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Abstract

We study the asymptotic behavior of an integro-differential equation describing the
evolutionary adaptation of a population structured by a phenotypic trait. The model
takes into account mutation, selection, horizontal gene transfer and competition. Previous
works, based on the numerical studies or theoretical study of the corresponding stationary
problem, have shown that the dynamics of the solutions are rich and we may expect
several qualitative outcomes. In this article, we characterize the dynamics of the solution
in two regimes: 1) a situation where the solution concentrates around a dominant trait,
evolving gradually to a trait determined by a balance between selection and horizontal
gene transfer; 2) a situation where the solution concentrates around a dominant trait
which evolves gradually to a maladapted trait such that the population becomes extinct
(a situation known as the evolutionary suicide).
Our analysis is based on an approach involving Hamilton-Jacobi equations with constraint.
Previously, the solutions to such equations were characterized for globally concave growth
rates. Here, we extend this approach to situations where the growth rate is not globally
concave.

Keywords: Asymptotic Behaviour of Nonlocal PDEs, Hamilton-Jacobi Equations, Small
Diffusion Regime, Adaptive Evolution, Horizontal Gene Transfer
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1 Introduction

1.1 Model and question

The exchange of genetic material between individuals of the same generation is known as
horizontal gene transfer (HGT), in contrast to vertical gene transfer, which involves the trans-
mission of genetic information from parent to offspring. This genetic information may be
altered during birth events due to mutations. Populations are also often subject to selection
and competition. Selection corresponds to the fact that the individuals with traits better
adapted to their environment will have a higher reproduction or survival rate, with the con-
sequent effect on the distribution of traits in the population. The death rates of individuals
may also be increased due to competition for instance for a limited resource. The combination
of the growth rate of an individual or a trait, taking into account selection and competition,
and the interactions between them is called fitness. Fitness refers to the overall growth rate
of an individual or trait, shaped by the processes of selection and competition, as well as the
interactions between these factors, determining the ability to survive and reproduce in a given
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environment.

We consider the following integro-differential model describing the dynamics of the phe-
notypic density of an asexual population subject to mutation, selection, competition and
horizontal transfer:

∂tn(t, z) = σ∂2
zzn(t, z) + (R(z)− κρ(t))n(t, z) + τn(t, z)

∫
R

n(t, y)

ρ(t)
H(K(z − y)) dy

n(0, z) = n0(z),

n(t, z) > 0,

ρ(t) =

∫
R
n(t, y) dy.

(1)

A variant of this model was derived from a stochastic individual based model in [7]. Here,
n(t, z) stands for the phenotypic density of a population, with t ∈ R+ and z ∈ R corresponding
respectively to time and a phenotypic trait. The diffusion term models the mutations which
generate phenotypic variability in the population. Individuals grow at rate R(z), also referred
to as the selection term, and are regulated by a uniform competition for resources with intensity
κ. The last nonlinear and nonlocal term in the right hand side of the equation corresponds
to the horizontal transfer term. More precisely, the positive value τ denotes the transfer rate
and H(K(z− y)) denotes the transfer flux from trait y to trait z, with K a positive steepness
parameter for the transfer flux (see Section 1.5 to better understand its role).

In this article, we will provide an asymptotic analysis of (1) considering a small mutation
rate σ and large times. We show that the asymptotic behaviour of the solution can be described
via a method involving Hamilton-Jacobi equations. This method has been widely used to study
models of evolutionary adaptation considering mutation, selection and competition [5, 9, 13,
23, 27]. We next use this Hamilton-Jacobi formulation of the problem to characterize the
dynamics of the solution in two scenarios: (1) a situation where the population converges in
long time to an optimal trait, determined by a balance between selection and horizontal gene
transfer, (2) a situation where the population converges in long time to unfit traits leading to
its extinction. This situation is known as the evolutionary suicide. Our analysis also provides
insights on the dynamics of the solution in more complex situations where we expect oscillatory
behaviours and emergence in long time of several dominant traits.

A by-product of our analysis is the extension of previous regularity and uniqueness results
within the Hamilton-Jacobi method [23, 27] considering globally concave fitness functions, to
the case with only locally concave fitness functions. We present this result independently of
the rest of the paper in Section 2, since it can be useful for applications to other models. In
this article, we also show, via the asymptotic analysis of (1), how to apply the method to a
situation where the local concavity zone of the fitness function evolves over time.

1.2 Biological motivation and the expected outcomes

Bacterial plasmids are a typical example of horizontal transfer mechanisms that influence
the genetic distribution of a population, see [30, 31]. Plasmids are small circular doubly
stranded DNA, physically separated from the chromosomal DNA, which may be replicated
and transferred from one cell to another, when they are in contact, independently of the
chromosome. They can modify strongly the fitness of their hosts, since they carry factors that
can be beneficial for the survival of the bacteria and lead to a selective advantage, as for genes
for antibiotic resistance, but they also convey certain fitness costs, like reduced reproduction
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rate. The question that rises is the following: what is the outcome of the trade-off between
the fitness costs of the plasmids and their advantage by their accelerated spread?

Even though these exchanges of genetic information, intra and intergenerational, are not
mutually exclusive, the models that consider only selection and mutation, where the popula-
tion is usually driven to the fittest traits, have received more attention in the past, see for
example [5, 11, 13, 23]. However, HGT has a major role in the evolution and adaptation of
many organisms, as for instance in the evolution of bacterial virulence or antibiotic resistance
[29]. Recent studies have shown that the interplay between mutation, HGT and selection
may lead to new behaviours when compared to models considering only selection and muta-
tion [6, 7, 8, 16]. In [6, 7, 8], three phenomena were observed numerically. First, similarly to
the behaviour of most models without horizontal transfer, we have the convergence in long
time of the genetic distribution to an optimal trait which, in general, may not coincide with
the optimal trait of the selection term of the model, due to the effect of the HGT. Second,
the horizontal transfer might drive the population to unfit traits, leading to its extinction,
a situation referred to as evolutionary suicide. Third, the population can be driven to un-
fit traits leading almost to its extinction but a re-emergence of an apparently extinct trait
with positive fitness can ensue; this is known as evolutionary rescue. Such behaviour is then
repeated in a cyclic fashion. Note that, for example, in the case where one is studying a pop-
ulation of a pathogen the third scenario may for instance be interpreted as a re-emergence of
antibiotic resistance, while the second one may correspond to a successful treatment where the
pathogen is eliminated. A possible fourth outcome of this interplay was characterized more
recently in [16] via a theoretical study of an integro-differential model. In this scenario, the
steady population distribution concentrates around not one but several traits, depending on
the strength of the HGT relative to the selection term. The numerical investigations in [16]
and the present article, show however that the long time convergence of the solution to such
steady distribution may arise via transitory oscillations of the phenotypic distribution close
to the cyclic scenarios numerically observed in [6, 7, 8]. This suggests that the third and the
fourth scenarios mentioned above may correspond to the same scenarios. The mathematical
identification and description of these complex scenarios has been the main motivation for the
present article.

1.3 State of the art

Our study stems from a series of works based on stochastic individual based models motivated
by the eco-evolutionary dynamics of bacterial plasmids [6, 7, 8, 10, 16]. More specifically, in
[7] a stochastic individual based model was introduced considering a quantitative trait. The
authors showed that in the limit of large populations their model converges to an equation close
to (1), where the mutation term is modelled via an integral kernel rather than a Laplace term.
The three types of behaviour discussed earlier (convergence to a certain trait, evolutionary
suicide and cyclic evolutionary rescue) were identified in the numerical simulations in [7]. In
[8] similar types of behaviour were observed, when the stochastic simulations were compared
with the numerical resolution of an integro-differential model derived in [7], considering small
mutational effects. In [10] a stochastic model with a finite number of strains was studied
theoretically. In the particular case of three strains, a periodic behaviour was captured for a
certain range of parameters.

In [16] the authors investigated the existence and the shape of equilibria of (1). The small
diffusion regime was studied using an approach based on Hamilton-Jacobi equations, proving
the convergence, as σ → 0, of a logarithmic transformation of solutions of the elliptic version
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of problem (1) to the solution, in the viscosity sense, of a Hamilton-Jacobi equation with a
constraint. The authors proved the existence of equilibria where the population concentrated
around one, two or more traits. Notice that this scenario was not captured in the previous
studies discussed earlier. In this case, the population seems to initially undergo an oscillatory
phase close to the cyclic behaviour observed in [6, 7, 8] and to eventually concentrate around
the expected dominant traits. The equilibria with one or two concentration points were fully
characterized and several numerical simulations were conducted, depicting convergence of the
solution to these complex states, with one, two or more concentration points.

Less closely related to our work, [20, 31] study a model considering a finite number
of traits and using ordinary differential equations. Models in a population genetics context
without ecological concern were considered in [28, 32], and finally some integro-differential
models of horizontal transfer have been inspected in a different context than our work in
[18, 24].

In this article, we provide an asymptotic analysis of solutions of (1) considering small
mutational effects, i.e. with σ small, and long time. Our analysis provides a partial theoretical
description of the behaviours observed numerically in [7, 8, 16]. Note that here the effect
of the mutation has been modelled using the Laplace operator, instead of an integral kernel
as in [7, 8], to reduce the technicality of the analysis, but we believe that this choice would
not modify the qualitative behaviour of the solution in the limit of vanishing mutations. To
perform our analysis, we use an approach based on Hamilton-Jacobi equations. This approach
was first introduced in [13] and then widely developed to study models of quantitative traits
from evolutionary biology (see for instance [3, 4, 5, 23]). A closely related approach was
also previously used in the geometric optics approximation of solutions of reaction-diffusion
equations (see for instance [14, 15]). In the case of models with horizontal gene transfer this
approach was used in [8] which provides some heuristic computations of the problem and
in [16] which studies the steady solutions of (1). Here, we treat the time dependent problem.
To this end, we extend previous regularity and uniqueness results within the Hamilton-Jacobi
method in [23, 27], which consider some global concavity assumptions of the growth rate, to
situations where the growth rate is only locally concave.

1.4 An adimensional parameterization of the problem

We introduce a dimensionless parametrization of the problem via the following change of
variables

t̃ = rεt, z̃ = Kz, ñ(t̃, z̃) =
κ

rK
· n
(
t̃

εr
,
z̃

K

)
, ε2 =

σK2

r
, R̃(z̃) =

R( z̃K )

r
, τ̃ =

τ

r
,

where r is defined as
r := max

z∈R
R(z).

The problem (1) is then written (we drop the tildes for the sake of readability) as

ε∂tnε(t, z) =ε2∂2
zznε(t, z) + (R(z)− ρε(t))nε(t, z)

+ τ · nε(t, z)
∫
R

nε(t, y)

ρε(t)
H(z − y) dy

nε(0, z) = nε,0(z) > 0,

nε(t, z) > 0,

ρε(t) =

∫
R
nε(t, y) dy.

(2)
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Note that in this new version, the selection term is re-normalized such that

max
z∈R

R(z) = 1.

In the particular case where R(z) = r − gz2, which we will study in detail later, we also
consider the following change of variable

g̃ =
g

rK2
,

which leads, again after dropping the tilde for the sake of readability, to

ε∂tnε(t, z) =ε2∂2
zznε(t, z) +

(
1− gz2 − ρε(t)

)
nε(t, z)

+ τ · nε(t, z)
∫
R

nε(t, y)

ρε(t)
H(z − y) dy,

nε(0, z) = nε,0(z) > 0,

nε(t, z) > 0,

ρε =

∫
R
nε(t, y) dy.

1.5 Assumptions

We provide the first set of assumptions on the growth term R(z). We will assume that
R ∈ C2(R) and that there exists a set of positive constants K1, ...,K5 and K0,K0 such that

K3 −K4z
2 ≤ R(z) ≤ K1 −K2z

2,

−K0 ≤ R′′(z) ≤ −K0,

‖R′′′‖L∞(R) ≤ K5.

(HR1)

We define
DR = {z ∈ R : R(z) > 0}.

From Assumption (HR1) we deduce that DR is a bounded open interval. Let us also define
zµ ∈ R as the unique point such that

τ +R′(zµ) = 0.

For some of our results we also suppose that

zµ ∈ DR. (HR2)

A typical example of such growth term R is given by

R(z) = 1− gz2, with τ2 ≤ 4g,

which, as commented, will be studied in detail later on in the article.

We make the following assumptions on the transfer term H:

(1) H ∈ C3(R), with bounded derivatives, is odd and monotone increasing from -1 to 1.
(2) H(0) = 0, H ′(0) = 1 and H ′′(z) < 0 for all z > 0.

(3) There exists a positive zH such that for all |z| > zH , H
′′′(z) > 0,

while for all |z| ≤ zH , H ′′′(z) ≤ 0.
(HT)
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Two examples of functions satisfying these assumptions are

H(z) = tanh(z) or H(z) =
2

π
arctan(z).

One can think of this kernel as H(z− y) = α(z− y)−α(y− z) with α a smooth function that
behaves like a Heaviside step function. Then, one would consider that the transfer arises only
from larger traits y to smaller traits z, with z < y and the transfer rate between y to z would
be given by α(z − y). This choice of transfer term is motivated by the example of plasmids
which are transmitted from one bacterium to another by cell-to-cell contact. Next, the value
τ , which is understood as the strength of the transfer, is considered to be strictly positive, i.e.,

τ > 0.

We next provide the conditions on the initial datum. We consider an initial datum nε,0(z) >
0, a continuous function such that

uε,0(z) := ε ln(nε,0(z))

satisfies, for all ε ∈ (0, ε0) for a certain ε0 > 0, for a set of positive constants A1, A2, B1, B2,
C1, C2 and C3,

−A1 −B1z
2 ≤ uε,0(z) ≤ A2 −B2z

2,

−C2 ≤ ∂2
zzuε,0(z) ≤ −C1,

max
z∈R

uε,0(z) = uε,0(zε,0) for a unique zε,0 ∈ DR,

‖∂3
zzzuε,0‖L∞(R) ≤ C3, and

lim
ε→0

uε,0(z) = u0(z) (locally uniformly),

with max
z∈R

u0(z) = u0(z0) = 0

(H0)

for a certain z0 ∈ DR. A classical example of such an initial datum is given by

nε,0(z) =
1√
ε
e−c

(z−z0)
2

ε , meaning that lim
ε→0

uε,0(z) = −c(z − z0)2,

for any c > 0. The condition zε,0 ∈ DR ensures that the initial population is not maladapted.
It implies indeed that the phenotypic distribution is initially concentrated around a trait that
has a positive growth rate.

Finally, we assume that the initial population size ρε satisfies, for two positive constants
ρm, ρM , {

0 < ρm ≤ ρε(0) ≤ ρM for all ε ∈ (0, 1),

ρε(0)→ ρ0 = R(z0) > 0, as ε→ 0.
(HM)

1.6 Main results

We expect the solution nε to concentrate, as ε → 0, around certain dominant traits, forming
Dirac’s delta functions in the limit. In order to identify such singular limits, we use an approach
involving Hamilton-Jacobi equations [3, 5, 13]. The main ingredient in this approach is to
perform the following Hopf-Cole transformation

uε(t, z) := ε · ln
(
nε(t, z)

)
, (3)
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which allows us to unfold the singularity of the problem. Indeed, while nε tends, as ε→ 0, to
a singular measure, uε converges to a continuous function u which solves a Hamilton-Jacobi
equation. The main idea is to first study the limit of uε, which we call u, and next to use
some information on the function u to identify n.

Replacing (3) in (2) we obtain the following equation on uε
∂tuε(t, z) = ε∂2

zzuε(t, z) + (∂zuε(t, z))
2 +R(z)− ρε(t) + τ

∫
R

nε(t, y)

ρε(t)
H(z − y) dy,

uε(0, z) = uε,0(z),

ρε(t) =

∫
R
nε(t, y) dy.

Then, passing formally to the limit in the equation on uε, we obtain{
∂tu(t, z) = |∂zu(t, z)|2 +R(z)− ρ(t) + Φ(t, z), t > 0, z ∈ R,
u(0, z) = u0(z), z ∈ R.

(4)

with,

Φ(t, z) := τ

∫
R

n(t, y)

ρ(t)
H(z − y) dy, and ρ(t) =

∫
R
n(t, y)dy.

