. 3.2] or [8, IV.9.E, p. 273]. It also contains
a smooth elliptic curve E1,2 such that E1,2 ·E1 = E1,2 ·E2 = 2, and E1,2 ·E3 = 1, cf. e.g.
[7, Thm. 3.2] or [8, IV.9.B, p. 270]. In particular, none of the numerical equivalence
classes of E1, E2, E3, E1,2 are divisible in Num(S).

Consider, for any g > 5, the line bundle

Hg :=

{
OS(g−2

2 E1 + E2 + E3), g even

OS(g−1
2 E1 + E1,2), g odd.

The absence of smooth rational curves yields that Hg is nef. As H2
g = 2g−2, all curves

in |Hg| have arithmetic genus g. Moreover, we claim that φ(Hg) = E1 ·Hg = 2 (see the
introduction for the definition of φ) and that the only numerical class computing φ(Hg)
is E1. Indeed, if g is even (respectively, odd), then E1 ·Hg = 2, E2 ·Hg = E3 ·Hg = g

2 > 3
(resp., E1 ·Hg = 2, E1,2 ·Hg = g − 1 > 4), and if E is any nonzero effective divisor not
numerically equivalent to any of E1, E2, E3 (resp., E1, E1,2), then E ·E1 > 0, E ·E2 > 0
and E · E3 > 0 (resp., E · E1 > 0 and E · E1,2 > 0) by [10, Lemma 2.1], so that

E ·Hg >
g−2

2 + 2 = g
2 + 1 > 4 (resp., E ·Hg >

g−1
2 + 1 = g+1

2 > 3).
By [8, Prop. 4.5.1, Thm. 4.6.3, Prop. 4.7.1, Thm. 4.7.1] the complete linear system

|Hg| is therefore base point free and defines a morphism ϕHg that is birational onto a
surface with only double lines as singularities; the double lines are the images of curves
computing φ(Hg), which, by what we said above, are E1 and E′1, the only member of
|E1 +KS |. Thus, the image of ϕHg is a surface with precisely two double lines ϕHg(E1)
and ϕHg(E

′
1) as singularities. Therefore, ϕHg maps a general smooth C ∈ |H| to a

curve with precisely two nodes. Since ϕHg restricted to C is the Prym–canonical map
associated to η := OC(KS) by [8, Cor. 4.1.2], a general smooth curve C in |Hg| together
with η is an example of a Prym curve of any genus g > 5 with two–nodal Prym–canonical
model.

We prove in [6, Thm. 2] that the general element in R0
g is obtained in this way

precisely for 5 6 g 6 8.
Similar examples for odd g > 7 are obtained from the line bundle Hg := OS(g−1

2 E1 +

2E2) or Hg := OS(g−1
2 E1 + 2E2 +KS), but (again by [6, Thm. 2]) the general element

in R0
g is not obtained in this way.

We conclude with an example of curves of genus 5 on an Enriques surface with 4-nodal
Prym–canonical models and a result that will be used in [6]:

Example 5.2. With the same notation as in the previous example, set H := OS(2E1 +
2E2 + KS). Then H2 = 8, so that any curve in |H| has arithmetic genus 5. Moreover,
φ(H) = 2 and one easily checks that E1 and E2 are the only numerical equivalence
classes computing φ(H). As in the previous example, the complete linear system |H|
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is base point free and defines a morphism ϕH that is birational onto a surface with
precisely four double lines as singularities, namely the images of E1, E2, E′1 and E′2,
where E′i is the only member of |Ei + KS |, i = 1, 2. Thus ϕH maps a general smooth
C ∈ |H| to a curve with precisely four nodes, so that, again by [8, Cor. 4.1.2], the pairs
(C,OC(KS)) are genus 5 Prym curves with 4-nodal Prym–canonical models.

Also note that for any smooth C ∈ |H|, we have

ωC ' OC(E1 + E2)⊗2 ' OC(E1 + E2 +KS)⊗2,

whence C has two autoresidual g1
4s, namely |OC(E1 + E2)| and |OC(E1 + E2 + KS)|,

and their difference is OC(KS). (A complete linear system |D| is called autoresidual
if D is a theta-characteristic, that is, 2D ∼ ωD.) Thus, (C,OC(KS)) belongs to the
locus in R5 consisting of Prym curves (C, η) carrying a theta-characteristic θ such that
h0(θ) = h0(θ + η) = 2. The next result shows that this is a general phenomenon in R0

5.

