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We consider the nonlinear Klein-Gordon equation in �d. We call multi-solitary
waves a solution behaving at large time as a sum of boosted standing waves. Our
main result is the existence of such multi-solitary waves, provided the composing
boosted standing waves are stable. It is obtained by solving the equation backward
in time around a sequence of approximate multi-solitary waves and showing
convergence to a solution with the desired property. The main ingredients of the
proof are finite speed of propagation, variational characterizations of the profiles,
modulation theory and energy estimates.
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1. Introduction

We consider the following nonlinear Klein-Gordon equation

utt − �u+mu− �u�p−1u = 0 (NLKG)

where u � �×�d → �, m ∈ �0�+��, and the nonlinearity is H1-subcritical, i.e., 1 <
p < 1+ 4

d−2 if d ≥ 3 or 1 < p < +� if d = 1� 2.
This equation arises in particular in quantum physics where it has been

proposed as a simple model describing a self-interacting scalar field. Mathematically
speaking, the Klein-Gordon equation is one of the model dispersive equations. It
is a Hamiltonian equation which is invariant under gauge and Lorentz transform
and in particular it conserves energy, charge and momentum. Due to the sign
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of the nonlinearity, the equation is focusing. At the balance between dispersion
and focusing, we find “truly” nonlinear solutions: the stationary/standing/solitary
waves.

A standing wave with frequency � ∈ � is a solution of (NLKG) of the form
u�t� x� = ei�t���x�. Such solution has the particularity to exist globally and to
remain localized at any time. In the physics literature this kind of solutions
are sometimes referred to as Q-balls. A soliton (or solitary wave) with speed
v ∈ �d, frequency � ∈ � and initial phase and position � ∈ �, x0 ∈ �d is a
boosted standing wave solution of (NLKG). More precisely a soliton is a solution
of (NLKG) of the form

ei
�
	 t+i����v�x − vt − x0��

where ���v is a profile depending on � and v, and 	 �= 1√
1−�v�2 is the Lorentz factor.

We shall consider ground states solitons, i.e., boosted standing waves with
ground states profiles (profiles minimizing a certain action functional, see Section 2
for a more precise definition). The orbital stability properties of such solitons
have been widely studied. It started with the work of Shatah [47] where it was
shown that there exists a critical frequency �c > 0 such that if p < 1+ 4/d and
�c < ��� < m then standing waves are stable under radial perturbation. Later on,
Shatah [48] proved that the stationary solution (i.e., the standing wave with � = 0)
is strongly unstable and the picture for standing waves was completed by Shatah
and Strauss [49] when they showed that if either p ≥ 1+ 4/d or if ��� < �c then
standing waves are unstable. These results were generalized and consolidated by
Grillakis, Shatah and Strauss in their celebrated works [14, 15]. The stability theory
of solitons was revisited by Stuart [51] via the modulational approach introduced
by Weinstein [52] for nonlinear Schrödinger equations. Compare to prior results,
Stuart [51] provided two improvements: first, he treated the whole range of possible
speeds �v� < 1 without the radiality assumptions, second he gave the laws of the
modulations parameters. In particular, it was shown in [51] that the ground state
solitons are stable if the parameters are within the following open set

�stab �=
{
��� �� v� x� ∈ �2+2d
 ��� < √

m� �v� < 1�
1

1+ 4
p−1 − d

<
�2

m

}
� (1)

Note that �stab is nonempty only if p < 1+ 4
d
, i.e., the nonlinearity is L2-subcritical.

Instability was further investigated by Liu, Ohta and Todorova [26, 42, 43] (see
also [16] for a companion result), who proved that when standing waves are
unstable, then the instability is either strong (i.e., by blow up in possibly infinite
time) when p < 1+ 4/d or very strong (i.e., by blow up in finite time) when p ≥
1+ 4/d.

Recently, further informations on the dynamics of (NLKG) around solitons
have been obtained by Nakanishi and Schlag. In [41], using a method referred
to as Hadamard approach in dynamical systems, they show the existence of a
center-stable manifold which contains all solutions of (NLKG) staying close to the
solitons manifold and describe precisely this manifold. Furthermore, in [38], they
adopt a Lyapunov-Perron approach for the study of the dynamics around ground
state stationary solitons of (NLKG) for the 3-d cubic case and in a radial setting.
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In particular, they show the existence of a center stable manifold such that the
following trichotomy occurs for a solution with initial data close to the ground state
stationary solution. On one side of the center stable manifold, the solution scatters
to 0, on the other side it blows up in finite time and on the center stable manifold
itself the solution scatters to the ground state. The same authors [40] extended later
their results in the non-radial setting. One can also refer to their monograph [39] for
a complete introduction to the mathematical study of equations similar to (NLKG),
in particular the study of the dynamics of the equation around stationary/standing
waves.