Let
ρmax := max{max

z∈R
R(z), ρM}.

We prove the following.

Theorem 1.1. Let conditions (HR1), (HT), (H0) and (HM) be satisfied. As ε→ 0 and along
subsequences, nε converges in L∞(w ∗ (R+);M1(R)) to a measure n ∈ L∞(R+;M1(R)), ρε
converges in L∞(w∗(R+)) to a function ρ ∈ L∞(R+) and Φε converges in L∞(w∗(R+);C2(R))
to a function Φ ∈ L∞(R+;C2(R)) with

ρ(t) =

∫
R
n(t, y)dy, 0 ≤ ρ(t) ≤ ρmax, and |Φ(t, z)| ≤ τ. (5)

The solutions uε converge locally uniformly to a continuous function u that is a viscosity
solution of the Hamilton-Jacobi equation (4). Moreover the solution u is given by the Dynamic
Programming Principle

u(t, z) = sup
(γ(s),s)∈R×[0,t],γ(t)=z

{
ft(γ) , with γ ∈W 1,2([0, t] : R)

}
, (6)

with

ft(γ) = u0(γ(0)) +

∫ t

0

(
− |γ̇(s)|2

4
+R(γ(s))− ρ(s) + Φ(s, γ(s))

)
ds,

We also have
u(t, z) ≤ 0 and supp(n(t, ·)) ⊆ {z ∈ R : u(t, z) = 0}. (7)

Note that for any t0 ∈ [0, t), we also have

u(t, z) = sup
(γ(s),s)∈R×[t0,t],γ(t)=z

{
ft(γ) , with γ ∈W 1,2([t0, t] : R)

}
,

with

ft(γ) = u(t0, γ(t0)) +

∫ t

t0

(
− |γ̇(s)|2

4
+R(γ(s))− ρ(s) + Φ(s, γ(s))

)
ds.
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Notice that if the set of zeroes of u is a set of discrete points, then n is a sum of Dirac’s delta
functions supported in such a set. The focus of this article is, in particular, on the so-called
monomorphic situation, where there is a unique function z̄(t) such that, a.e. for t ≥ 0,

z̄(t) = supp(n(t, ·)) = {z ∈ R : u(t, z) = 0} and u(t, z) < 0 for all z 6= z̄(t).

In this article, we will say that n or u are continuous monomorphic iif z̄(t) is continuous for
all t ≥ 0 and, n and u will be called discontinuous monomorphic iif there exists a t1 > 0
such that z̄(t) is discontinuous at t1. Consequently, we will say that n and u are continuous
monomorphic on [ti, tj ] iif z̄(t) is continuous for all t ∈ [ti, tj ].

We next focus on the specific growth rate R(z) = 1− gz2 and define

µ =
τ

2g
.

This quantity will determine the behaviour of n in the following sense. We expect that there
is a positive constant µ1 such that if µ ≤ µ1 then the limit solution n remains continuous
monomorphic. This threshold corresponds indeed to the one below which the solution of the
elliptic version of (2) is monomorphic, see [16].

We introduce the following function

F (t, z) = R(z)− ρ(t) + Φ(t, z),

which corresponds to the right-hand side of (4) minus the gradient term. We will refer to
F (t, z) as the fitness function. Briefly, if we consider a monomorphic regime (implying that
Φ(t, z) = τH(z − z̄(t))), then we can prove that F (t, z̄) converges, as t grows, to the function

Fµ(z) = −g(z2 − µ2) + τH(z − µ).

We define then µ1 as

µ1 := sup{µ > 0 : Fµ(z) < 0 for all z 6= µ, Fµ(µ) = 0}.

It is proved in [16, Section 4.2] that this value can be computed by finding the unique positive
value d1 such that

2H(d1) = d1(1 +H ′(d1)),

which is well defined thanks to (HT), and then we have that

µ1 =
d1

1−H ′(d1)
.

When µ = µ1, the function Fµ1 is still non-positive but it has two zeroes, one at z = µ1 and
the other at µ1 − d1. Finally, if µ > µ1, then Fµ(z) > 0 for some z < µ.

It was proved in [16] that when µ ∈ [0, µ1], then the stationary solutions of (2) are
monomorphic. Here, we prove that in this regime the solution of the time dependent problem
is continuous monomorphic for a wide range on initial data. This dominant trait evolves and
converges, as time grows to infinity, to the unique monomorphic stationary solution of (2).
We recall the definition of z0 in (H0) as the point where the limit initial datum u0 attains
its maximum. Note that under the particular choice of R(z) = 1 − gz2 hypothesis (HR1) is
satisfied automatically.
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Theorem 1.2. Assume (HT), (H0) and (HM), z0 ≤ µ and let R(z) = 1− gz2.
(i) Assume that 0 ≤ µ ≤ µ1 and τ ≤ 2

√
g. Then, there exists an open set C ⊂ R+ × R, such

that uε converges, as ε → 0, to a continuous function u, with u|C ∈ L∞t,locW
3,∞
x,loc(C) ∩ C

1(C),
which is the unique viscosity solution of{

∂tu = |∂zu|2 + gz̄2(t)− gz2 + τH(z − z̄(t)), in R+ × R
z̄′(t) = (−∂zzu(t, z̄(t)))−1 (τ − 2gz̄(t)), in R+,

(8)

with (t, z̄(t)) ∈ C. The function u(t, ·) has a unique maximum point at z̄ ∈ C1(R+), with
u(t, z̄(t)) = 0 and z̄(t)→ µ as t→∞. Moreover, u is strictly concave with respect to z in C.
Furthermore, as ε→ 0 and along the same subsequences as in Theorem 1.1, ρε and Φε converge
pointwise to

ρ(t) = 1− gz̄(t)2 > 0, Φ(t, z) = τH(z − z̄(t)),

and nε converges weakly in the sense of measures to

n(t, z) := ρ(t) · δz̄(t)(z),

implying that n is continuous monomorphic.
(ii) Assume that 0 ≤ µ ≤ µ1 and τ > 2

√
g. Then, the statements of the previous point hold

true until a time Tρ at which ρ(Tρ) = 0, z̄(Tρ) = 1/
√
g.

Remark 1.3 (The globally concave case). In the particular case where R(z) is such that hy-
pothesis (HR1) and (HR2) are satisfied and the fitness function F (t, z) is globally uniformly
and strictly concave, which would hold for τ small enough, then we are in the framework of [27]
and we obtain almost immediately the same results of Theorem 1.2 under the same hypothesis
plus the concavity condition.

Remark 1.4. In Section 5 we present a result similar to Theorem 1.2 regarding the case z0 > µ,
which is derived analogously to the case z0 ≤ µ under an extra hypothesis over F (0, z), where
we assume that F (0, z) may take positive values only in a set of the form (z0, z0 + δ) for some
δ > 0. The set of positive values of F (0, z) may indeed contain other points for some values
of z0 > µ, in which case our result may not hold anymore.

Remark 1.5. Notice that the theorem above implies that when τ ≥ 2
√
g, the population gets

extinct, in finite time if τ > 2
√
g, and as t → ∞ if τ = 2

√
g. In this case, the horizontal

transfer drives the population to unfit traits, leading to its extinction, a situation referred to
as evolutionary suicide.

Several difficulties arise in the proof of Theorem 1.2. First, we lack time regularity estimates
on ρε and Φε(t, z) to obtain their pointwise convergence as ε→ 0. Moreover, in order to derive
8, we need regularity and concavity estimates on u. Such estimates were previously proved in
[27] in a situation where the fitness function is globally concave, which is not the case here.
In order to overcome these difficulties, we extend the method introduced in [27] to situations
where the fitness function is only locally concave, with its local concavity zone possibly evolving
with time. In this way, we obtain the required regularity and concavity estimate on u which
we next use to obtain the pointwise convergence of ρε and Φε.

Indeed, as a product of our analysis, we obtain in Section 2 some new results of independent
interest regarding the existence, uniqueness and regularity properties, of a family of Hamilton-
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Jacobi equations posed in Rd of the form
∂tv = |Dv|2 +G(z, z̄(t)), t ∈ [0, T ], z ∈ Rd,
maxz∈R v(t, z) = v(z̄(t), t) = 0, t ∈ [0, T ],

v(0, z) = v0(z), z ∈ Rd,
v0(z0) = 0 for some z0 ∈ R, v0(z) < 0 for all z 6= z0,

(9)

where, among other conditions, G satisfies a concavity estimate in a local sense; namely that
there exists a domain Ω0 and a couple of constants K1 > K1 > 0 such that for all t ∈ [0, T ]
and w ∈ Rd,

−2K1|w|2 ≤ w D2G(z, z̄) wT ≤ −2K1|w|2 < 0, for z ∈ Ω0, z̄ ∈ Ω0.

Here and in the rest of the article Dv stands for the gradient of v and D2G for the hessian
matrix of G, all with respect to the z variable.

The situation in this article is however more complex than the case above since the local
concavity zone of the fitness function evolves over time. We show in Section 4 how to deal
with this more complex situation. In Section 6 we additionally explore insights beyond the
monomorphic scenario.

1.7 Organization of the article

The article is organised as follows. In Section 2 we present some useful results for Hamilton-
Jacobi equations in Rd of the form (10) that we will use later in the one-dimensional case.
Section 3 is devoted to proving Theorem 1.1, while in Section 4 we will prove Theorem 1.2. In
Section 5 we comment on the case z̄(0) > µ, which is not covered by Theorem 1.2, presenting
a partial result when the fitness function satisfies a certain condition. Finally, Section 6 offers
some insight in the case µ > µ1, where monomorphism is lost, even though this case lies
beyond the scope of this article.

2 Uniqueness and regularity for the Hamilton-Jacobi equation
with constraint under a local concavity assumption

Since the theory that we develop in this section is interesting on its own for the study of
Hamilton-Jacobi equations with constraint, we will consider the more general problem (9). It
has been proven, under global concavity assumption on G and v0, that this problem can be
reduced to a non standard PDE-ODE system, see [27]. Our objective is to extend this result
to a more general framework, where we only assume local concavity on G. Notice that, with
respect to the problem that we have in mind, we are this time working in dimension d ≥ 1 and
in a possibly bounded time interval. It is also important to highlight here that in Section 4 we
will see how the ideas from this section can even apply to the case where the fitness function
is not positive and locally concave in the same set for all times. Indeed, in our model, this set
of concavity will change continuously over time.

Focusing on the propagation of the local concavity and regularity properties, we will first

11



study the following problem
∂tv = |Dv|2 + F (t, z), t ∈ [0, T ], z ∈ Rd,
maxz∈R v(t, z) = 0, t ∈ [0, T ],

v(0, z) = v0(z), z ∈ Rd,
v0(z0) = 0 for some z0 ∈ R, v0(z) < 0 for all z 6= z0,

(10)

with z0 a real constant, v0 a nonpositive continuous function and 0 < T ≤ ∞. We consider v
a solution in the viscosity sense to (10).

Assumptions on F and on the initial condition v0

We assume that

F ∈ L∞loc([0, T ]× Rd), DF ∈ C([0, T ]× Rd)

and that there exists a non-empty, open, convex and smooth set Ω0 ⊂ Rd such that, for all
t ∈ [0, T ],

− 2K1|x|2 ≤ x D2F (t, z) xT ≤ −2K1|x|2 < 0, for any z ∈ Ω0, for all x ∈ Rd, (11)

∀x ∈ R \ Ω0, ∀y ∈ Ω0 F (t, x) < F (t, y), (12)

DF (t, z) 6= 0, for all z ∈ ∂Ω0, (13)

and
‖D3F (t, ·)‖L∞(Ω0) ≤ K4. (14)

We make the following assumptions on the initial condition

z0 ∈ Ω0, (15)

∀x ∈ R \ Ω0,∀y ∈ Ω0, v0(x) < v0(y), (16)

− 2L1|x|2 ≤ x D2v0(z) xT ≤ −2L1|x|2 < 0, for any z ∈ Ω0, for all x ∈ Rd, (17)

‖D3v0‖L∞(Ω0) ≤ L3. (18)

Finally we assume that
F (0, z0) = 0. (19)

We next state the main results in this framework.

Theorem 2.1. Assume (11)–(19). Then any viscosity solution v to (10) is indeed classical
and strictly concave in the set Ω0, and we have

v|Ω0 ∈ L∞loc([0, T ] : W 3,∞
loc (Ω0)) ∩ C1([0, T ]× Ω0),

Dv ∈ C1([0, T ]× Ω0) and v(t, ·)|Ω0 ∈ C2(Ω0).

Furthermore, for all t ∈ [0, T ], the maximum of v(t, ·) in Rd is attained at a single point
z̄(t) ∈ Ω0, a function of time satisfying z̄ ∈ C1([0, T ]).

12



This result holds for a fitness function F with a general dependency on time. In several
models from evolutionary biology, the fitness function depends on time either through the
mass of the solution ρ(t), as in problem (4) when τ = 0, see [27], or through the trajectory of
the maximum point itself, as in problem (4) if we assume that the solution is monomorphic,
as we will see later on. Based on the usefulness of this last formulation of the problem, we will
consider the case where

v has a unique maximum point z̄(t) ∈ Ω0, so we choose F (t, z) = G(z, z̄(t)), (20)

and, moreover, for all z̄ ∈ Ω0,

− 2K1|x|2 ≤ x ·D2G(z, z̄) · xT ≤ −2K1|x|2 < 0, for all x ∈ Rd, (21)

∀x ∈ R \ Ω0,∀y ∈ Ω0 G(x, z̄) < G(y, z̄), (22)

DG(z, z̄) 6= 0, for all z ∈ ∂Ω0, (23)∣∣∣∣∂G∂z̄i (z, z̄)
∣∣∣∣+ ∣∣∣∣ ∂2G

∂z̄i∂zj
(z, z̄)

∣∣∣∣+ ∣∣∣∣ ∂3G

∂z̄i∂zj∂zk
(z, z̄)

∣∣∣∣ ≤ K3, for z ∈ Ω0 and i, j, k = 1, · · · , d, (24)

and
‖D3G(·, z̄)‖L∞(Ω0) ≤ K4, (25)

The symbols D,D2 and D3 refer to derivatives with respect to the variable z. Similarly, notice
that when we write DG(z̄(t), z̄(t)) we refer only to the first set of variables, z ∈ Rd; i.e.,

DG
(
z̄(t), z̄(t)

)
= DG

(
z, z̄(t)

)∣∣
z=z̄(t)

.

Theorem 2.2. Assume (20)–(25). Solving the constrained problem (10) is equivalent to solving
the following ODE-PDE system

∂tv = |Dv|2 +G
(
z, z̄(t)

)
, t ∈ [0, T ], z ∈ Rd,

G
(
z̄(t), z̄(t)

)
= 0, for all t ∈ [0, T ],

˙̄z(t) =
(
−D2v(t, z̄(t))

)−1
DG

(
z̄(t), z̄(t)

)
, t ∈ [0, T ],

v(0, z) = v0(z), z ∈ Rd,
z̄(0) = z0 ∈ Ω0,

(26)

with initial conditions satisfying

max
z∈R

v0(z) = v0(z0) = 0 and G(z0, z0) = 0.

Consequently, there exists a unique viscosity solution v to (10), with F (t, z) = G(z, z̄(t)). This
solution satisfies

max
z∈R

v(t, z) = v(t, z̄(t)) = 0

and, as a consequence, the couple of solutions (v, z̄) satisfy

(v|Ω0 , z̄) ∈
(
L∞loc([0, T ] : W 3,∞

loc (Ω0)) ∩ C1([0, T ]× Ω0)
)
× C1([0, T ]),

Dv ∈ C1([0, T ]× Ω0) and v(t, ·)|Ω0 ∈ C2(Ω0).

Note that since G is not globally concave, v is not globally concave and hence we cannot
obtain a global regularity result for v. In particular, (D2v)−1 is not defined everywhere and
such differential system cannot be well-defined in general. However, here we prove that starting
with an initial data such that z0 ∈ Ω0, and under the above assumptions on G, the above
differential system will be well-defined for all 0 ≤ t ≤ T . A key argument is that any optimal
trajectory γ(·) : [0, T ] → R appearing in the representation formula of the Hamilton-Jacobi
equation (10) such that γ(T ) ∈ Ω0, has always been in the set Ω0, that is γ(t) ∈ Ω0 for all
t ∈ [0, T ].
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2.1 Proof of Theorem 2.1

The proof of theorem 2.1 is closely related to the method introduced in [27] which treated the
case of a globally concave growth rate R.