Proposition 5.3. The locus in R0
5 of curves with 4-nodal Prym-canonical model is an

irreducible unirational divisor whose closure in R5 coincides with the closure of the locus
of Prym curves (C, η) carrying a theta-characteristic θ with h0(θ) = h0(θ + η) = 2.

Proof. Let us denote by D0
5 the locus of curves in R0

5 with 4-nodal Prym-canonical
model, which is nonempty by the previous example. Let V denote the locus of curves of
type (4, 4) on P1 × P1 with 4 nodes lying on the 4 nodes of a “square” configuration of
two fibres of each projection to P1. We will prove that V is irreducible of dimension 16
and that there is a birational morphism

f : D0
5 −→ V ′ := V/Aut(P1 × P1).

To define f , let (C, η) ∈ D0
5. By Lemma 2.1 there are four pairs of distinct points (p, q),

(x, y), (p′, q′) and (x′, y′) on C, each identified by the Prym–canonical map ϕ : C → P3,
such that

2(p+ q) ∼ 2(x+ y), 2(p′ + q′) ∼ 2(x′ + y′) and(1)

η ∼ p+ q − x− y ∼ x′ + y′ − p′ − q′.(2)

In particular, we get that

(3) p+ q + p′ + q′ ∼ x+ y + x′ + y′,

thus defining a base point free g1
4 on C, which we call `1. We let L1 on C be the

corresponding line bundle. Since there exists a pencil of hyperplanes in P3 through any
two of the four nodes of Γ := ϕ(C), we see that

(4) h0(ωC(η)− L1) = h0
(
ωC(η)(−p− q − p′ − q′)

)
= 2.

We claim that

(5) h0(ωC(η)− 2L1) = 0.

Indeed, if not, we would have ωC(η) ' 2L1, which together with (4) would yield that
Γ ⊂ P3 is contained in a quadric cone Q, with the pullback of the ruling of the cone

cutting `1 on C. Let Q̃ be the desingularization of Q. Then Q̃ ' F2. Since `1 is base
point free, Γ does not pass through the vertex of Q, so that we may consider Γ as a curve

in Q̃. Denote by σ the minimal section of F2 (thus, σ2 = −2), which is contracted to the
vertex of Q, and by f the class of the fibre of the ruling. Then, since Γ·f = 4 and Γ·σ = 0,



10 C. CILIBERTO, T. DEDIEU, C. GALATI, AND A. L. KNUTSEN

we get that Γ ∼ 4σ + 8f. In particular, ωΓ ' OΓ(K
Q̃

+ Γ)) ' OΓ(2σ + 4f) ' OΓ(4f).

Thus, from (3) we obtain

ωC ' ϕ∗(ωΓ)(−p− q − x− y − p′ − q′ − x′ − y′) ' OC(4L1 − 2L1) ' OC(2L1),

yielding η = 0, a contradiction. This proves (5).
The relations (4) and (5) imply that Γ ⊂ P3 is contained in a smooth quadric surface

Q ' P1 × P1. The first ruling is defined by the pencil `1, whereas the second is defined
by the pencil `2 = |L2|, where L2 := ωC(η)−L1 = ωC(η)(−p− q − p′ − q′) by (4). The
curve Γ is of type (4, 4) on Q, with four nodes. Since ωΓ ' ωP1×P1(C) ' OΓ(2, 2), we

see that ϕ∗(ωΓ) ' (ωC(η))⊗2 ' ω⊗2
C . Thus,

ωC ' ω⊗2
C (−p− q − x− y − p′ − q′ − x′ − y′),

whence

(6) ωC ' OC(p+ q + x+ y + p′ + q′ + x′ + y′).

Combining with (2), we find that

(7) L2 ' ωC(η)(−p− q − p′ − q′) ' OC(p+ q + x′ + y′) ' OC(p′ + q′ + x+ y).

The relations (3) and (7) tell us that the four nodes of Γ lie on two pairs of fibres of
each ruling of P1 × P1, thus showing that Γ ∈ V. Of course this is all well-defined up
to automorphisms of P1 × P1, so we see that the construction associates to (C, η) an
element in V ′, which we define to be the image of (C, η) by f .

