Mapping Class Groups & their Linear Representations

Thiago Brevidelli Garcia Maxime Wolff, IMT

Mapping Class Groups

- Σ an orientable compact surface of genus $g\geqslant 0$
- · Diff⁺ $(\Sigma, \partial \Sigma) = \{ \phi \in \text{Diff}^+(\Sigma) : \phi(x) = x \text{ for all } x \in \partial \Sigma \}$
- $\cdot \phi \simeq \psi \in \mathsf{Diff}^+(\Sigma, \partial \Sigma) \leadsto \phi_* = \psi_* : H_1(\Sigma, \mathbb{C}) \longrightarrow H_1(\Sigma, \mathbb{C})$
- $M_{\phi} = \Sigma \times [0, 1]/(\phi(x), 0) \sim (x, 1)$ is invariant under isotopy

Definition

The mapping class group of Σ is

$$\mathsf{Mod}(\Sigma) := \mathsf{Diff}^+(\Sigma, \partial \Sigma) / \mathsf{isotopy}.$$

Linear Representations

- $\cdot \ \rho : \mathsf{Mod}(\Sigma) \longrightarrow \mathsf{GL}_n(\mathbb{C})$
- · First examples
 - · Symplectic representation $\Psi:\mathsf{Mod}(\Sigma_g)\longrightarrow\mathsf{GL}(H_1(\Sigma_g,\mathbb{C}))$
 - TQFT representations
- The full picture is known for $n \leq 2g + 1$

Theorem (Korkmaz, '23)

Let $g\geqslant 2$, n<2g and $\rho:\mathsf{Mod}(\Sigma)\longrightarrow\mathsf{GL}_n(\mathbb{C})$.

- 1. $\rho(\mathsf{Mod}(\Sigma))$ is Abelian.
- 2. If $g \geqslant$ 3 then ρ is trivial.

Dehn Twists

• $\alpha \subset \Sigma$ simple closed curve $\rightsquigarrow \tau_{\alpha} \in \mathsf{Mod}(\Sigma)$

Theorem (Lickorish generators)

 $\mathsf{Mod}(\Sigma)$ is generated by the twists about the followings curves.

Triviality of Representations

· Lantern relation:

$$au_{lpha} au_{eta} au_{\gamma}= au_{\delta_{1}} au_{\delta_{2}} au_{\delta_{3}} au_{\delta_{4}}$$

Theorem

 $\mathsf{Mod}(\Sigma)^{\mathsf{ab}} = \frac{\mathsf{Mod}(\Sigma)/[\mathsf{Mod}(\Sigma), \mathsf{Mod}(\Sigma)]}{\mathsf{is trivial for } q \geqslant 3.}$

Theorem (Korkmaz, '00)

[Mod(Σ), Mod(Σ)] is normally generated by $\tau_{\alpha}\tau_{\beta}^{-1}$ with $\#(\alpha \cap \beta) = 1$ for $g \geqslant 2$.

$\rho(\mathsf{Mod}(\Sigma))$ is Abelian

•
$$\rho : \mathsf{Mod}(\Sigma) \longrightarrow \mathsf{GL}_n(\mathbb{C}), \, n < 2g$$

•
$$g = 2$$

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \qquad \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \qquad \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \qquad \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \nu \end{pmatrix} \qquad \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 1 \\ 0 & 0 & \mu \end{pmatrix} \quad \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \quad \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix}$$

$\rho(\mathsf{Mod}(\Sigma))$ is Abelian

• Induction in $g \geqslant 3$

- The generators of $\mathsf{Mod}(\Sigma')$ commute with $au_{lpha_g}!$
- \cdot The eigenspaces of $ho(au_{lpha_g})$ are $\mathsf{Mod}(\Sigma')$ -invariant

Thank You!