Fix t ∈ [0, T ] and z ∈ Ω0. Then the value of the viscosity solution v of the Hamilton-Jacobi
equation in (10) at point (t, z) is given by the dynamic programming principle:

v(t, z) = sup
(γ(s),s)∈Rd×[0,t],γ(t)=z

{
ft(γ), where γ ∈W 1,2([0, t] : Rd)

}
,

with

ft(γ) = v0(γ(0)) +

∫ t

0

(
− |γ̇(s)|2

4
+ F (s, γ(s))

)
ds.

The main ingredient that allows us to adapt the proof from [27] is that the optimal trajectories
with ending points (at time t) in the set Ω0 have been in the set Ω0 for all s ∈ [0, t].

Step 1. Existence of an optimal trajectory.

Let us take a sequence (γn)n≥1, with γn ∈ W 1,2([0, t] : Rd) and γn(t) = z such that
ft(γn) → v(t, z). Since F and v0 are bounded from above and v(t, z) is well defined, there is
a constant C = C(t, z) such that ∫ t

0
|γ̇n|2 ≤ C.

Notice also that for any s, s′ ∈ [0, t] it holds that

|γn(s)− γn(s′)| ≤
∫ t

0
|γ̇n(r)|dr ≤

√
t
(∫ t

0
|γ̇n(r)|2dr

)1/2
≤ C
√
t, (27)

therefore (γn) is a 1/2-Holder continuous family of functions. Consequently, and using that
γn(t) = z, we deduce that

‖γn‖W 1,2[0,t] ≤ C,

taking a larger C if necessary. In particular, there is some γ ∈ W 1,2([0, t] : Rd) such that
γn

n→∞−−−→ γ strongly in C([0, t] : Rd) and weakly in W 1,2([0, t] : Rd). In particular

v0(γn(0))→ v0(γ(0)),

∫ t

0
F (s, γn(s))ds→

∫ t

0
F (s, γ(s))ds

and ∫ t

0
|γ̇(s)|2ds ≤ lim inf

n→∞

∫ t

0
|γ̇n(s)|2ds.

Thus,

v(t, x) = v(γ(0)) +

∫ t

0

(
− |γ̇(s)|2

4
+ F (s, γ(s))

)
ds. (28)

Step 2. Uniqueness of the optimal trajectory in the set Ω0; optimal trajectories
remain in the set Ω0.

Let z ∈ Ω0. Let γ be an optimal trajectory such that γ(t) = z. We prove that such optimal
trajectory has always been inside the set Ω0. In other words, trajectories can leave but not

14



enter, the set Ω0. We prove this by contradiction. Let’s suppose that there exist s1 ∈ [0, t)
such that γ(s1) ∈ Rd \ Ω0, and define

t1 = inf{s ∈ [s1, t] : γ(s) ∈ Ω0}.

Note that by our assumption the infimum above is taken over a non-empty set. Define also

A = {s ∈ [0, s1] : γ(s) ∈ Ω0}.

If this set is non-empty we define
t0 = sup{s ∈ A}.

By definition, t0 < s1 < t1 and for all s ∈ (t0, t1), γ(s) ∈ Rd \ Ω0.

If the set A is empty we define a new trajectory γ̃ ∈W 1,2([0, T ] : Rd) as below{
γ̃(s) = γ̄(t1) for s ∈ [0, t1],

γ̃(s) = γ̄(s) for s ∈ (t1, t].

If A is non-empty we define
γ̃(s) = γ(s) for s ∈ [0, t0],

γ̃(s) = ( t1−st1−t0 )γ(t0) + ( s−t0t1−t0 )γ(t1) for s ∈ (t0, t1],

γ̃(s) = γ(s) for s ∈ (t1, t].

Note that from the convexity of Ω0 we deduce the convexity of the set [0, t]×Ω0, and thus
γ̃(s) ⊂ Ω0 for all s ∈ [t0, t1]. Note also that in both of the above cases, using v0(γ̃(0)) ≥
v0(γ̄(0)) from assumption (16), since the straight lines are local maximizers of the functional∫ t

0
−|γ̇(s)|2

4
ds,

and thanks to assumption (12), we obtain ft(γ) < ft(γ̃) which is in contradiction with the
optimality of γ. We hence obtain that γ(s) ⊂ Ω0 for all s ∈ [0, t].

We next prove that such optimal trajectory γ is unique. To this end, we note that such
trajectory γ satisfies the following Euler-Lagrange equation

γ̈(s) = −2DF (s, γ(s)),

γ̇(0) = −2Dv0(γ(0)),

γ(t) = z.

(29)

Moreover, γ(s) ⊂ Ω0 for all s ∈ [0, t] and hence F and v0 are strictly concave functions at the
above points. Therefore, the above elliptic equation is coercive and the solution γ(s) is unique.

Step 3. Local regularity.

Take any (t, z) ∈ [0, T ] × Ω0 and define γz(·) : [0, T ] → Rd the unique solution of (29)
which is itself, an optimal trajectory for the maximization problem. Note that thanks to Step
2, γz(s) ∈ Ω0, for all s = [0, T ]. Using the regularity of F and v0, it follows that the functions

(t, z)→ γz(t), (t, z)→ γ̇z(t)
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belong to L∞loc
(
(R+ × Rd) : W 2,∞

loc (Ω0)
)
. Now, from (28), we have

v(t, x) = v0(γx(0)) +

∫ t

0

(
− |γ̇x(s)|2

4
+ F (s, γx(s))

)
ds,

yielding

∂iv(t, x) = Dv0(γz(0)) · ∂iγz(0) +

∫ t

0

(
− γ̇z(s) · ∂iγ̇z(s)

2
+DF (s, γx(s))∂iγz(s)

)
ds,

integrating by parts in the first term of the integral, using
∫ t

0 udv = [uv]t0 −
∫ t

0 vdu with
u(s) = −γ̇z(s) and v = ∂iγz(s), we obtain

∂iv(t, x) =Dv0(γz(0)) · ∂iγz(0)− γ̇z(t)∂iγz(t)

2
+
γ̇z(0)∂iγz(0)

2

+

∫ t

0

( γ̈z(s) · ∂iγz(s)
2

+DF (s, γx(s))∂iγz(s)
)
ds.

Using now (29) and

∂iγz(t) = (0, ..., 1︸︷︷︸
i−th

, ..., 0), since γz(t) = z,

it follows that
Dv(t, z) = − γ̇z(t)

2
.

In essence, the function v restricted to Ω0 belongs to L∞loc(R+ : W 3,∞(Ω0)
)
. Finally, thanks

to the compact embedding of W 2,∞(Ω0) in C1(Ω0) and the continuous differentiability of γ̇z
with respect to t and z, we have that Dv ∈ C1([0, T ]× Ω0).

Step 4. Strong concavity.

We prove that v is strictly concave in the set R+ × Ω0. To this end, we show that for all
σ ∈ [0, 1] and all x, y ∈ Ω0 it holds that

σv(t, x) + (1− σ)v(t, y) + λσ(1− σ)|x− y|2 ≤ v
(
t, σx+ (1− σ)y

)
,

with λ to be fixed later. This will lead to an upper bound for the second derivative of v that
is strictly negative and which depends only on D2v0 and F .

Let γx and γy be the optimal trajectories, solving (29) with γx(t) = x and γy(t) = y.
Using (28) we have

v(t, x) = v0(γx(0)) +

∫ t

0

(
− |γ̇x(s)|2

4
+ F (s, γx(s))

)
ds,

and

v(t, y) = v(γy(0)) +

∫ t

0

(
− |γ̇y(s)|

2

4
+ F (s, γy(s))

)
ds.

Take σ ∈ [0, 1]. Using (28) at the point (t, σγx(t)+(1−σ)γy(t)) = (t, σx+(1−σ)y) we obtain
that

v(t, σx+ (1− σ)y) ≥ v0

(
σγx(0) + (1− σ)γy(0)

)
+

∫ t

0

(
− |σγ̇x(s) + (1− σ)γ̇y(s)|2

4
+ F (s, σγx(s) + (1− σ)γy(s))

)
ds.
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Now we use the fact that, thanks to Step 2, for all s ∈ [0, t], γx(s) and γy(s) lie inside Ω0.
Moreover, since both v0 and F are strictly concave on that subset, thanks to (11) and (17), it
follows that, for a certain positive constant L1,

σv0(γx(0)) + (1− σ)v0(γy(0)) + L1σ(1− σ)|γx(0)− γy(0)|2 ≤ v0(σγx(0) + (1− σ)γy(0)).

and on the other hand, for a certain positive constant K1,

σ

∫ t

0
F (s, γx(s))ds+ (1− σ)

∫ t

0
F (s, γy(s))ds+K1σ(1− σ)

∫ t

0
|γx(s)− γy(s)|2ds

≤
∫ t

0
F (s, σγx(s) + (1− σ)γy(s))ds.

And combining both inequalities, we get that

v(t, σx+ (1− σ)y) ≥ σv(t, x) + (1− σ)v(t, y) + L1σ(1− σ)|γx(0)− γy(0)|2

+

∫ t

0

(
− |σγ̇x(s) + (1− σ)γ̇y(s)|2

4
+ σ(1− σ)K1|γx(s)− γy(s)|2

)
ds

+ σ

∫ t

0

|γ̇x(s)|2

4
ds+ (1− σ)

∫ t

0

|γ̇y(s)|2

4
ds.

Finally, recalling that the map −| · |2 is strictly concave, we deduce that

v(t, σx+ (1− σ)y) ≥ σv(t, x) + (1− σ)v(t, y)

+ σ(1− σ)
[ ∫ t

0

(1

4
|γ̇x(s)− γ̇y(s)|2 +K1|γx(s)− γy(s)|2

)
ds+ L1|γx(0)− γy(0)|2

]
.

To conclude, we use Young’s inequality (also known as Peter–Paul inequality) to notice that

|x− y|2 = |γx(0)− γy(0)|2 +

∫ t

0

d

ds
|γx(s)− γy(s)|2ds

≤ |γx(0)− γy(0)|2 + 4λ

∫ t

0
|γx(s)− γy(s)|2ds+

1

4λ

∫ t

0
|γ̇x(s)− γ̇y(s)|2ds,

for all positive λ. We then choose λ = min
(
L1,
√
K1/2

)
to obtain that

σv(t, x) + (1− σ)v(t, y) + λσ(1− σ)|x− y|2 ≤ v
(
t, σx+ (1− σ)y

)
.

We conclude, thanks to the regularity of v, that

x D2v(t, z) xT ≤ −2λ|x|2 for all (t, z) ∈ [0, T ]× Ω0, x ∈ Rd.

Step 5. Semi-convexity.

Let E ⊂ Rd be a bounded domain. Then there exists a positive constant Sc(E,K1, L1)
such that for all t ∈ [0, T ] and for any x ∈ Rd,

xD2v(t, z)xT ≥ −Sc|x|2 for all z ∈ E,

where K1, L1 come from hypothesis (11) and (17).
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We will employ the Bernstein Method, and in order to do so we start with a viscous version
of the problem (10), considering a slightly modified equation

∂tv = ε∆v + |Dv|2 + F (t, z), t ∈ [0, T ], z ∈ Rd. (30)

Notice that this solution v will depend on ε but the semi-convexity will be uniform.

Let us consider a closed set E′ such that E ⊂ E′ ⊂ Rd and dist(E, ∂E′) > 1, differentiate
twice equation (30) with respect to the variables zi and zj , and then multiply it by the square
of a cut-off function ϕ satisfying

ϕ(t, z) =
t+ 1

T + 1
φ(z),

where φ is a positive function such that, for all ε ∈ (0, 1),

(i) 0 ≤ φ ≤ 1, φ ≡ 1 for all z ∈ E, φ ≡ 0 for all z 6∈ E′,
(ii) ‖Dv ·Dφ‖L∞(E′) < 1/4,

(iii) φ′′ − 2
(φ′)2

φ
∈ [−1, 1].

If we define vi := ∂ziv and vi,j := ∂2
zizjv we obtain

vi,jt ϕ
2 = ε∆vi,jϕ2 + 2Dvi ·Dvjϕ2 + 2Dv ·Dvi,jϕ2 + F i,jϕ2,

which we can write down as

∂t(D
2v)ϕ2 = εL(v)ϕ2 + 2D(v)ϕ2 + 2M(v)ϕ2 +D2Fϕ2,

where we defined the matrices L(v),D(v) andM(v) taking their entries as

L(v)i,j := ∆vi,j , D(v)i,j := Dvi ·Dvj and M(v)i,j := Dv ·Dvi,j .

We choose now an arbitrary vector x ∈ Rd and multiply the equation by x by the left and by
xT (the transposed vector) by the right, obtaining[

x ∂t(D
2v)xT

]
ϕ2 =ε

[
xL(v)xT

]
ϕ2 + 2

[
xD(v)xT

]
ϕ2 + 2

[
xM(v)xT

]
ϕ2

+
[
xD2F xT

]
ϕ2,

(31)

After this, we define
w(t, z) :=

[
xD2v(t, z)xT

]
ϕ(t, z).

If w attains its minimum at t = 0, then, by assumption (17)

w(t, z) ≥ w(0, z) =
[
xD2v0(z)xT

]
ϕ(0, z) ≥ −2L1|x|2φ(z) ≥ −2L1|x|2

and the claim is proven. If not, then at a point of minimum of w (which must be attained
inside the support of ϕ) we must have wt ≤ 0, Dw = 0 and ∆w ≥ 0. Rewriting this in terms
of v and ϕ we obtain [

x ∂t(D
2v)xT

]
ϕ ≤ −

[
x (D2v)xT

]
∂tϕ,

D
([
x (D2v)xT

])
ϕ = −

[
x (D2v)xT

]
Dϕ,

[
xL(v)xT

]
ϕ ≥

[
x (D2v)xT

](
2
|Dϕ|2

ϕ
−∆ϕ

)
.
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We next use the second equation above to obtain that[
xM(v)xT

]
ϕ = −

[
x (D2v)xT

]
Dv ·Dϕ.

We also compute, using the symmetry of the matrices (xT x) and D2v,[
x (D2v)xT

]2
=
[
x (D2v) (xT x) (D2v)xT

]
=
[
x (D2v) (D2v) (xT x)xT

]
=
[
x (D2v)2 xT (x · xT )

]
.

Next we use the identities

(D2v)2 = D(v) and x · xT = |x|2,

to obtain that [
x (D2v)xT

]2
= |x|2

[
x (D2v)2 xT

]
= |x|2

[
x D(v) xT

]
.

We deduce that [
xD(v)xT

]
=
[
x(D2v)xT

]2 |x|−2.

Substituting all this into equation (31) we obtain

−wϕt ≥ −εw∆ϕ+ 2εw
|Dϕ|2

ϕ
+ 2w2|x|−2 − 2wDv ·Dϕ+

[
x ·D2F · xT

]
ϕ2.

We can rearrange here, recalling that by hypothesis (11) the last term is bounded below by a
negative constant −2K1, to obtain

2w2|x|−2 ≤
(
−ϕt + ε∆ϕ− 2ε

|Dϕ|2

ϕ
+ 2Dv ·Dϕ

)
w + 2K1|x|2.

With the properties of ϕ in mind one can see that, at least for ε small enough,

2w2 ≤ f(t)|x|2w + 2K1|x|4 with f(t) ≥ −1− 1

T + 1
,

implying that w ≥ |x|2(f −
√
f2 + 16K1)/4 ≥ −C(E,K1)|x|2 for a certain positive constant

C. Therefore
w(t, z) ≥ min{−2L1, −C}|x|2

We define Sc(E,K1, L1) to be the minimum above. The result follows for a fixed ε since
ϕ(T, z) = 1 for all z ∈ E, and then we let ε→ 0.

Step 6. v(t, ·) has a local maximum in Ω0.