This defines the map f , and in particular shows that V is nonempty. We also note
for later use that ωC ' 2L1 ' 2L2, so that D0

5 is contained in the locus of Prym curves
(C, η) carrying a theta-characteristic θ with h0(θ) = h0(θ+ η) = 2, which we henceforth
call T5. Moreover, via the forgetful map R5 →M5, the locus T5 maps to the locus of
curves with two (complete) autoresidual g1

4s, which we call B5.
We next prove that V is irreducible rational of dimension 16.
For any X ∈ V, let ν : C → X be the normalization; C has genus 5. If zi, i = 1, 2, 3, 4,

are the nodes of X, then the complete linear system |OP1×P1(X)⊗J 2
z1⊗J

2
z2⊗J

2
z3⊗J

2
z4 |

has dimension 12, as expected. Indeed, letting r be its dimension, we clearly have r > 12;
on the other hand, this complete linear system induces a gr−1

16 on C, whence r− 1 6 11
by Riemann-Roch. It follows that V is birational to P12 × (Sym2(P1))2 (because of
the freedom of varying the four lines in the square configuration), in particular it is
irreducible rational of dimension 12 + 4 = 16.

We now define the inverse of f . Given a curve X ∈ V, let L1 and L2 be the line
bundles of degree 4 on C defined by the pullbacks of the two rulings on P1 × P1. By
the special position of the 4 nodes of X, the four pairs of points C lying above the four
nodes of X, say (p, q), (x, y), (p′, q′) and (x′, y′), satisfy

L1 ' OC(p+ q + p′ + q′) ' OC(x+ y + x′ + y′),

L2 ' OC(p+ q + x′ + y′) ' OC(x+ y + p′ + q′),

in particular, η := L1 − L2 is 2–torsion. Moreover, one can easily verify that ωC(η) '
L1 + L2. Thus, the normalization ν : C → X ⊂ P1 × P1 followed by the embedding
of P1 × P1 as a quadric in P3 induces the Prym–canonical map associated to ωC(η), so
that (C, η) has a 4–nodal Prym–canonical image. One readily checks that this map is
the inverse of the map f defined above. Thus, we have proved that D0

5 is irreducible of
dimension dimV/(Aut(P1 × P1)) = 16− 6 = 10.
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We have left to prove that the closure of D0
5 in R5 coincides with the closure of T5.

We proved above that D0
5 is contained in T5 and that the latter maps, via the finite

forgetful map R5 → M5, to the locus B5 of curves with two autoresidual g1
4s, which

is irreducible of dimension 10 by [11, Thm. 2.10]. Below we give a direct proof of the
latter fact, which also proves that the general member of B5 carries exactly two g1

4s,
equivalently two theta characteristics θ and θ′ such that h0(θ) = h0(θ′) = 2. It will
follow that there is an inverse rational map B5 99K T5 mapping C to (C, θ− θ′), proving
that also T5 is irreducible of dimension 10. Its closure must therefore coincide with the
closure of D0

5, finishing the proof of the proposition.
So let C be a smooth, irreducible curve of genus 5 and consider its canonical embed-

ding C ⊂ P4. Given ξ = |D| a (complete) g1
4 on C, the divisors in ξ span planes which

sweep out a quadric Qξ of rank r < 5. If ξ is not autoresidual, then Qξ has rank r = 4
and it has another 1–dimensional system of planes which cut out on C the divisors of
ξ′ = |KC −D|. In this case Qξ = Qξ′ . Hence ξ is autoresidual if and only if Qξ has rank
3, and therefore it possesses only one 1–dimensional family of planes. This means that
the homogeneous ideal of a curve in B5 in its canonical embedding contains two distinct
rank 3 quadrics. Hence the general curve C in B5 is obtained by intersecting two general
rank 3 quadrics in P4 with another general quadric. Note that the two rank 3 quadrics
cut out a Del Pezzo surface S with 4 nodes, hence C is a general quadric section on S.
The two autoresidual g1

4 on C are cut out on C by the conics of the two pencils on S
with base points two of the nodes.

