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Abstract. In this short note, I point out that results of Ballico and Kool–Shende–Thomas
together imply that on K3, Enriques, and Abelian surfaces, if L is a very ample and
(2pa(L) − 2g − 1)-spanned line bundle, then the equigeneric Severi variety Vg(L) of all
curves in |L| having genus g is non-empty, irreducible, of the expected dimension, and its
general member is a (pa(L)− g)-nodal curve.

Let S be a smooth, complex, projective surface, and L an effective line bundle on S. We
denote by p(L) the common arithmetic genus of all members of the linear system |L|. For
nonnegative integers g and δ, we consider the equigeneric Severi variety Vg(L) (resp. nodal
Severi variety V δ(L)), namely the locally closed subset in |L| corresponding to reduced curves of
geometric genus g (resp. with δ ordinary double points and no further singularity). In particular,
V δ(L) is an open subset of Vp(L)−δ(L).

In the recent paper [1] Ballico has proven that if L is very ample and (2δ− 1)-spanned, then
the nodal Severi variety V δ(L), if non-empty, is irreducible of codimension δ in |L|. Here I show
how this result can be enhanced by taking in consideration a former result due to Kool, Shende
and Thomas. This text is merely intended as a complement to [1], and I thank Edoardo Ballico
for giving me the opportunity to write this up.

Theorem 1. Let S be a K3 (resp. Enriques, resp. Abelian) surface, and L a line bundle on
it. Consider an integer g 6 p(L). If L is very ample and (2p(L) − 2g − 1)-spanned, then the
equigeneric Severi variety Vg(L) is non-empty and irreducible of dimension g (resp. g− 1, resp.
g − 2), and the general member of Vg(L) is a nodal curve.

On K3, Enriques, and Abelian surfaces, there are explicit necessary and sufficient conditions
for a line bundle to be k-spanned, resp. k-very ample, [2, 3, 13, 9]. In particular, they say that
being k-spanned and k-very ample are two equivalent conditions.

Remark 2. The arguments given here don’t ensure that the general member of Vg(L) is irre-
ducible. In practice, this may be obtained by studying the various possible splittings of L and
a dimension argument.

It is now common knowledge that if (S,L) is a polarized K3 or Abelian surface, then the
equigeneric Severi variety Vg(L) is pure of the expected dimension, see [8] and the references
therein (this is stated here in Proposition 7). For a general such surface, it is also known that
the nodal Severi variety is non-empty by [4] for K3’s and [10] for Abelian surfaces. The density
of the nodal Severi variety in the equigeneric one was so far only known if in addition L is
primitive (and g > 5 in the Abelian case), see [5, 6] (as well as [8, 11]) for the K3 case, and [11]
for the Abelian case.

Remark 3. On Enriques surfaces, it is proved in [7] that the irreducible components of the
nodal Severi variety V p(L)−g(L) have dimension either g− 1 or g. In the range of application of
Theorem 1, there is only one component of dimension g − 1, and the condition given in [7] to
distinguish between the two cases tells us that for a general [C] ∈ V p(L)−g(L), the pull-back of
KS to the normalization of C is non-trivial.

As the main step in his proof, Ballico establishes the following statement.
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Proposition 4. Let L be a line bundle on a smooth complex projective surface. If L is very
ample and (2δ − 1)-spanned, then the family Σδ(L) of all members of |L| which are singular in
(at least) δ points is irreducible of codimension δ in |L|.

The result of Kool, Shende and Thomas that we use is the following, see [12, Prop. 2.1].

Proposition 5. Let L be a line bundle on a smooth complex projective surface. If L is δ-very
ample, then the general δ-dimensional linear subsystem Pδ ⊆ |L| contains a finite number of
δ-nodal curves, and all other members are reduced curves of geometric genus pg > p(L)− δ.

This has the following immediate corollary: in the setting of the proposition, if V is an
irreducible variety of codimension 6 δ in |L| parametrizing curves of geometric genus pg 6
p(L)− δ, then the general member of V is in fact a δ-nodal curve.

Corollary 6. If L is δ-very ample and (2δ−1)-spanned, then the Severi variety of nodal curves
V δ(L) is non-empty and irreducible of codimension δ in |L|.

Proof. Every irreducible component of V δ(L) is contained in Σδ(L). On the other hand, Σδ(L) is
irreducible of codimension δ by Prop. 4, and has an open subset contained in V δ(L) by Prop. 5.
2

In the cases of Theorem 1, one has the following estimates on the dimensions of the Severi
varieties.

Proposition 7. Let S be a K3 (resp. Enriques, resp. Abelian) surface, L an effective line bundle
on S, and g 6 p(L) an integer. Every irreducible component of the equigeneric Severi variety
Vg(L) has dimension = g (resp. > g − 1, resp. = g − 2).

For Enriques surfaces, the estimate follows from [8, Lem. 2.3 and ineq. (2.6)]. For K3 and
Abelian surfaces a well known extra argument is needed, see [8, Prop. 4.5 and 4.13].

Proof of Theorem 1. As we have observed above, under the assumptions of Theorem 1, L is
actually (2p(L)−2g−1)-very ample, hence also (p(L)−g)-very ample, so that both Propositions
4 and 5 apply for δ = p(L)− g. It follows that V δ(L) is an irreducible, dense, non-empty, open
subset of Σδ(L).

On the other hand, let V be an irreducible component of Vg(L). By Prop. 7, V has codi-
mension 6 δ in |L|. It thus follows from Prop. 5 that the general member of V is a δ-nodal
curve, hence V is contained, and actually dense in Σδ(L). This concludes the proof. 2
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