From Step 4 we know that v(t, ·) is strictly concave in Ω0. Consequently, for all t ∈ [0, T ],
v(t, ·) has a local maximum point z̄(t) in Ω0. Moreover, the continuity of v implies that z̄ is
also continuous. We prove by contradiction that for all t ∈ [0, T ], we have indeed z̄(t) ∈ Ω0.
Define t1 as the first time in [0, T ] such that z̄(t) ∈ ∂Ω0. Thanks to (15) and the continuity of
z̄ we obtain that t1 > 0. We show that t1 cannot exist.

We use the regularity of v in Ω0 obtained in Step 3 to differentiate the equation in (10)
with respect to z and evaluate it at z̄(t):

∂t(Dv)(t, z̄(t)) = 2D2v(t, z̄(t))Dv(t, z̄(t)) +DF (t, z̄(t)).
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We also note that since z̄(t) is a maximum point of v, we have

Dv(t, z̄(t)) = 0, (32)

and hence
∂t(Dv)(t, z̄(t)) = DF (t, z̄(t)).

We next differentiate (32) with respect to t to obtain

∂t(Dv)(t, z̄(t)) +D2v(t, z̄(t)) ˙̄z(t) = 0.

We then combine the equalities above and the strict concavity of v in Ω0 to obtain

˙̄z(t) =
(
−D2v(t, z̄(t))

)−1
DF

(
t, z̄(t)

)
, ∀t ∈ [0, t1). (33)

Now let’s assume that t1 ≤ T , with z̄(t1) ∈ ∂Ω0. We multiply (33) by DF
(
t, z̄(t)

)
, for

t ∈ [0, t1), to obtain, thanks to the strict concavity of v in Ω, that there exists λ > 0 such that

DF
(
t, z̄(t)

)
· ˙̄z(t) ≥ λ|DF

(
t, z̄(t)

)
|2, ∀t ∈ [0, t1).

We then notice that since z̄ ∈ C([0, T ] : Ω0), DF
(
t, z̄(t)

)
is a continuous function. Therefore,

thanks to (13) and the continuity of ˙̄z, there exists t2 and a ν > 0 such that 0 < t2 < t1 and

DF
(
t2, z̄(t)

)
· ˙̄z(t) ≥ ν, ∀t ∈ [t2, t1).

We then integrate the above inequality with respect to t in the interval (t2, t1) to obtain

F
(
t2, z̄(t1)

)
− F

(
t2, z̄(t2)

)
≥ ν(t1 − t2) > 0.

This is in contradiction with assumption (12) and the facts that z̄(t1) ∈ ∂Ω0 and z̄(t2) ∈ Ω0.

We highlight that, up to this point, we have not made use of the constraint max
z∈R

v = 0

from (10).

Step 7. The unique local maximum z̄(t) of v(t, ·) in Ω0 is indeed a global maxi-
mum.

We have already proven that, for all t ∈ [0, T ], v(t, ·) has a unique local maximum point in
Ω0 attained at z̄(t) ∈ C1([0, T ] : Ω0), though we might run into the case where v(t, z̄(t)) < 0
for some t ∈ [0, T ]. In this case, in view of the second equality in (10), there must exist
t3 ∈ [0, T ] and a point w̄(t3) ∈ Rd \ Ω0 such that

v(t, z̄(t3)) < 0 and v(t, w̄(t3)) = 0.

Then, since v is in particular a viscosity subsolution of (10) and

max
(t,z)∈[0,T ]×R

v(t, z) = v(t3, w̄(t3)) = 0,

we can choose a constant test function ϕ ≡ 0 to apply the subsolution criterion at (t3, w̄(t3)).
We obtain indeed that

0 =∂tϕ(t3, w̄(t3))− |∂zϕ(t3, w̄(t3))|2 ≤ F (t3, w̄(t3)).

Consequently and thanks to (12), we obtain

0 ≤ F (t3, w̄(t3)) < F (t3, z̄(t3)). (34)
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Furthermore, using the regularity of v in [0, T ]×Ω0 we can evaluate the first equation in (10)
at z̄(t3) to obtain that

F (t3, z̄(t3)) = 0

which is in contradiction with (34).

Note however that we still have the possibility of having a second simultaneous maximum
point outside Ω0, but we will prove it false on the next step.

Step 8. The maximum of v(t, ·) is attained only at the point z(t) ∈ Ω0.

By the strict concavity of v(t, ·) in Ω0 and the fact that z̄(t) ∈ Ω0 we deduce that there
is no other maximum point in Ω0. We prove that this also holds in Rd \ Ω0. Let us argue by
contradiction. Let t1 ∈ (0, T ] be the smallest time such that there exists a point w ∈ Rd \ Ω0

such that v(t1, w) = 0, and let γw be any continuous curve (which may not be unique) such
that

v(t1, w) = v0(γw(0)) +

∫ t1

0

(
− |γ̇w(s)|2

4
+ F (s, γw(s))

)
ds. (35)

Since v and γw are continuous, it means that there must exist a time t0 such that for all
t ∈ [t0, t1], γw(t) ∈ Rd \ Ω0 and v(t0, γw(t0)) < 0. Moreover, since F (s, z̄(s)) = 0 for all
s ∈ [t0, t1], and in view of Assumption (12), we obtain that for all s ∈ [t0, t1],

F (s, γw(s)) < 0.

Then, using (35) we obtain that v(t1, w) < 0, a contradiction.

Step 9. Bounds on D3v.

We prove that D3v is bounded uniformly in x ∈ Ω0 and locally in t. The proof of this
bound follows from similar arguments to [27]. We set w(t, x) = D3v(t, x), which solves

∂tw − 2Dw ·Dv = S(t, x, w) = 6w ·D2v +D3F (s, x),

where Dw denotes the column of tensors (∂1w, . . . , ∂dw) and w ·D2v denotes the column of
matrices (∂1D

2v · D2v, . . . , ∂dD
2v · D2v). This is a linear transport equation with bounded

coefficients in [0, T ]× Ω0 (thanks to the bound on D2v). Moreover, the characteristics corre-
sponding to this equation with ending point in [0, T ]×Ω0 have always remained in Ω0 thanks
to step 2 (i.e. γ(s) ∈ Ω0, for all s ∈ [0, T ]). Hence the desired bound on ‖D3v‖L∞loc(R+×Ω0).

2.2 Proof of Theorem 2.2

Theorem 2.2 can be proven thanks to the properties obtained in the previous section and
following similar arguments as in [27]. We only comment the proof of the uniqueness of the
solution to (10), with F (t, z) = G(z, z̄(t)), which requires an additional small argument. The
main ingredient for the uniqueness of the viscosity solution to (10) is indeed the equivalence
of (10) with (26). Then, the uniqueness follows using a fixed point argument which relies on
the following technical lemma.

Lemma 2.3. Let vi, for i = 1, 2, be the viscosity solution to
∂tvi = |Dvi|2 +G(z, z̄i(t)), (t, z) ∈ (0, T )× Rd

˙̄zi(t) = (−D2vi(t, z̄i(t)))
−1 DGi(z̄i(t), z̄i(t)), t ∈ (0, T ),

vi(0, z) = v0,i(z), z ∈ Rd,
z̄i(0) = z0,i ∈ Ω0.
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Then, we have

‖v1 − v2‖L∞((0,t);W 3,+∞(Ω0) ≤ C‖z̄1 − z̄2‖L∞([0,t]) + C|‖v0,1 − v0,2‖W 3,+∞(Ω0).

Proof. The proof of this lemma follows from similar arguments as in Lemma 4.2 in [27]. We
only provide an additional argument which is needed in our case. Let r = v1 − v2. Then, r
satisfies

∂tr = (Dv1 +Dv2) ·Dr +G(z, z̄1(t))−G(z, z̄2(t)).

This is a linear transport equation. Notice also that thanks to Assumption (24), we have

‖G(z, z̄1(t)−G(z, z̄2(t))‖
W 2,∞
z (Ω0)

≤ K3|z̄1(t)− z̄2(t)|.

In order to obtain the result, it is hence enough (see the proof of Lemma 4.2 in [27] for more
details) to show that the characteristics, defined by{

γ̇(t) = −Dv1(t, γ)−Dv2(t, γ),

γ(t) = x, with x ∈ Ω0,

has never left the set Ω0, that is γ(s) ∈ Ω0, for all s ∈ [0, t]. This property holds true thanks
to the strict concavity of v1 and v2 in [0, t] × Ω0 and since the maximum of vi is attained in
Ω0 thanks to Theorem 2.1.

3 Proof of Theorem 1.1

Replacing the Hopf-Cole transformed function (3) into equation (2) we obtain
∂tuε(t, z) = ε∂2

zzuε(t, z) + |∂zuε(t, z)|2 +R(z)− ρε(t) + τ

∫
R

nε(t, y)

ρε
H(z − y) dy,

ρε(t) =

∫
R
nε(t, z)dz.

(36)

Let us define then
Φε(t, z) := τ

∫
R

nε(t, y)

ρε(t)
H(z − y) dy.

Note that thanks to Assumption (HT), Φε(t, z) ∈ [−τ, τ ], ∂zΦε(t, z) ∈ [0, τ ] and ∂2
zzΦε(t, z) ∈

[−τ · supH ′′, τ · supH ′′].

3.1 Regularity estimates

Let us begin by presenting an initial convergence result for ρε and φε.

Lemma 3.1. For all ε ∈ (0, 1) we have that

0 ≤ ρε(t) ≤ ρmax and − τ < Φε(t, z) < τ, (37)

with
ρmax := max{max

z∈R
R(z), ρM} = max{1, ρM}.
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As a consequence, there exist functions ρ(t) ∈ L∞(R+) and Φ(t, z) ∈ L∞(R+;C2(R)) such
that, as ε→ 0 and along subsequences,

ρε(t)→ ρ(t) ∈ [0, ρmax],

weakly-* in L∞(R+) and Φε(t, z) converges to Φ(t, z) in L∞(w ∗ (R+);C2(R)) with

Φ(t, z) ∈ [−τ, τ ], ∂zΦ(t, z) ∈ [0, τ ] and ∂2
zzΦ(t, z) ∈ [−τ · supH ′′, τ · supH ′′].

Proof. Integrating the equation (2) in the whole R (this integration should be done via a test
function, but we omit the details) we obtain

ερ′ε(t) = −ρε(t)2 +

∫
R
nε(t, z)R(z)dz +

∫
R
nε(t, z)Φε(t, z)dz.

However, the last integral is equal to 0 due to the symmetry of the kernel H, let us see how.
We have∫

R
nε(t, z)Φε(t, z)dz =

τ

ρ(t)

∫
R

∫
R
nε(t, z)nε(t, y)H(z − y)dydz

= − τ

ρ(t)

∫
R

∫
R
nε(t, z)nε(t, y)H(y − z)dydz

= − τ

ρ(t)

∫
R

∫
R
nε(t, z)nε(t, y)H(y − z)dzdy

= − τ

ρ(t)

∫
R

∫
R
nε(t, y)nε(t, z)H(z − y)dydz = −

∫
R
nε(t, z)Φε(t, z)dz,

where we used first the symmetry of H, then applyed Fubini’s Theorem, and finally renamed
z as y and vicerversa. Since x = −x if and only if x = 0, we conclude our claim. Therefore

ερ′ε(t) ≤ max
z∈R

R(z) · ρε(t)− ρε(t)2.

This differential inequality yields the upper bound for ρ in (37). The rest of the lemma follows
from the fact that ρε and Φε are bounded respectively in L∞(R+) and L∞(R+;C3(R)).

For the study of equation (36) we will need the following regularity estimates.

Proposition 3.2. Let conditions (HR1), (HT) and (H0) be satisfied. Let uε be a solution
of (36) and ε ≤ ε0 < 1 for a certain ε0 ∈ (0, 1).

(i) There exist positive constants C1 and C2 such that, for ε small enough,

−A1 −B1z
2 − C1t ≤ uε(t, z) ≤ A2 −B2z

2 + C2t, (38)

with B1 = max(B1,
√
K4/2) and B2 = min(B2,

√
K2/2).

(ii) Let D ⊂ R be a bounded domain and T > 0. Then there exists a positive constant
C(R, τ,D) such that for all ε ∈ (0, 1),

|∂zuε(t, z)| ≤ C(R, τ,D) for all t ∈ [0, T ], z ∈ D.
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(iii) Let D ⊂ R be a bounded domain. Then there exists a positive constant Sc(R, τ,D,C2)
such that for all ε ∈ (0, 1), t ≥ 0,

∂2
zzuε(t, z) ≥ −Sc(R, τ,D,C2) for all z ∈ D,

where C2 comes from hypothesis (H0). In other words, the family uε is locally uniformly
semi-convex.

(iv) Let T > 0. Then the functions uε are uniformly locally equicontinuous with respect to
time for all t ∈ [0, T ].

All of this together means that, if the initial datum uε,0 is regular enough, the family of functions
{uε}ε is locally uniformly equibounded and equicontinuous with respect to z and t, and locally
uniformly semi-convex with respect to z.

Proof. Proof of Proposition 3.2 (i):

The result follows simply from a comparison principle applied to (2). Notice that, thanks
to assumptions (HR1), (HT) and Lemma 3.1, we have

nε(K3 −K4z
2 − ρmax − τ) ≤ ε∂tnε(t, z)− ε2∂2

zznε(t, z) ≤ nε(t, z)(K1 −K2z
2 + τ).

Combining these inequalities with the hypothesis (H0), we can apply the comparison principle
to deduce that, there exist positive constants C1 and C2 such that, for ε small enough,

exp
(−A1 −B1z

2 − C1t

ε

)
≤ nε ≤ exp

(A2 −B2z
2 + C2t

ε

)
,

with B1 = max(B1,
√
K4/2) and B2 = min(B2,

√
K2/2).

Proof of Proposition 3.2 (ii):

Let us apply the Bernstein Method and start by choosing a closed set E such that D ⊂
E ⊂ R and dist(D, ∂E) > 1, and a finite time T . We will study the equation in the set
ET := [0, T ]× E. Let m and M be the minimum and maximum possible values of uε on ET
respectively. These constant can be chosen independently of ε thanks to (38). We define

θ(x) = −M −m
2Λ2

x2 +
3(M −m)

2Λ
x+m for x ∈ [0,Λ], w(t, z) := θ−1(uε(t, z)),

with Λ > max(3(M − m), 2), a big enough constant. Since uε = θ(w) and θ is monotone
increasing, it is clear that w : ET → [0,Λ]. Moreover, we have that

|θ′| ≤ 1,
θ′′′θ′ − (θ′′)2

(θ′)2
< −θ′′ and

∣∣∣∣θ′′θ′ + θ′
∣∣∣∣ < 1.

A bound for ∂zw will yield immediately a similar bound for ∂zuε. For the rest of this section
we will use the prime notation w′ instead of ∂zw for the sake of brevity.

Finally, let us take a cut-off function ζ(t, z) such that

ζ(t, z) :=
t+ 1

T + 1
ϕ(z),

where ϕ is a positive smooth, compactly supported cut-off function such that

ϕ(z) ≡ 0 for all z ∈ R \ E, ϕ(z) ≡ 1 for all z ∈ D
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and
|ζ| ≤ 1, |ζ ′|∞ + |ζ ′′|∞ ≤ Cϕ,

where Cϕ is a positive constant.

We substitute uε = θ(w) in (36) to obtain

wt =

(
ε
θ′′

θ′
+ θ′

)
(w′)2 + εw′′ + h,

where
h(t, z) :=

1

θ′
(
− ρε(t) +R(z) + Φε(t, z)

)
.

Let us differentiate this equation with respect to z and multiply by w′ζ4 in order to obtain

w′w′tζ
4 =

(
ε
θ′′′θ′ − (θ′′)2

(θ′)2
+ θ′′

)
(w′)4ζ4 + 2

(
ε
θ′′

θ′
+ θ′

)
(w′)2w′′ζ4 + εw′w′′′ζ4 + h′w′ζ4.

We next look for a maximum of the function v := |w′ζ|. This maximum should be attained
at an interior point of E that we denote by (tm, zm). If it is attained at tm = 0, then by the
assumption (H0) there must exist a constant

kD := sup
z∈D, ε∈(0,1)

|∂zu0,ε(z)|

such that
|u′ε(t, z)| ≤ k̃D for all (z, t) ∈ [0, T ]×D, (39)

which is the desired result.