From this description it follows that B5 is irreducible, 10–dimensional and that its
general member contains precisely two autoresidual g1

4s. Indeed, consider the P14

parametrizing all quadrics in P4. The locus X of quadrics of rank r 6 3 is non–degenerate
and has dimension 11. The net of quadrics defining a general curve C in B5 corresponds
to a plane in P14 containing a general secant line to X (which, by its generality, contains
only two points in X ), and an easy count of parameters shows that these planes clearly
fill up a variety of dimension 34. Modding out by the 24–dimensional group of projective
transformations of P4, we get dimension 10 for B5. �

Remark 5.4. Denote, as in the last proof, by D5
0 the locus of Prym curves (C, η)

carrying a theta-characteristic θ with h0(θ) = h0(θ+η) = 2. By [4, Prop. 7.3 and Thm.
7.4] the locus D5

0 maps, via the Prym map P5 : R5 → A4, to the irreducible divisor θnull
of principally polarized abelian varieties whose theta-divisor has a singular point at a
2–torsion point, and moreover the general member of P5(D5

0) has precisely one ordinary
double point, cf. [4, Pf. of Prop. 7.5]. It would be interesting to know if D5

0 dominates
θnull.

By [4, Prop. 7.3] one knows that the closure of P−1
5 (θnull) is the closure of the locus

of Prym curves (C, η) carrying a theta-characteristic θ such that h0(θ) + h0(θ + η) is
even, which properly contains D5

0.

Remark 5.5. By contrast, if we consider the adjoint line bundle of the one in Example
5.2, that is, H ′ := OS(2E1 + 2E2), then by [8, Prop. 4.1.2, Thm. 4.7.1, (F) p. 277]
the morphism ϕH′ defined by |H ′| is of degree 2 onto a quartic Del Pezzo surface. In
particular, ϕH′ maps any smooth C ∈ |H| doubly onto an elliptic quartic curve in P3.

Hence, the Prym curve (C,OC(KS)) belongs to the locus R0,nb
5 described in Corollary

2.2.
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A. Addendum

Abstract. We give some additional details on the proof of [1, Prop. 3.1], which
states the irreducibiliy and unirationality of the locus R0

g of Prym curves such that
the Prym-canonical linear system is base point free but does not define an embedding,
for g > 5.

We use freely the notation and setup introduced in [1]. At the very end of the proof
of Prop. 3.1, p. 78 (see footnote 1), we claim that “since H 99KM1

g,4 is dominant, then

α : G 99K R0
g is also dominant”. The aim of this addendum is to provide a complete

proof of this claim.
Let us denote by β the map H 99K M1

g,4 and by U its domain of definition. Note

that by [1, Lemma 2.1], R0
g is a sublocus of R1

g,4. In order to prove the above mentioned
claim, it is necessary and sufficient to check that there are no irreducible components of
R0
g dominating a sublocus ofM1

g,4 \ β(U). This had not been carried out in [1], and we
provide such a verification in the present addendum.

We denote by Mg the moduli space of Deligne and Mumford stable curves of genus

g. The map β extends to a rational map β : H 99KM1
g,4, where H and M1

g,4 are the

closures of H and M1
g,4 in |OP2(n)| and Mg respectively. We denote by G the closure

of G in H.

Claim A.1. Let G′ be an irreducible family of irreducible plane curves of degree n and
genus g, having multiplicity n − 4 at p, whose normalization, endowed with the g1

4 cut
out by the lines through p, belongs to R0

g ⊂ R1
g,4 . Then G′ is contained in G.

Proof. We may assume that G′ is maximal for the above properties with respect to
inclusion. Let C be a general member of G′. By [1, Lemma 2.1] and the deformation
theory for logarithmic Severi varieties, see [2, Thm. 1.4], C has an ordinary (n − 4)-
tuple point at p and its other singularities are all nodal. Therefore C is a member
of some linear system Ln

(
pn−4, p2

1, . . . , p
2
δ , [q1, q2, q

′
1, q
′
2]
)
, with the possibility that the

points p1, . . . , pδ, q1, q2, q
′
1, q
′
2 be in a special position.

However the dimension of these linear systems is always the same, no matter the
position of the points p1, . . . , pδ, q1, q2, q

′
1, q
′
2: indeed the corresponding characteristic

series on C is always non-special, as follows from the computation of its degree, which
does not depend on the position of the points p1, . . . , pδ, q1, q2, q

′
1, q
′
2. The upshot is that

the union of the linear systems Ln
(
pn−4, p2

1, . . . , p
2
δ , [q1, q2, q

′
1, q
′
2]
)

is irreducible, even if
one includes special configurations of points p1, . . . , pδ, q1, q2, q

′
1, q
′
2 in taking the union.

