

Representações de Grupos e Álgebras de Lie

Thiago Brevidelli Garcia – Iryna Kashuba pablopie.xyz Outubro de 2022

Representações: O que são? Onde habitam?

Ações de grupos

$$G \times X \longrightarrow X$$

$$G \longrightarrow S_X$$

Citação

Até à criança um grupo se dará a conhecer pelas suas ações, ...

- Provérbios 20,11

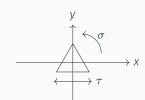
Definição

Dados um grupo G e um corpo k, uma representação de G sobre k é um k-espaço vetorial V munido de um homomorfismo de grupos $G \longrightarrow GL(V)$.

- · Representações com estrutura
 - · Representações contínuas
 - · Representações suaves

Representações: O que são? Onde habitam?

- D₃ age no plano Cartesiano via
- $\cdot \, \mathbb{S}^1$ age naturalmente em \mathbb{C}
- · $SU_n \circlearrowright \mathbb{C}^n$



Definição

Um homomorfismo de G-representações é uma aplicação linear $T:V\longrightarrow W$ com

$$\begin{array}{ccc}
V & \xrightarrow{T} & W \\
g \downarrow & & \downarrow_{\underline{G}} \\
V & \xrightarrow{T} & W
\end{array}$$

Problema fundamental

Classificar todas as G-representações a menos de isomorfismo.

Grupos e Álgebras de Lie

· Representações suaves / $\mathbb R$ ou $\mathbb C$

Definição

Uma k-álgebra de Lie é um k-espaço vetorial $\mathfrak g$ monido de um produto bilinear antissimétrico $[\,,]:\mathfrak g\times\mathfrak g\longrightarrow\mathfrak g$ satisfazendo a identidade de Jacobi

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

V k-espaço vetorial $\rightsquigarrow \mathfrak{gl}(V)$ k-alg de Lie

•
$$\mathfrak{gl}(V) = \mathsf{End}(V) \mathsf{com}[X, Y] = XY - YX$$

Definição

Uma répresentação de \mathfrak{g} é um k-espaço vetorial V munido de um operador linear $\rho:\mathfrak{g}\longrightarrow\mathfrak{gl}(V)$ que preserva dos colchetes.

$$[\rho(X), \rho(Y)] = \rho([X, Y])$$

Grupos e Álgebras de Lie

Definição

A álgebra de Lie $\mathfrak{g}=\mathsf{Lie}(G)$ é a \mathbb{R} -álgebra de Lie dos campos $X\in\mathfrak{X}(G)$ tais que $X_g=(d\ell_g)_eX_e$ $\forall g\in G$, com

$$[X,Y]f = XYf - YXf$$
$$X,Y \in \mathfrak{g}, \quad f \in C^{\infty}(G)$$

Funtorialidade

$$G \longrightarrow H \longrightarrow Lie(G) \longrightarrow Lie(H)$$

· Se G é simplesmente conexo

G-reps suaves / \mathbb{C} \iff Lie(G)-reps / \mathbb{C} \iff $\mathbb{C} \otimes$ Lie(G)-reps / \mathbb{C}

· Funciona também para grupos algébricos e grupos de Lie complexos!

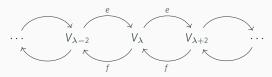
Representações de SU₂

 $\boldsymbol{\cdot} \ \mathbb{C} \otimes \mathsf{Lie}(\mathsf{SU}_2) \cong \mathfrak{sl}_2\mathbb{C} \ \acute{\mathsf{e}} \ \mathsf{a} \ \mathsf{sub\acute{a}lgebra} \ \mathsf{dos} \ \mathsf{X} \in \mathfrak{gl}_2\mathbb{C} \ \mathsf{com} \ \mathsf{Tr}(\mathsf{X}) = 0$

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

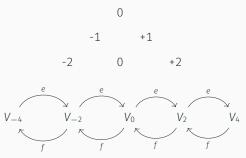
$$[e,f] = h$$
 $[h,f] = -2f$ $[h,e] = 2e$

• Toda $\mathfrak{sl}_2\mathbb{C}$ -rep V com $\dim V < \infty$ é soma direta de *irredutíveis*!



Representações de SU₂

 Os autovalores de h em V formam uma cadeia ininterrupta de inteiros simétrica ao redor de 0



· V é completamente caracterizada pelo maior autovalor $\lambda \in \mathbb{Z}$ de h

$$V = \operatorname{\mathsf{Sym}}^n \mathbb{C}^2$$

$$g \cdot (v_1 \cdots v_n) = g v_1 \cdots g v_n, \ g \in \operatorname{\mathsf{SU}}_2$$

Representações de Álgebras de Lie Semisimples

$$\begin{array}{ccc} \mathfrak{sl}_2\mathbb{C} & \leadsto & \mathfrak{sl}_n\mathbb{C} \\ h & \leadsto & \mathfrak{h} = \{X \in \mathfrak{sl}_n\mathbb{C} : X \text{ diagonal}\} \\ \lambda \in \mathbb{C} & \leadsto & \lambda \in \mathfrak{h}^* \end{array}$$

 \cdot Pesos: "autovalores" da ação de $\mathfrak h$

$$H \cdot V = \lambda(H) \cdot V \quad \forall H \in \mathfrak{h}$$

• Os pesos de V estão todos em um reticulado $P\subset \mathfrak{h}^*$ e são congruentes mod um subreticulado $Q\subset P$

· V é determinado por seu maior peso!