If, on the contrary, the maximum point is attained at a positive time tm > 0, since the
maximum of v must coincide with the maximum of v2, on such a point we must have

[(w′ζ)2]′(tm, zm) = 0⇒ w′′(tm, zm)ζ(tm, zm) = −w′(tm, zm)ζ ′(tm, zm),

and
[(w′ζ)2]′′ ≤ 0⇒ w′′′w′(zm)ζ2 ≤

(
2(ζ ′)2 − ζζ ′′

)
(w′)2,

and also
∂t[(w

′ζ)2] ≥ 0⇒ w′w′tζ
2 ≥ −(w′)2ζζt.

We omitted the point (tm, zm) for the sake of brevity. Replacing this in the previous equation
we obtain that, at the maximum point (tm, zm),

−(w′)2ζ3ζt ≤
(
ε
θ′′′θ′ − (θ′′)2

(θ′)2
+ θ′′

)
(w′)4ζ4 − 2

(
ε
θ′′

θ′
+ θ′

)
(w′)3ζ3ζ ′

+
(
ε(2(ζ ′)2 − ζζ ′′)

)
(w′)2ζ2 + h′w′ζ4,

meaning that(
−θ′′ − εθ

′′′θ′ − (θ′′)2

(θ′)2

)
(w′)4ζ4 ≤(w′)2ζ3ζt + ε(2(ζ ′)2 − ζζ ′′)(w′)2ζ2 + |h′||w′|ζ4

− 2

(
ε
θ′′

θ′
+ θ′

)
(w′)3ζ3ζ ′.

Due to the properties of θ, the factor on the left-hand side can be bounded below by a positive
constant c1 since ε ≤ ε0 < 1, and the factor on the right-most term can be bounded above by
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a positive c2. We deduce that, at the maximum point, and for a constant C depending on c2

and Cϕ,

c1|v|4 ≤ c2|ζ ′||v|3 +
(
|ζζt|+ ε|2(ζ ′)2 − ζζ ′′|

)
|v|2 + h̄′ζ3|v| ≤ 2C(|v|3 + |v|2) + h̄′|v|,

where
h̄′ := max

z∈E,t∈[0,T ]
|h′(z, t)|.

Note that h̄′ depends only on the domain E, but since E has been chosen freely depending on
D, it actually depends on the domain D, the function R(z) and τ .

The last inequality implies that there must exist a positive constant k(R, τ,D) such that

sup
(t,z)∈ET

|w′ζ| = |w′ζ(tm, zm)| ≤ k(R, τ,D).

We next compare w′ and w′ζ as follows

sup
(t,z)∈[0,T ]×D

|w′| = sup
(t,z)∈[0,T ]×D

|w′ζ| ≤ sup
z∈ET

|w′ζ| ≤ k(R, τ,D),

and thus, since u′ε = θ′w′ and |θ′| ≤ 1,

|u′ε(t, z)| ≤ k(R, τ,D) for all (z, t) ∈ [0, T ]×D.

We conclude by taking as our desired bound the maximum between this bound k and kD
from (39).

Proof of Proposition 3.2 (iii):

This part can be proved similarly to the proof in Step 5 of Section 2.1, where the Bernstein
Method is applied, but in the specific case of one dimension.

Proof of Proposition 3.2 (iv):

Once the locally uniform bounds and the uniform Lipschitz bound with respect to z are
obtained for uε, then the equi-continuity in time follows using standard arguments, see [2].

3.2 Convergence to the Hamilton-Jacobi equation

At this point, even though we obtained regularity estimates for uε that assure its convergence,
as ε→ 0 and along subsequences, to a continuous function u, we do not have enough regularity
in time of the limits ρ and Φ in order to pass to the limit in ε directly in equation (36). To
by-pass this complication we define the auxiliary function

wε(t, z) := uε(t, z) +

∫ t

0
ρε(s) ds−

∫ t

0
Φε(s, z) ds.

Notice that wε,0(z) := wε(0, z) = uε,0(z). With our previous estimates, we can pass to the
limit in the equation satisfied by wε,

∂twε(t, z) = ε∂2
zzwε(t, z) +

∣∣∣∣∂zwε(t, z) +

∫ t

0
Φ′ε(s, z) ds

∣∣∣∣2 +R(z) + ε

∫ t

0
Φ′′ε(s, z) ds,
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to obtain the existence of a continuous function w that is a viscosity solution of

∂tw(t, z) =

∣∣∣∣∂zw(t, z) +

∫ t

0
Φ′(s, z) ds

∣∣∣∣2 +R(z)

with initial datum w0 = u0. Notice that using the notion of viscosity solutions for Hamiltonians
with L1 dependence with respect to t [19, 22], this also implies that u is a viscosity solution to
(4). Following the Dynamic Programming Principle, see [1, 21], a variational solution of the
previous equation is given by the formula

w(t, z) = sup
(γ(s),s)∈Rd×[0,t],γ(t)=z

{
w0(γ(0)) +

∫ t

0
L(s, γ̇, γ) +R(γ(s)) ds

}
,

where γ ∈W 1,2([0, t] : R), with

L(t, q, z) := inf
p∈R

{
q · p+

∣∣∣∣p+

∫ t

0
Φ′(s, z) ds

∣∣∣∣2
}
.

This infimum of the functional above is attained at the value p = −q/2−
∫ t

0 Φ′ and thus

L(t, q, z) = −q
2

4
− q

∫ t

0
Φ′(r, z) dr

so

w(t, z) = sup

{
u0(γ(0)) +

∫ t

0
− γ̇(s)2

4
− γ̇(s)

∫ s

0
Φ′(r, γ(s)) dr + R(γ(s))ds

}
.

However, exchanging the order of integration we have that∫ t

0

∫ s

0
−γ̇(s)Φ′(r, γ(s)) dr ds =

∫ t

0

∫ t

r
−γ̇(s)Φ′(r, γ(s)) ds dr

=

∫ t

0
−Φ(r, γ(t)) + Φ(r, γ(r)) dr.

Using that γ(t) = z and that

w(t, z) = u(t, z) +

∫ t

0
ρ(s) ds−

∫ t

0
Φ(s, z) ds,

we obtain the formula given in Theorem 1.1.

3.3 The inequality u ≤ 0 and the convergence of n

We first notice that nε is uniformly bounded in L∞(R+;L1(R)). This implies that, as ε → 0
and along subsequences, nε converges in L∞(w∗(R+);M1(R)) to a measure n ∈ L∞(R+;M1(R)).
Moreover, ρε is uniformly bounded in L∞(R+). Hence, it converges as ε→ 0 and along subse-
quences, in L∞(w∗(R+)) to a function ρ(t) ∈ L∞(R+). Furthermore, Φε is uniformly bounded
in L∞(R+;C3(R). Therefore, it converges, along subsequences, in L∞(w ∗ (R+);C2(R)) to a
function Φ ∈ L∞(R+;C2(R)). Moreover, from the bounds in (37), we obtain the bounds in
(5).

We next obtain the bound u ≤ 0. Let u be the limit of uε along a subsequence, that we will
fix and consider our arguments along this subsequence. We argue by contradiction. Suppose
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that at a certain point z1 we have uε(t, z1)→ u(t, z1) > 0. Then by the equicontinuity of the
family uε, there exists δ > 0 such that u(t, z) > 0 for all z ∈ (z1 − δ, z1 + δ). We next notice
that

ρε(t) =

∫
R
e
uε(t,z)
ε dz. (40)

The Fatou’s Lemma would then imply that ρ(t) =∞, which is a contradiction with the upper
bound on ρ(t) given in (5).

Finally, let us prove the second statement in (7). Suppose that z1 6∈ {z ∈ R : u(t, z) = 0}.
Then, by the inequality u ≤ 0 and the continuity of u we deduce that there exists an open set
D such that z1 ∈ D and

lim
ε→0

uε(t, z) < 0 for all z ∈ D.

Choose now any f ∈ Cc(R) such that supp(f) ⊆ D. Then,∫
R
n(t, z)f(z) dz =

∫
R

lim
ε→0

(
e
uε(t,z)
ε

)
f(z) dz = 0.

This implies that n(t, z) ≡ 0 for all z ∈ D and, in particular, z1 6∈ supp(n(t, ·)), proving our
claim.

4 Proof of Theorem 1.2.

In this section we will use similar ideas from Section 2 to obtain the result, but the adaptation
of the arguments to our problem requires some work. In particular, given a general T > 0,
we may not necessarily have a set Ω0 where the fitness function F is positive, greater than its
values outside Ω0 and concave in [0, T ]× Ω0.

The form of u0 and the concavity of the fitness function around the value z0 can indeed
assure that the solution u remains concave for small times, but as time goes by u may lose its
concavity. New local maximum points can appear that may reach the value u = 0. We will
show that, as long as µ ∈ [0, µ1] and z0 ≤ µ, this cannot be the case, and while u may become
non-concave in a global sense, it will still have a single global maximum corresponding to a
continuous monomorphic situation. We recall the definition of

z̄(t) as the unique point where max
z∈R

u(t, z) = u(t, z̄(t))

whenever this value is unique and well defined. Let us discuss briefly the structure of this
section.

In Section 4.1 we prove that u remains monomorphic at least for some small times t ∈
[0, ε]. First, we will see that it remains uniformly concave after the initial time, then we will
characterize the maximum point with an equation of the form (33), and then we will prove
that, at least for small times, ρ(t) > 0, which will lead to the constraint maxu = 0. All this
imply the existence of a positive time Tm until which the solution is continuous monomorphic,
and the next two sections are devoted to proving that Tm =∞. Some more properties of the
fitness function F are also studied at the end of this subsection.

Section 4.2 treats the simpler case where z̄(0) = µ ≤ µ1, and Section 4.3 with the case
z̄(0) < µ ≤ µ1, which is more convoluted; we will integrate both analytic and geometric ap-
proaches to extend the ideas from Section 2 to this case, though with significant modifications.
This is where the analysis of the problem becomes more intricate and demanding.
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4.1 Structure of the Fitness Function

Let us now study the general structure of the fitness function. Its formula, even if the solution
u is not monomorphic, is given by

F (t, z) = R(z)− ρ(t) + τ

∫
R

n(t, y)

ρ(t)
H(z − y) dy.

Thanks to the regularity properties of the kernel H this function is differentiable in the z
variable, so we can compute

∂zF (t, z) = R′(z) + τ

∫
R

n(t, y)

ρ(t)
H ′(z − y) dy.

Clearly, again by the regularity of R and H, this function is continuous in the z variable. On
the other hand, while F may be discontinuous in time, it is bounded by

R(z)− ρmax − τ ≤ F (t, z) ≤ 1 + τ.

This is enough to adapt most of the arguments of Section 2.1.

Lemma 4.1. Let conditions of Theorem 1.2 hold. If at a time t0 ≥ 0 the solution u has a
unique zero z̄(t0), then for all z ∈ R the functions ∂zF (t, z) and ∂2

zzF (t, z) are continuous in
time, uniformly with respect to z, in a neighbourhood of t0.

Proof. Recall that, by proposition 3.2, u is continuous in time. Fix z ∈ R and choose now any
σ > 0. Since the measure n is supported in the set of zeroes of u, and thanks to the continuity
of the solution u and the uniform bounds (38), we have that, given this σ, there must exists
a δ > 0 such that, if |t0 − t| ≤ 2δ, then

supp(n(t, ·)) ⊆ [z̄(t0)− σ, z̄(t0) + σ].

This means that given any σ > 0 there exists a δ > 0 such that, if |t0−t| ≤ 2δ and |t0−s| ≤ 2δ,
then

|∂zF (t, z)− ∂zF (s, z)| ≤ τ

∣∣∣∣∣
∫ z̄(t0)+σ

z̄(t0)−σ

n(t, y)

ρ(t)
H ′(z − y) dy −H ′ (z − z̄(t0))

∣∣∣∣∣
+ τ

∣∣∣∣∣
∫ z̄(t0)+σ

z̄(t0)−σ

n(s, y)

ρ(s)
H ′(z − y) dy −H ′ (z − z̄(t0))

∣∣∣∣∣
≤ 2τ sup

η∈[−σ,σ]

∣∣H ′(z − z̄(t0) + η)−H ′ (z − z̄(t0))
∣∣ ≤ C2τσ,

since n(t,·)
ρ(t) integrates to 1 and H ′ is a Lipschitz continuous function. We deduce that the

function ∂zF is continuous in time in a neighbourhood of t0, at any point z ∈ R. The
continuity of ∂2

zzF can be proven following similar arguments.

Having established the previous lemma, let us define

Tc := sup
{
t > 0 : for all s ∈ [0, t], u(s, z) has a unique maximum point at z̄(s),

∂2
zzu(s, z̄(s)) < 0, z̄(·) ∈ C1([0, t]), and z̄′(t) = 2g

|∂2zzu(t,z̄(t))|(µ− z̄(t)) in [0, t]
}
.

(41)

We next prove that Tc is greater than 0.
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Lemma 4.2. Let conditions of Theorem 1.2 hold. Then the value Tc is strictly greater than
0.

Proof. The function u is continuous in time, implying that in small times no new maximum
points can appear at a positive distance of z0 thanks to (H0). However, it could happen that
immediately after the initial time, the maximum point at z0 divides into several, or that the
maximum point extends itself into a flat interval. In both cases the number of maximum
points of u would augment in a neighbourhood of the point (t, z) = (0, z0). Our goal is to
show that this cannot be the case and we will do so by following the same ideas from Steps 1,
2 and 4 of Section 2.1 in order to conclude that u is strictly concave.

At the initial time, due to (H0), u0 has a unique maximum point at z0 and thus

∂2
zzF (0, z) = −2g + τH ′′(z − z0).

Moreover, by Lemma 4.1 we notice that, even though F may be discontinuous in time, there
exists a time t0 > 0 small such that ∂2

zzF is continuous for all (t, z) ∈ [0, t0) × R. Now we
note that, by hypothesis (HT) and due to the fact that ∂2

zzF (0, z0) = −2g < 0, there exists a
point zg < z0 such that ∂2

zzF (0, z) < −3
2g for all z > zg. Since ∂2

zzF (t, z) is continuous for all
(t, z) ∈ [0, t0) × R we conclude that there exists a time t1 < t0 and a continuous curve zg(t)
such that

zg(0) = zg, zg(t) < z0 for all t ∈ [0, t1] and ∂2
zzF (t, z) < −g for all z > zg(t), t ∈ [0, t1].

and, moreover, since u is locally equi-continuous and initially strictly concave, we can choose
t1 small enough such that

zg(t) < z̄i(t) := inf{z ∈ R : u(t, z) = max
w∈R

u(t, w)} for all t ∈ [0, t1],

i.e., z̄i is the smallest maximum point. For convenience, let us define the set

S(t1, g) := {(s, z) ∈ [0, t1]× R : z > zg(s)},

The strict concavity of u0 and F in the set S(t1, g) will indeed lead to the strict concavity of
u in a certain set.

Now we adapt the arguments of Section 2.1 to prove the strict concavity of u in a certain
set. We first notice that F is continuous in the z variable and bounded from above by 1 + τ .
Therefore, we can apply similar arguments from Step 1 of Section 2.1 to prove that, given
(t, z) ∈ S(t1, g) there exists a trajectory γz such that γz(t) = z and u(t, z) = ft(γz), where ft
comes from (6). Moreover, this trajectory satisfies the system (29) from Step 2 of Section 2.1,
which is coercive whenever F is strictly concave, and thus γz will be unique if z > zg(t), t ≤ t1,
as long as γz(s) ≥ zg(s) for any s ∈ [0, t]. The idea now is to follow Step 4 of Section 2.1 to
prove strict concavity, but in order to apply the same ideas we have to ensure that γz(s) > zg(s)
for all s ∈ [0, t]. To prove this property, we cannot rely entirely on the ideas presented at Step
2 of Section 2.1, since (12) is not satisfied in general. We will obtain the desired property by
constructing suitable left barriers for these trajectories instead.