This union therefore has G as a dense subset, hence C belongs to the closure of G, and
the closures of G and G′ are equal, which proves our claim. �

Claim A.2. There is no irreducible component of R0
g dominating a sublocus of M1

g,4 \
β(U).

Proof. We consider H̃ a blow-up of H such that the map β : H 99K M1
g,4 induces a

regular map β̃ : H̃ → M1
g,4 (in particular H̃ → H factorizes through the normalization
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of H). A point C̃ of the exceptional locus of H̃ → H is the datum of a point [C] ∈ H
and an infinitesimal curvilinear arc in H centered at [C], and the image of C̃ in M1

g,4

is determined by the stable reduction of the deformation of the partial normalization

of genus g of C corresponding to this curvilinear arc. Since H̃ and M1
g,4 are projective

and β is dominant, β̃ is surjective; in particular the closure of the image of R0
g inMg is

contained in the image of β̃. To prove our claim we may thus consider a point C̃ in H̃
sitting over [C] ∈ H, such that β̃(C̃) is a general point in some irreducible component

of the closure of the image of R0
g in Mg, and show that then β̃(C̃) necessarily belongs

to the closure of β(G) = α(G).
First consider the case that C is irreducible and reduced. If C has geometric genus

g, then [C] sits in the domain of definition of β in H (or rather of the rational map
β induced by β on the normalization of H), and, by Claim A.1, the curve C is in the

closure of G. Then β̃(C̃) = β([C]) sits in the closure of β(G) = α(G), and we are done.

If the geometric genus of C is smaller than g, then for all C̃ in H̃ over [C], the curve

β̃(C̃) has an irreducible component of genus smaller than g, so it sits in the boundary
ofMg, hence it cannot be a general member of a component of the closure of the image
of R0

g. This ends the proof in the case C integral.
Assume next that C is not integral. Let us first consider the case in which C has

several irreducible components. If none of these is contracted in the stable reduction,

then the stable model of C̃ is in the boundary of Mg , hence it cannot be a general
member of a component of the closure of the image of R0

g.
Next we examine the case in which some component C ′ is contracted in the stable

reduction. If the restriction to C ′ of the g1
4 cut out by lines through p is non-trivial, then

the g1
4 on the stable model of C̃ has base points. If there is only one such base point,

then the stable model cannot lie in R0
g by [1, Lemma 2.1]. If there are more base points,

then the stable model is hyperelliptic, hence the number of moduli of such curves is at
most 2g − 1. On the other hand the irreducible components of R0

g have dimension at

least 2g+1 as a direct application of [1, Lemma 2.1] shows. Therefore in this case, β̃(C̃)
cannot be general in a component of the closure of the image of R0

g.

If the restriction to C ′ of the g1
4 cut out by lines through p is trivial, then C ′ is a line

passing through p. In this case a direct computation shows that the number of moduli
for C − C ′ is at most 2g, hence we conclude as above.

So the only remaining case is the one in which C = mC0 with m > 1 and C0

irreducible. We want to check that these curves cannot give rise to an irreducible
component of R0

g. First, since the pencil of lines through p cuts out a g1
4 on the general

member ofH, one sees that m may only take the values 2 and 4. By explicit computation
of the stable reduction, as for instance in [3, 3.C], one sees that in the former case it gives
a curve C ′ of genus g which is a double cover of a hyperelliptic curve, and in the latter
case it gives a tetragonal curve for which all ramification points of the g1

4 are triple.
Suppose first C ′ is a double cover of a hyperelliptic curve Γ of genus γ. An easy

count of parameters shows that the number of moduli on which C ′ depends is at most
2g + 3− 2γ if γ > 2, is at most 2g − 2 if γ = 1, and is at most 2g − 1 if γ = 0. Suppose
next that C ′ has a g1

4 for which all ramification points are triple. Then the number of
moduli of C ′ is at most 2

3g − 1.
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In any case the curves C ′ have too few moduli to fill up a component of R0
g. This

proves our claim. �

Claim A.2 above implies that indeed α : G 99K R0
g is dominant. The proof of [1,

Prop. 3.1] is thus complete, and R0
g is indeed irreducible and unirational.
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