Again, since zg(0) < z̄i(0) and both curves zg and z̄i are continuous at t = 0, we can choose
t1 small enough such that

inf
0≤s≤t1

z̄i(s)− sup
0≤s≤t1

zg(s) > 2C
√
t1, (42)
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with C the constant given in (27). In particular, if we define the intermediate point

zm :=
1

2
·
(

sup
0≤s≤t1

zg(s) + inf
0≤s≤t1

z̄i(s)

)
,

then, given any time t ∈ [0, t1], any trajectory γzm such that γzm(t) = zm, satisfies, due to (27)
and (42), that

sup
0≤r≤t

zg(r) < γzm(s) < inf
0≤r≤t

z̄i(r) for all s ∈ [0, t].

As a consequence, (·, γzm(·)) ⊂ S(t1, g) and it is the unique optimal trajectory that passes
through its points. Therefore, if z > zm, then γz(s) ≥ γzm(s) for all s ∈ [0, t], t ≤ t1. In
particular, (·, γz(·)) ⊂ S(t1, g) and thus, following Step 4 of Section 2.1, u(t, z) is strictly
concave in the set [0, t1]× [zm,∞), with ∂2

zzu(t, z) ≤ −C < 0 in [0, t1)× [zm,+∞). Moreover,
the continuity and the strict concavity of the solution imply that u(t, ·) has a unique maximum
point z̄(t) for all t ∈ [0, t1].

By adapting the ideas in Step 6 of Section 2.1, see also [27], we can derive the formula (33)
and prove that

z̄ ∈ C0,1([0, Tc)), with

z̄′(t) = − ∂zF (t, z̄(t))

∂2
zzu(t, z̄(t))

=
2g

|∂2
zzu(t, z̄(t))|

(µ− z̄(t)),

z̄(0) = z0.
(43)

We omit the details for the sake of brevity, but we highlight that one do not need to assume
maxu = 0 (which is a condition appearing in problem (10)) in order to develop the analysis
leading up to formulas (33) or (43). We hence conclude that Tc ≥ t1 > 0.

Notice from the ODE in (43) that

z̄(0) < z̄(t) < µ and z̄′(t) > 0 for all t ∈ (0, Tc).

Moreover, from (7), we conclude that, for all t ∈ [0, Tc),

n(t, z) = ρ(t) · δz̄(t)(z) with ρ(t) ∈ [0, ρmax].

The next step is to characterize the quantity ρ(t).

Lemma 4.3. Let conditions of Theorem 1.2 hold. Then ρε converges pointwise in (0, Tc)
to ρ(t) = max(R(z̄(t)), 0) = max(1 − gz̄(t)2, 0). Moreover, as long as ρ(t) > 0, we have
max
z∈R

u(t, z) = u(t, z̄(t)) = 0.

Proof. Let t ∈ (0, Tc). Integrating in the whole R in (2) and by arguments similar to the ones
in Lemma 3.1, we have

ερ′ε(t) = −ρε(t)2 +

∫
R
nε(t, z)R(z)dz.

From the convergence of nε we deduce that, for ε small enough,

ερ′ε(t) = −ρε(t)2 + ρε(t)(R(z̄(t)) + o(1))

and we recall that 0 ≤ ρε ≤ ρmax

We define now the auxiliary quantity

Jε(t) := ln(ρε(t)).
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Replacing this in the previous equation, we obtain that

εJ ′ε(t) = R(z̄(t))− eJε(t) + o(1).

We study the behaviour of ρε by studying the one of Jε. To this end, we define the function
J (t, z) as the unique solution of the ODE{

∂sJ (s, z) = R(z)− eJ (s,z), for all z ∈ DR, s ≥ 0

J (0, z) = J0 for all z ∈ DR.

A solution of such ODE is of the form

J (s, z) = ln(R(z)) +R(z)s− ln
(
R(z)e−J0 + eR(z)s − 1

)
and, moreover, {

J (s, z)→ ln(R(z)) as s→∞ and if R(z) > 0,

J (s, z)→ −∞ as s→∞ and if R(z) ≤ 0.
(44)

The proof of the previous claim is rather simple and we omit it for the sake of brevity. We are
ready now to compute

ε · ∂t
[
J
(
t

ε
, z̄(t)

)
− Jε(t)

]
= eJε(t) − eJ ( tε ,z̄ε(t)) + εz̄′(t) · ∂zJ

(
t

ε
, z̄(t)

)
+ o(1),

but, by (43), the term z̄′(t) is uniformly bounded, meaning that we have, in fact,

ε · ∂t
[
J
(
t

ε
, z̄(t)

)
− Jε(t)

]
= eJε(t) − eJ ( tε ,z̄(t)) + o(1).

Multiplying by the sign of the term between brackets we obtain

ε · ∂t
∣∣∣∣J ( tε , z̄(t)

)
− Jε(t)

∣∣∣∣ = −
∣∣∣eJε(t) − eJ ( tε ,z̄(t))

∣∣∣+ o(1)

≤ −k
∣∣∣∣J ( tε , z̄(t)

)
− Jε(t)

∣∣∣∣+ o(1),

for a certain positive constant k. Notice that using the bounds for ρε which lead to Jε ∈
(−∞, ln(ρmax)], we are allowed to use the Lipschitz nature of the exponential function. From
this last inequality and the definition of Jε(t) we deduce that∣∣∣∣ln(ρε(t))− J

(
t

ε
, z̄(t)

)∣∣∣∣ ≤ |ln(ρε(0))− J (0, z̄(0))| e−
kt
ε + o(1).

Combining this inequality with (44), we conclude that

ρε(t)→ ρ(t) := max(R(z̄(t)), 0) for all t ∈ (0, Tc), as ε→ 0.

We hence proved that ρ(t) is a continuous function in [0, Tc). From (HM) and z̄(0) = z0 ∈ DR

we deduce that, at least for small times, 0 < ρ(t) ≤ ρmax. We then pass to the limit ε→ 0 in
the the relation (40) and use the upper bound in (38) to deduce that

max
z∈R

u(t, z) = u(t, z̄(t)) = 0.
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We can therefore define

Tm := sup
{
t > 0 : for all s ∈ [0, t], u(s, z) has a unique maximum point at z̄(s),

u(s, z̄(s)) = 0, ∂2
zzu(s, z̄(s)) < 0, z̄(·) ∈ C1([0, t]), and

z̄′(t) = 2g
|∂2zzu(t,z̄(t))|(µ− z̄(t)) in [0, t]

}
.

and deduce that Tm > 0. For t ∈ [0, Tm], u(t, ·) is locally strictly concave with respect to
z in a neighbourhood of its maximum point located at the continuous curve z̄(t), satisfying
the constraint maxu(t, z) = 0. Moreover, since z̄(t) is the unique maximum point of u(t, ·),
for all t ∈ [0, Tm), and supp n(t, ·) ⊂ {z : u(t, z) = maxy∈R u(t, y) = 0} = z̄(t), we obtain
that n(t, z) must be a Dirac delta with mass ρ(t) located at the point z̄(t), and therefore
Φ(t, z) = τH(z − z̄(t)). We deduce that, for t ∈ [0, Tm),

∂tu = (∂zu)2 + F (t, z),

with
F (t, z) = −g(z2 − z̄(t)2) + τH(z − z̄(t)).

Note that thanks to the continuity of z̄ in [0, Tm), F (t, z) is continuous with respect to t for
t ∈ [0, Tm). We then focus on the following problem

∂tu = (∂zu)2 − g(z2 − z̄(t)2) + τH(z − z̄(t)), t ∈ [0, Tm), z ∈ R,
sup
z∈R

u(t, z) = u(t, z̄(t)) = 0, t ∈ [0, Tm),

u(0, z) = u0(z), z ∈ R.

(45)

We will prove that, if for all t ∈ [0, Tm], ρ(t) = R(z̄(t)) > 0, then Tm = ∞. We will do so
by assuming that Tm is finite and proving that, indeed, there are posterior times, after Tm,
where z̄(t) is well-defined, unique and continuous with respect to t, which is in contradiction
with the definition of Tm. Also, since for these times the curve z̄(t) is unique, we will write
z̄(0) or z0 indistinctively. We prove below, under a strict concavity assumption at Tm, that
the only possibility for loosing monomorphism is that new zeroes of u appear at time Tm far
away from the old one. Note that by equation (43) we have that the value

z̄(Tm) := lim
t↗Tm

z̄(t)

is well defined.

Lemma 4.4. Let conditions of Theorem 1.2 hold and assume that Tm <∞, that ∂2
zzu(Tm, ·) ≤

−C < 0 in (zm,+∞), for some zm < z̄(Tm), and that for all t ∈ [0, Tm], ρ(t) = R(z̄(t)) > 0.
Then, u(Tm, ·) has a new zero point at a positive distance of z̄(Tm).

Proof. We will argue by contradiction and in a similar way to Lemma 4.2. Suppose that
Tm < ∞ and that no new zeroes appear at a positive distance from z̄(Tm) at time Tm. This
implies that at time Tm the value z̄(Tm) is the only zero.

In this case, at time Tm the value z̄(Tm) is the only zero point of u, implying that

∂2
zzF (Tm, z) = −2g + τH ′′(z − z̄(Tm)).

Notice that by Lemma 4.1 this function is continuous in time, and hence negative, in (Tm −
δ, Tm + δ) × (z′m,+∞) for some constants z′m < z̄(Tm) and δ > 0. Moreover, u(Tm, ·) has
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a single maximum point at z̄(Tm) and it is strictly concave with respect to z in (zm,+∞),
with zm < z̄(Tm). We can hence argument analogously to Lemma 4.2 and prove the required
properties in the definition of Tc in (41) for a small interval of time after Tm. Moreover, since
R(z̄(Tm)) > 0, and thanks to the continuity of z̄ in such an interval, we deduce, thanks to
Lemma 4.3, that ρ(t) > 0, and hence u(t, z̄(t)) = 0, in such an interval, making it smaller
if necessary. This implies that Tm could have been extended to higher values, which is a
contradiction.

Let us recall now some properties of the function H obtained in [16, Section 4] leading to
the quantification of µ1. Hypothesis (HT) implies, after some analysis, that

there exists a unique positive value d1 solving d1(1 +H ′(d1))− 2H(d1) = 0. (46)

Then, the threshold µ1 is given by

2H(d1)

(1−H ′(d1))(1 +H ′(d1))
=

d1

1−H ′(d1)
= µ1.

We recall that it was shown in [16, Section 4.2] that µ1 corresponds to the threshold on µ
below which there exists a monomorphic stationary solution of (2). Let us define the auxiliary
function

ϕ(t, z) :=
F (t, z)

2g
, (47)

which has the advantage of simplifying certain computations. Now we define x(t) := µ− z̄(t).
Notice that ϕ(t, µ) = f(x(t), µ) with

f(x, µ) = µH(x)− x
(
µ− x

2

)
.

Lemma 4.5. Let conditions of Theorem 1.2 hold.
(i) Then, f(x, µ) ≥ 0 for all µ ≤ µ1 and x ≥ 0. The equality holds only for x = 0 or x = d1

and µ = µ1.
(ii) Let t ≤ Tm. Then F (t, µ) > 0 except when z̄(t) = µ or z̄(t) = µ1−d1 and µ = µ1. In these
last two cases, we have F (t, µ) = 0. Consequently, F (t, µ) ≥ 0 for all t ∈ [0, Tm], µ ≤ µ1.

Proof. We notice, thanks to assumption (HT), that f(0, µ) = 0, ∂xf(0, µ) = 0 and ∂2
xxf(x, µ) =

µH ′′(x) + 1 > 0, for all x > 0 and small values of µ. This implies that, for all x > 0 and
for small values of µ, f(x, µ) > 0. We define µ0 = inf{µ > 0 | ∃x > 0, f(x, µ) = 0} which
is necessarily positive in view of the previous arguments. The following system of equations
must then be satisfied at a point x0 > 0{

µ0H(x0) = x0

(
µ0 −

x0

2

)
,

µ0H
′(x0) = µ0 − x0.

From the second equation we deduce that 2µ0− x0 = µ0(1 +H ′(x0)), and substituting this in
the first equation provides x0(1 + H ′(x0)) = 2H(x0), implying thanks to (46) that x0 = d1.
Since from the second equation we can deduce also that x0 = µ0(1−H ′(x0)) we deduce that

µ0 =
d1

1−H ′(d1)
=

2H(d1)

(1−H ′(d1))(1 +H ′(d1))
= µ1.

It follows that f(x, µ) ≥ 0 for all µ ≤ µ1 and x ≥ 0. Moreover, the equality holds only for
x = 0 or x = d1 and µ = µ1. Translating this to our variables (t, z̄(t)), and using the fact
that x(t) = µ − z̄(t) ≥ 0, we deduce that, in the range µ ∈ [0, µ1], ϕ(t, µ) ≥ 0, and hence
F (t, µ) ≥ 0, and the only moment when ϕ(t, µ) = 0, and hence F (t, µ) = 0, is when µ = µ1

and z̄(t) = µ1 − d1, or when z̄(t) = µ.
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In what follows we will focus on the case where

z̄(0) ∈
(
− 1
√
g
, µ

]
.

Since the limit case z̄(0) = µ can be regarded as a special, simpler case, we will deal with it
first.

4.2 The case z̄(0) = µ ≤ µ1

Suppose for now µ < µ1 and assume that z̄(0) = µ and u0(z) < 0 for all z 6= µ. Notice that
Assumption (HM) implies that τ < 2

√
g and that ρ0 = 1− τ2

4g > 0.

We also notice that F (0, z) = g
(
− z2 + µ2 + 2µH(z − µ)

)
= −2gf(µ − z, µ). Thanks to

Lemma 4.5 we deduce that F (0, z) < 0, for all z 6= µ. Moreover, we have

F (0, µ) = 0, ∂zF (0, µ) = 0, ∂2
zzF (0, µ) = −2g.

We deduce then from the previous analysis, i.e. Lemmas 4.2 and and 4.3, that Tm > 0 and
that equation (43) is satisfied. Therefore, z̄(t) = µ for all t ∈ [0, Tm) and

F (t, z) = F (0, z) for all t ∈ [0, Tm).

We next apply Theorem 2.1 to obtain that no new zeroes of u appear far away from the point
(Tm, µ) and that ∂2

zzu(Tm, z) < 0 in a neighbourhood of the point (Tm, µ). By Lemma 4.4 we
conclude that Tm =∞.

On the other hand, if we suppose that µ = µ1 the same argument holds true except
for the fact that this time the fitness function F attains two zeroes, with the second one
located at µ1 − d1, with d1 given by (46). However, the fact that u0(µ1 − d1) < 0 ensures
that u(t, µ − d1) < 0 for all t ≥ 0 again by (6). This is enough to conclude the results of
Theorem 1.2 in the case z̄(0) = µ ≤ µ1.

4.3 The case z̄(0) < µ ≤ µ1

Once again, our goal is to study the problem up to time Tm assuming that Tm < ∞, and to
conclude thanks to a contradiction on the definition of Tm that, in fact, either ρ(Tm) = 0 or
Tm = ∞. In what follows we hence assume that Tm < ∞. Note that, by equation (43), we
can assure that z̄(t) < µ for all t ≤ Tm. In view of Lemma 4.4, in order to prove the result,
it is enough to show that no new zero point of u(Tm, ·) appears far away z̄(Tm) and that
∂2
zzu(Tm, ·) is strictly negative around z̄(Tm). In order to do so we follow the ideas presented

in Section 2.2. However, we cannot apply the results of Section 2.2 directly since this time
the fitness function changes over time and all the conditions on F might not be satisfied in a
fixed convex set [0, T ]×Ω0. In order to circumvent this difficulty we need to study the fitness
function and the evolution of the system in more detail.

Lemma 4.6. Let conditions of Theorem 1.2 hold and that Tm <∞. Given (t, z) ∈ [0, Tm]×R,
there exists a curve γz(s) ∈W 1,2([0, t],R) such that z = γz(t) and

u(t, z) = u0(γz(0)) +

∫ t

0

(
− |γ̇z(s)|

2

4
+ F (s, γz(s))

)
ds.
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The proof is similar to the one of Step 1 in Section 2.1, using only that F and u0 are
bounded from above and that u is well defined and locally bounded. Note however that this
trajectory may not be unique.

Lemma 4.7. Let conditions of Theorem 1.2 hold and µ < µ1, z̄(0) ∈
(
−1/
√
g, µ
)
, and that

Tm <∞. Then

(i) for all t ∈ [0, Tm], z ∈ (z̄(t),+∞), ∂2
zzF (t, z) < −2g, F (t, z̄(t)) = 0 < F (t, µ) and

∂zF (t, z̄(t)) > 0.

(ii) For all 0 < t ≤ Tm, z ≥ µ, ∂zF (t, z) < 0 , and the value

r(t) := {r > z̄(t) : max
z∈(z̄(t),∞)

F (z, t) = F (r, t)}

is unique and satisfies z̄(t) < r(t) < µ.

Proof. We recall from Lemma 4.5 that F (t, µ) > 0 except when z̄(t) = µ or µ = µ1 and z̄(t) =
µ1− d1. Recalling that µ > z̄(t) for all t ∈ [0, Tm], we deduce that F (t, z̄(t)) = 0 < F (t, µ) for
all t ∈ [0, Tm]. The rest of the claims in (i) and (ii) come after a brief analysis of F .

Recall the definition of ϕ in (47). One can next verify following simple computations that
∂2
zzϕ(t, z) = −1 + µH ′′(z − z(t)) < −1 for all z > z̄(t) and

∂zϕ(t, z̄(t)) = µ− z̄(t) > 0, for all t ∈ [0, Tm) and µ ∈ [0, µ1).

This provides (i).

To prove (ii) we compute

∂zϕ(t, µ) = µ
(
H ′(µ− z̄(t))− 1

)
< 0

since H ′(x) < 1 for all x 6= 0, and since µ − z̄(t) > 0. The concavity of ϕ for all z > z̄(t)
provides ∂zϕ(t, z) < 0 for all t > 0, z ≥ µ. Since ∂zϕ(t, z̄(t)) > 0 > ∂zϕ(t, µ), again from the
concavity of ϕ we deduce the properties of r(t).

This next result is fundamental in the study of the behaviour of the solution in the
monomorphic regime µ ≤ µ1, since it proves that F (t, z) > 0 only if z > z̄(t), implying,
as we will prove shortly after, that no new zeroes of u can appear to the left of z̄(t).

Lemma 4.8. Let conditions of Theorem 1.2 hold and that Tm < ∞. Let µ ≤ µ1 and
z̄(0) ∈

(
−1/
√
g, µ
)
. Then F (t, z) < F (t, z̄(t)) = 0 for all t ∈ [0, Tm], z < z̄(t).

Proof. Since the function z̄ is continuous, then F , which only depends on time via z̄, is also
continuous in time and space. Moreover, since by equation (43) z̄ is increasing towards µ
and z̄(t) ∈ [−1/

√
g, µ) for all t ∈ [0, Tm] we can express this dependence of F on z̄ as a

dependence on a parameter s = z̄(t) with s ∈ [−1/
√
g, µ) and t = z̄−1(s), where the exponent

−1 represents the inverse function. Let us consider then

ϕ(s, z) :=
F (z̄−1(s), z)

2g
= −z

2 − s2

2
+ µH(z − s).
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We notice that, since ϕ(−1/
√
g,−1/

√
g) = 0 and ∂zϕ(−1/

√
g, z) > 0 for every z < −1/

√
g,

we obtain that
ϕ(−1/

√
g, z) < 0 for all z < −1/

√
g. (48)

Notice also that ∂zϕ(s, s) = µ− s > 0 for all s < µ.

Let us argue now by contradiction in order to prove the lemma. We assume that at some
s′ ∈ [−1/

√
g, µ) and z′ < s′ we have ϕ(s′, z′) ≥ 0. Increasing continuously s from −1/

√
g

up to s′ we deduce, from (48) and the regularity of ϕ, that there must exist a previous
s1 ∈ (−1/

√
g, s′] and a point z1 ≤ s1 such that ϕ(s1, z1) = 0 and ∂zϕ(s1, z1) = 0. It could

happen that z1 = s1, but since ∂zϕ(s1, z1) = ∂zϕ(s1, s1) = µ−s1 > 0, we deduce that z1 < s1.
In other words, the system {

− z21−s21
2 + µH(z1 − s1) = 0,

z1 = µH ′(z1 − s1) = µH ′(s1 − z1)

must be satisfied.

We define d := s1− z1. Then by the second equation of the previous system, since s1 < µ,
we have

d = s1 − z1 < µ(1−H ′(d)) and z1 + s1 < µ(1 +H ′(d)).

Since s1 > z1, this implies that

−z
2
1 − s2

1

2
=

(s1 − z1)(s1 + z1)

2
< µ2 (1−H ′(d))(1 +H ′(d))

2
.

Substituting in the first equation of the system, rearranging and using that H(−d) = −H(d)
we obtain

µ >
2H(d)

(1 +H ′(d)) · (1−H ′(d))
. (49)

On the other hand, since z1 + s1 < µ(1 + H ′(d)), substituting once again in the first
equation we find

µ ·
(
d(1 +H ′(d))− 2H(d)

)
> 0.

Following the analysis from [16, Lemma 4.2], this implies that d > d1. Let us now check,
thanks to hypothesis (HT), that

2H(x)

(1 +H ′(x)) · (1−H ′(x))
is monotone increasing for all x ≥ d1. (50)

We compute

∂x

[
2H(x)

(1 +H ′(x)) · (1−H ′(x))

]
=

2H ′(x)(
1− (H ′(x))2)2︸ ︷︷ ︸

>0

·φ(x),

where we defined
φ(x) := 1− (H ′(x))2 + 2H(x)H ′′(x).

We have to check that φ(x) > 0 for all x > d1.

Since d1 is the unique positive root of x(1 + H ′(x)) − 2H(x), with some analysis and
hypothesis (HT) one can show that d1 > zH (see [16]-Lemma 4.2) and that

x(1 +H ′(x))− 2H(x) < 0 for all 0 < x < d1 and x(1 +H ′(x))− 2H(x) > 0 for all x > d1,

37



implying [
∂x
[
x(1 +H ′(x))− 2H(x)

] ]
x=d1

= 1−H ′(d1) + d1H
′′(d1) ≥ 0,

which in turn implies

H ′′(d1) ≥ −1−H ′(d1)

d1
.

Therefore,

φ(d1) ≥ (1−H ′(d1)) ·
(

1 +H ′(d1)− 2H(d1)

d1

)
= 0

since, again, d1 is a root of x(1 +H ′(x))− 2H(x).

Finally, we compute φ′(x) = 2H(x)H ′′′(x) > 0 for all x > zH , and in particular for all
x ≥ d1 since d1 > zH . Combining φ(d1) ≥ 0 and φ′(x) > 0, for all x ≥ d1, implies that
φ(x) > 0 for all x > d1, which in turn yields (50).

Properties (50) and (49) lead to

µ >
2H(d1)

(1 +H ′(d1)) · (1−H ′(d1))
=

d1

1−H ′(d1)
= µ1,

which is in contradiction with our hypothesis µ ≤ µ1.

Lemma 4.9. Let conditions of Theorem 1.2 hold and that µ ≤ µ1, z̄(0) ∈
(
−1/
√
g, µ
)
,

Tm <∞. Then there exist positive constants δ, σ, λ such that

z0 ≤ z̄(t) ≤ µ− δ for all t ∈ [0, Tm],

F (t, z) < −λ for all t ∈ [0, Tm], z ∈ (−∞, z̄(t)− σ) and
∂zF (t, z) > 0 for all t ∈ [0, Tm], z ∈ [z̄(t)− σ, z̄(t)].

Proof. Since z̄(t) is monotone increasing, we begin by taking δ := µ− z̄(Tm). Next, we notice
that the monotonicity of z̄(t) implies

2gδ = 2g(µ− z̄(Tm)) ≤ ∂zF (t, z̄(t)) ≤ 2g(µ− z̄(0))

and thus, since ∂2
zzF is bounded, there must exist a positive constant σ such that

∂zF (t, z) > 0 for all t ∈ [0, Tm], z ∈ [z̄(t)− σ, z̄(t)].

Define now λ1 by
−λ1 = sup

t∈[0,Tm], z≤z̄(t)−σ
F (t, z).

From Lemma 4.8 we find that −λ1 < 0. Choosing λ < λ1 the claim is satisfied.

This lemma and the fact that ∂2
zzF (t, z) < −2g for all z ≥ z̄(t), thanks to Lemma 4.7,

allow us to conclude the existence of bounded intervals

U(t) := (ω1(t), µ]

satisfying
[z̄(t), µ] ⊂ U(t) for all t ∈ [0, Tm],

∂zzF (t, z) < 0 for all t ∈ [0, Tm], z ∈ U(t).
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Note however that for now, for each t the set U(t) is not unique. On the other hand, we expect
to have that lim

t→∞
[z̄(t), µ] = {µ}.

In addition, there exists a constant σ̃ > 0 such that

−2g − τ sup
z∈R

H ′′(z) ≤ ∂2
zzF (t, z) = −2g + τH ′′(z − z̄(t)) < −g for all t > 0, z > z̄(t)− σ̃,

implying that U(t) can be chosen for each t in a way such that

−K2 ≤ ∂zzF (t, z) ≤ −K1 < 0 for all t ∈ [0, Tm], z ∈ U(t),

for a couple of positive values K1,K2 independent of z̄(t). Therefore, the concavity of F in
the set

U := {(t, z) ∈ R2 : t ∈ [0, Tm], z ∈ U(t)} (51)

is uniform. Let us then define, with σ coming from Lemma 4.9,

σ∗ := min(σ, σ̃)

and define
ω1(t) := z̄(t)− 3σ∗

4
for all t ∈ [0, Tm].

We then notice that

[z̄(t), µ] ⊂ U(t) for all t ∈ [0, Tm],

∂zF (t, µ) < 0 < ∂zF (t, ω1(t)) for all t ∈ [0, Tm],

|∂3
zzzF (t, z)| ≤ K for all t ∈ [0, Tm], z ∈ U(t)

−K2 ≤ ∂zzF (t, z) ≤ −K1 < 0 for all t ∈ [0, Tm], z ∈ U(t) and
F (t, z) > F (t, y) for all t ∈ [0, Tm], z ∈ U(t), y < ω1(t).

(52)

for three positive values K,K1,K2 independent of z̄(t) or t. These properties play a similar
role to the hypothesis (11)–(14) that are satisfied in Ω0 instead of U(t). These sets also have
the advantage of satisfying U(t2) ⊂ U(t1) for all t1 < t2.

However, all the conditions of hypothesis (12) are not satisfied, since by Lemma 4.7 there
are points z to the right of µ such that F (t, z) > F (t, z̄(t)) = 0. This hypothesis (12) is used
in the following points of Section 2: in Step 2 and Step 6 of Section 2.1 and in the proof inside
Section 2.2 that we omitted for the sake of brevity. In what follows we will show how to deal
with these issues in order to prove similar results as in Section 2.

In the proof of Section 2.2, the hypothesis (12) is used to prove that z̄(t) 6∈ ∂Ω0, see [27] for
more details. Here, the analogous property (i.e., z̄(t) 6∈ ∂U(t)) holds thanks to the inequality
ω1(t) < z̄(t) < µ, which is true by the construction of ω1(t) and equation (43).

In Step 6 of Section 2.1 the hypothesis is used to prove that the maximum value u = 0 is
always attained inside Ω0 (again, in this case Ω0 should be changed by U(t)). By the definition
of Tm, we already know that, for all t ∈ [0, Tm) the maximum value of u is only attained at
the point z̄(t) ∈ U(t). It remains to prove that the value u(Tm, ·) = 0 is never attained outside
U(Tm). The following Lemmata 4.10 and 4.11 will provide this.

But before that, we recall that the value of the viscosity solution u of the Hamilton-Jacobi
equation (45) at point (t, x) with t ≤ Tm is given by formula (6). Note also that, given
(t, x) ∈ R+ × R, by Lemma 4.6 there exists an optimal curve γx satisfying

u(t, x) = ft(γx),
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and, given the value of u(t0, γx(t0)), then we can also work with

u(t, x) = sup
(γ(s),s)∈Rd×[t0,t],γ(t)=x,γ(t0)=γx(t0)

{
ft(γ), where γ ∈W 1,2([t0, t] : Rd)

}
,

with

ft(γ) = u(t0, γx(t0)) +

∫ t

t0

(
− |γ̇(s)|2

4
+ F (s, γ(s))

)
ds.

Lemma 4.10. Let conditions of Theorem 1.2 hold that and µ ≤ µ1, z̄(0) ∈
(
−1/
√
g, µ
)
,

Tm <∞. For every z < ω1(Tm) we have that u(Tm, z) < 0.

Proof. Let us argue by a contradiction argument using the representation formula. Let us
suppose that (Tm, x) is a point where u(Tm, x) = 0, with x < ω1(Tm), and let γx be any W 1,2

curve (which may not be unique) such that

u(Tm, x) = u0(γx(0)) +

∫ Tm

0

(
− |γ̇x(s)|2

4
+ F (s, γx(s))

)
ds.

Since u and γx are continuous, it means that there must exist a time t0 such that γx(t) <
ω1(t) for all t ∈ [t0, Tm] and u(t0, γx(t0)) < 0. Moreover, since F (t, z̄(t)) = 0, by the definition
of U(t), we obtain that for all s ∈ [t0, t1],

F (s, γx(s)) < 0.

Then, using the representation formula

u(Tm, x) = u(t0, γx(t0)) +

∫ Tm

t0

(
− |γ̇x1(s)|2

4
+ F (s, γx(s))

)
ds,

we obtain that u(Tm, x) < 0, a contradiction.

Lemma 4.11. Let conditions of Theorem 1.2 hold and that µ ≤ µ1, z̄(0) ∈
(
−1/
√
g, µ
)
,

Tm <∞. For every z1 > µ and t ∈ [0, Tm], we have that u(t, z1) < u(t, µ).

Proof. Let z1 > µ and t ∈ [0, Tm]. We divide the set of all possibles curves γz1 such that
γz1(t) = z1 into two subsets: those who are always to the right of the straight line γ̄µ :=
[0, t]× {z = µ} and those who cross it.

Since straight lines are local maximizers of the functional∫ t

0
−|γ̇(s)|2

4
ds,

from the definition of f , the fact that u0(z) is monotone decreasing for all z > z̄(0) and the
fact that F (t, z) is monotone decreasing for all t ∈ [0, Tm), z > µ, it is clear that for every
curve γz1 that do not cross the line γ̄µ we have that

ft(γz1) < ft(γ̄µ) ≤ u(t, µ).

We look now to the curves γz1 that do cross this straight line. Let

tµ := sup{t ∈ (0, t) : γz1(t) = µ}
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and define γ̃µ as {
γ̃µ(s) = γx(s) for s ∈ [0, tµ],

γ̃µ(s) = µ for s ∈ (tµ, t].

This curve γ̃µ is an acceptable curve for the functional f , so again, since F (t, z) is monotone
decreasing for all t ∈ [0, Tm), z > µ, we conclude that

ft(γz1) < ft(γ̃µ) ≤ u(t, µ),

which proves the claim.

We deduce that the only possible zeroes of u have to be in U(Tm).

Finally, in Step 2 of Section 2.1 the hypothesis (12) is used to prove that optimal trajectories
γ(·) with ending points in Ω0 have always been inside Ω0. Since hypothesis (12) is satisfied to
the left of ω1(t), it is enough to prove the following lemma.

Lemma 4.12. Let conditions of Theorem 1.2 hold, t0 ∈ (0, Tm], z1 ∈ U(t0) and γz1(·) be any
curve such that γz1(t0) = z1 and u(t0, z1) = ft(γz1). Then γz1(t) ≤ µ for all t ∈ [0, t0].

Proof. Suppose that there exist t′ ≤ t0 such that γz1(t) > µ. Then due to the continuity of
γz1 there must exist t1 < t2 such that [t1, t2] ⊂ [0, t0] and γz1(t) > µ for all t ∈ (t1, t2), with
γz1(t2) = µ, and γz1(t1) = µ or t1 = 0. Then we can construct a curve γ̃z1(t) defined as

γ̃z1(t) :=

{
γz1(t), for t ∈ [0, t1) ∪ (t2, t0],

µ, for t ∈ [t1, t2],

and, since F (t, z) is decreasing for all z ≥ µ and u0(z) decreases for all z > z̄(0), then it is
clear that ft(γ̃z1) > ft(γx), contradicting the choice of γz1 .

Therefore we have results that make up for the lack of hypothesis (12) in the Step 2 and
Step 6 of Section 2.1 and in Step 1 of Section 2.2.

We are almost ready to adapt the ideas from Section 2 to study u in the set U defined
in (51). However, we cannot directly use the set U as the concavity set since U is not of the form
[0, T ]×Ω0. Such a set is convex and thus every straight line joining two points inside it will be
contained in [0, T ]×Ω0. These straight paths are used in Step 2 of Section 2.1. To overcome this
difficulty we will split [0, Tm] into the union of a finite number of time intervals. We consider
a finite sequence of times, to be chosen later, {ti}ki=1, such that 0 = tk < · · · < t1 = Tm, and
we define

Ri = [ti+1, ti]× U(ti).

Since ω1(t) is monotone increasing and smooth we have that

U(ti+1) ⊂ U(ti),

and clearly, for any possible sequence {ti}ki=1, we have that

k−1⋃
i=1

Ri ⊂ U .

A possible sketch of such construction can be found in Figure 1.
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Figure 1: A collection of rectangles {Ri}7i=1, in grey, that contain the curve z̄(t), in dashed-
black. Each horizontal black line is a set U(ti), for i = 1, ..., 7. In dotted-black, the curve ω1(t)
and the vertical line corresponds to {z = µ}.

However, the image of the curves ω1(t) and z̄(t) may be very close to each other (if, for
example, z′(t) approaches 0), so it has to be justified why we can choose such a finite sequence
of rectangles. First, we prove that the distance between the images of the curves ω1(t) and
z̄(t), understood as geometrical objects in the space R2 endorsed with the euclidean distance,
is finite and strictly positive.

Lemma 4.13. Let Tm <∞. There exists a positive constant κ > 0 such that

κ := inf
t,s∈[0,Tm]

dist
(
(t, z̄(t)), (s, ω1(s))

)
= inf

t,s∈[0,Tm]

√
(t− s)2 + (z̄(t)− ω1(s))2 > 0.

Proof. Since ω1(t) < z̄(t) < µ and both curves are monotone increasing it is clear that both
curves are inside the compact set [0, Tm]× [ω1(0), µ] and thus κ <∞. In order to prove that
κ > 0 we argue by contradiction. So suppose that κ = 0. Then there must exists a point
(t0, z̄(t0)) and a sequence {(tn, ω1(tn))} such that√

(t0 − tn)2 + (z̄(t0)− ω1(tn))2 → 0 as n→∞.

This implies that tn → t0 and ω1(tn)→ z̄(t0). However, since ω1(t) is a continuous curve, this
implies that ω1(tn) → ω1(t0) and therefore ω1(t0) = z̄(t0). But this is a contradiction with
the definition of ω1(t), since by construction z̄(t)− ω1(t) > σ∗

2 for all t ∈ [0, Tm].

Lemma 4.14. Let Tm < ∞. There exists a finite collection of rectangles {Ri}ni=1 satisfying
the following properties: there exists a decreasing sequence (ti)

n+1
i=1 , with t1 = Tm and tn+1 = 0,

such that
Ri = [ti+1, ti]× U(ti),

(t, z̄(t)) ∈ ∪ni=1R◦i , for all t ∈ [0, Tm].
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Proof. We begin by taking t1 = Tm and focus on the point (t1, ω1(t1)). Since the two
curves that we are studying are continuous and monotone increasing, for every value ω1(s) ∈
[z̄(0), ω1(t1)] there exists a time tω1(s) < s such that z̄(tω1(s)) = ω1(s). On the other hand, by
Lemma 4.13 the distance between the point (t1, ω1(t1)) and the point (tω1(t1), z̄(tω1(t1))) is no
less than κ. In particular, (t, z̄(t)) 6∈ Bκ

2

(
(t1, ω1(t1))

)
for all t ∈ [0, Tm], with Br(x) the ball

with radius r and centre x.

Since z̄(t1) > ω1(t1) and z̄(t) is continuous, we have

(t, z̄(t)) ∈
[
t1 −

κ

2
, t1

]
× U(t1) for all t ∈

[
t1 −

κ

2
, t1

]
,

so by choosing t2 = t1− κ
2 and R1 = [t2, t1]×U(ti) we have a first rectangle. Now we consider

U(t2), focus on the point (t2, ω1(t2)) and repeat the process, finding a t3 = t2− κ
2 and a second

rectangle. Note that the size of each interval is κ/2, strictly positive.

We repeat this process until reaching a point tn > 0 such that ω1(tn) < z̄(0). Clearly, since
κ is defined as the distance between the images of the curves ω1(t) and z̄(t), ti− ti+1 = κ

2 > 0
for all i = 1, ..., n − 1, and since Tm is finite, we reach such a tn in a finite number of steps.
We conclude by choosing a last rectangle of the form Rn = [0, tn]× U(tn).

We highlight two things. First, the choice of the sequence {ti}ni=1 satisfying the conditions
of Lemma 4.14 is not unique. Second, we are letting points inside U outside the rectangles Ri,
but as long as z̄(t) is inside the collection, we can proceed with the analysis.

Summarizing, we have divided most of the domain U into a sort of pyramid made of
rectangles. We shall study the function u at the points inside U(Tm) by applying the techniques
from Section 2 in succession on each rectangle Ri; let us describe how.

We begin by the last rectangle Rn. By the properties of the initial datum, equations (52)
and by Lemma 4.12, we can repeat the usual argument of optimal trajectories based on
formula (6) in order to see that every optimal path γ with ending point in the upper base of
Rn is inside said rectangle for all times, it cannot take values outside it, not even in other
points of U outside of Rn. This property can indeed be proved using the fact that F (t, z) is
increasing with respect to z, for all z < z̄(t). If a trajectory leaves the rectangle, we can hence
replace the part of the trajectory that leaves the domain by a straight line. Moreover, this path
γ is unique for each point in Rn. From the method displayed in Section 2 and with the help
of Lemmata 4.10, 4.11 and 4.12 we deduce that the solution u at time tn is a strictly concave
and smooth enough initial datum at the beginning of the next rectangle Rn−1, satisfying the
conditions for the initial datum imposed in these notes. If we iterate now on each rectangle
of the collection {Ri} we can reach the set U(Tm), and, in the process, every point inside the
collection {Ri}. Let us define then

C :=
n⋃
i=1

Ri.

Lemma 4.15. Let conditions of Theorem 1.2 hold and that z̄(0) < µ ≤ µ1, Tm < ∞. The
solution u of equation (45) is C1 in time and C2 in space in the set C. At each time t ∈ [0, Tm],
it attains its maximum value only at the point z̄(t), with (t, z̄(t)) ∈ C and for all (t, z) ∈ C, we
have

− Sc ≤ ∂zzu(t, z) ≤ −2λ, (53)

where λ is a strictly positive constant depending only on the second derivative of the initial
datum and of the fitness term F , and Sc comes from Proposition 3.2. As a consequence, we
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have that
˙̄z(t) =

2g

(−∂zzu(t, z̄(t)))
(µ− z̄(t)), (54)

µ− (µ− z̄(0))e−
2g
Sc
t ≤ z̄(t) ≤ µ− (µ− z̄(0))e−

g
λ
t.

Proof. The idea consists in applying the results of Section 2 on each rectangle Ri successively.
We begin by the last one, Rn, letting Rn = [0, tn] × [zn, µ]. Notice that thanks to (52),
F is strictly concave in Rn, F (t, z) > F (t, y) for all (t, z) ∈ Rn and y < zn. Moreover,
F (t, µ) > F (t, y), for all t ∈ [0, tn] and y > µ, thanks to Lemma 4.7. We hence obtain that
the solution u is C1 in time and C2 in space in the set Rn. Moreover, at time tn, the function
u is an admissible initial datum for studying the problem in the next rectangle Rn−1 and it
satisfies, by Lemma 4.11 and Step 4 of Section 2.1, for all (t, z) ∈ Rn,

u(t, y) ≤ u(t, µ) for all y ≥ µ,

−Sc ≤ ∂zzu(t, z) ≤ −2λ, where λ =
1

2
min

(
C1,

√
K1√
2

)
,

with C1 coming from Hypothesis (H0) and K1 coming from (52). Note that these bounds do
not depend on t or z̄(t). Moreover, following similar arguments to Lemma 4.11, we can also
prove that

u(t, y1) ≤ u(t, zn), for all y1 < zn.

We can then repeat this process in the finite number of rectangles of the collection C up to
time Tm. On the process, we obtain (53).

To obtain the last result, we use the equivalent of equation (33) for u, that is (54) and we
employ also the bound in (53).

Remark 4.16. Thanks to the regularity of z̄(t) and ω1(t), given any point (t, z) ∈ int(U), we
can find a finite collection of rectangles {Ri}ni=1 such that (t, z) ∈ Rj for some j ∈ {1, .., n},
perhaps by having to take much smaller time intervals and many more rectangles than the
necessary to cover only the curve z̄(t). This means that we can exchange in Lemma 4.15 the
set C by the set int(U), although it is not mandatory for the analysis of the dynamics of u.

It is also relevant that the constant λ in (53) is always strictly positive even when the
domain U(t) gets smaller and smaller, since the second derivative of F is strictly negative in
U by the properties (52).

The proof of Theorem 1.2-(i). Assume that 0 ≤ µ ≤ µ1, z0 ≤ µ and τ ≤
√

2g. From
Lemma 4.3 we obtain that for all s ∈ [0, Tm], ρ(s) = 1 − gz̄(s)2 > 1 − gµ2 > 0. We hence
deduce thanks to Lemmata 4.4, 4.10, 4.11, 4.15 that Tm = +∞. All the statements of the
theorem concerning u and z̄ follows. The uniqueness of (u, z̄) can also be proved following
similar arguments as in the proof of Theorem 2.2, applying the method successively to the
rectangles Rn.

The proof of Theorem 1.2-(ii). Assume that 0 ≤ µ ≤ µ1, z0 ≤ µ and τ >
√

2g. Using
Lemmata 4.4, 4.10, 4.11, 4.15, either Tm = +∞ or ρ(t) = 0, for some t ∈ [0, Tm]. Notice
however from (43) that, if Tm = +∞ then, as t→ +∞, z̄(t)→ µ. We next use Lemma 4.3 to
obtain that ρ(t) = max(0, 1− gz̄(t)2). Since 1− gµ2 < 0, we deduce that for some t ∈ [0, Tm],
ρ(t) = 0, hence statement (ii).
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5 A special case in the monomorphic range. The case z̄(0) > µ

The situation where z̄(0) > µ, with µ ≤ µ1, is a special one because one has to consider two
different possibilities depending on the value of z̄(0). Either F (0, z) has one positivity set or
two, and both cases can produce very different behaviours of the solution, see Figure 2. We
will refer to these cases as F (0, z) being type one or type two respectively.

(A) z̄(0) = 1, 77. Type one F (0, z) (B) z̄(0) = 1, 8. Type two F (0, z)

Figure 2: Two examples of F (0, z). The second derivative ∂zzF (0, z) is in dashed-black, in
order to appreciate concavity sets. As we can see, the value z̄(0) is to the right of the dotted
vertical line representing z = µ. The values of the parameters are τ = 0, 5 and µ = 1, 7. Note
that in both cases µ < z̄(0) < µ1 and there is no remarkable difference between the functions
∂zzF (0, z).

Repeating the arguments of Section 4.3 for fitness functions F (0, z) of type one, one can
obtain a similar result to Theorem 1.2, albeit this time z̄(t) decreases towards µ. For the sake
of brevity, we omit the details and just provide the result.

Corollary 5.1. Corollary of Sections 4.1 and 4.3. Assume (HT), (H0) and (HM), and let
R(z) = 1− gz2 and 0 ≤ µ ≤ µ1. Assume also that z0 > µ is such that F (0, z) is of type one.
Then, the same conclusions of Theorem 1.2 hold.

An open question is whether the same result holds true in the case where F (0, z) is of type
two. The main obstacle for it is the fact that, if the initial datum is flat enough, then the
second positivity set (the one to the left in Figure 2 (B)) can lead to the emergence of a second
maximum point to the left of z̄(t). The solution may still be monomorphic in the sense that
it has one maximum point for a.e. t, but it is not continuous monomorphic.

However, the positivity of the fitness term can be counter-balanced by the speed at which
z̄(t) converges to µ, since a very flat initial datum would also imply a very fast convergence,
see formula (54). If z̄(t) evolves fast enough, the left positivity set will disappear without
having time to produce a new maximum point.

The study of this question requires a more detailed analysis and goes beyond the scope of
this article.
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6 Beyond monomorphism. Open questions

In the case where R(z) = 1 − gz2, the monomorphic range µ ∈ [0, µ1] is well understood.
However, when µ > µ1 the situation is much more complex. Following the results from [16],
the natural next step in the study of this model is to focus on the so-called dimorphic range;
this is, the cases where µ ∈ (µ1, µ2) for a certain µ2 > µ1. In [16] it was proven (under an extra
hypothesis quite mild on H) that only in those cases there exists a stationary solution of (2)
consisting of two points. Following this observation, let us describe, formally, the situation
when µ > µ1.

In the monomorphic regime the maximum point z̄(t) converges to µ and when doing so there
is only one interval I(t) where the fitness function F is positive, and moreover [z̄(t), µ] ⊂ I(t).
In the limit, when z̄(t) = µ, we have that

lim
t→∞

(
max
z∈R

F (t, z)

)
= lim

t→∞
F (t, µ) = 0.

At any other point, if µ < µ1, the limit of the fitness function is negative; see Figure 3.

Figure 3: Fitness functions F (red) with z̄(t) = µ < µ1. The point where F = 0 is where
z = µ (green).

The limit case µ = µ1 has the feature of presenting a second point zµ1 such that

lim
t→∞

(
max
z∈R

F (t, z)

)
= lim

t→∞
F (t, µ1) = lim

t→∞
F (t, zµ1) = 0.

and at any other point the limit in time of the fitness function is negative. However, it is still
true that for all finite time t, the only positivity set of F is the interval I(t); see Figure 4.

Figure 4: Fitness functions F (red) with z̄(t) = µ1. The points where F = 0 are now z = µ1

and a second point z = µ1 − d1 (green), where d1 comes from (46).

However, when µ > µ1 and as z̄(t) converges to µ, a second positivity set of F , call it J(t),
appears, and it is never empty as long as z̄(t) keeps moving towards µ; see Figure 5. Let us
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define then
J(t) := {z ∈ (−∞, z̄(t)) : F (t, z) > 0}.

Figure 5: Fitness functions F (red) with z̄(t) = µ > µ1. A set J (blue) appears where F > 0,
far away from the point z = µ (green).

This, of course, provokes the appearance, sooner or later, of new maximum points of u at
a certain time T inside the set J(T ), and when this happens several new questions arise:

1. Is the old maximum point z̄(t) still a maximum point after time T?

2. How many new maximum points appear? One, a discrete number of them or a whole
interval?

Next, if only one new maximum point appears, then we can imagine for instance the
following possible behaviors.

1. The old maximum point persists and, for some time, there is dimorphism (the solution
has two maximum points).

2. The old maximum point is no more a maximum point and the solution converges to a
cyclic behaviour, where the new maximum point travels to the position of the old one
and then the pattern repeats.

3. The new maximum travels for a while until a new maximum appears, and a sort of
permanent oscillation between maximum points begin, while the solution is continuous
monomorphic by intervals and converges to a stationary dimorphic solution.

Stationary dimorphic solutions were studied in [16], and it is known that they exist only
in the range µ ∈ (µ1, µ2], for a certain µ2 > µ1. Based on the simulations done for the study
of this problem, it is the third option the one that seems most likely; see Figure 6.
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(A) Function nε(t, z) (B) Function ρ(t)

Figure 6: Solution uε of (36) in the dimorphic case µ = 3.84, with values τ = 0.5, g = 0.065
and ε = 5 · 10−5. The oscillations between maximum points stop in a finite time due to the
small parameter ε > 0.
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