In this paper we address the question whether it is possible to construct a multi-
soliton solution for (NLKG), i.e., a solution behaving at large time like a sum of
solitons. Multi-solitons are long time known to exist for integrable equations such
as the Korteweg-de Vries equation or the 1-d cubic nonlinear Schrödinger equation.
Indeed, existence of multi-solitons follows from the inverse scattering transform, see
e.g., the survey of Miura [36] for the Korteweg-de Vries equation and the work of
Zakharov and Shabat [55] for the 1-d cubic nonlinear Schrödinger equation. In the
recent years, there has been a series of works around the existence and dynamical
properties of multi-solitons for various dispersive equations.

One of the first existence result of multi-solitons for non-integrable equations
was obtained by Merle [35] as a by-product of the construction of a multiple
blow-up points solution to the L2-critical nonlinear Schrödinger equation (indeed
a pseudo-conformal transform of this solution gives the multi-soliton). Later on,
Perelman [44, 45] (see also [46]) studied asymptotic stability of a sum of solitons of
nonlinear Schrödinger equation under spectral hypotheses and in weighted spaces.
In the energy space, Martel, Merle and Tsai [29, 34] showed the existence and orbital
stability of multi-solitons made of stable solitons. The existence of multi-solitons
made of unstable solitons was obtained by Côte, Martel and Merle [8] for ground
state and by Côte and Le Coz [7] for excited states under a high speed assumption.
Further results on the existence of exotic solutions like a train of infinitely many
solitons were obtained by Le Coz, Li and Tsai [22, 23].

For the non-integrable generalized Korteweg-de Vries equation, Martel [27]
showed the existence and uniqueness of multi-solitons for L2-subcritical
nonlinearities. These multi-solitons were shown to be stable and asymptotically
stable by Martel et al. [33]. Combet [6] investigated further the existence of multi-
solitons in the supercritical case and showed the existence and uniqueness of
a N -parameter family of multi-solitons. Outstanding results on the description
of the interaction between two solitons were recently obtained by Martel and
Merle [30–32].

Despite the many works on multi-solitons previously cited, to our knowledge
the present paper and the recent preprint [9] are the first works dealing with
existence of multi-soliton type solutions for nonlinear Klein-Gordon equations (see
nevertheless [10] for related results on the nonlinear wave equation).

Our goal is to prove the following existence result for multi-solitons.

Theorem 1. Assume that 1 < p < 1+ 4
d
. For any N ∈ �, take ��j� �j� vj� xj�j=1�����N ⊂

�stab and let ��j� be the associated ground state profiles �j �= ��j�vj , and �	j� the

Lorentz factors 	j �= �1− �vj�2�− 1
2 . Denote the corresponding solitons by

�j�t� x� �= e
i
�j
	j
t+i�j�j�x − vjt − xj��
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Define

v� �= min
�vj − vk�� j� k = 1� � � � � N� j �= k� (minimal relative speed) (2)

�� �= max
��j�� j = 1� � � � � N� (maximal frequency)� (3)

There exists � = ��d�N� > 0, such that if vj �= vk for any j �= k, then there exist T0 ∈ �
and a solution u to (NLKG) existing on �T0�+�� and such that for all t ∈ �T0�+��
the following estimate holds∥∥∥∥∥u�t�− N∑

j=1

�j�t�

∥∥∥∥∥
H1

+
∥∥∥∥∥�tu�t�− N∑

j=1

�t�j�t�

∥∥∥∥∥
L2

≤ e−�
√
m−�2

�v�t�

Remark 1. During the preparation of this paper we have been aware of the
work [9] by Côte and Muñoz. Our two results are companions in the following sense.
In [9] the authors used spectral theory and a topological argument to prove the
existence of multi-solitons made of unstable solitons. To the contrary, we use finite
speed of propagation, classical modulation theory and energy estimates to obtain
the existence of multi-solitary waves based on stable solitons. Merging our results
together would give the existence of multi-solitons made with any kind (stable or
unstable) of solitons.

Our strategy for the proof of Theorem 1 is to solve (NLKG) backwards around
suitable approximate solutions. It is inspired by the works of Martel, Merle and
Tsai on multi-solitons of Schrödinger equations [29, 34] (see also [7, 8] where similar
strategies were enforced). The main new ingredients on which we rely are the
variational characterizations of the profile and a coercivity property of the total
linearized action.

We start by introducing the mathematical framework in which we are going to
work in Section 2. After transforming (NLKG) into its Hamiltonian form (4), we
list the tools which are going to be useful for our purposes: Cauchy Theory in H1 ×
L2 and Hs ×Hs−1, Conservation laws, Finite Propagation Speed, standing waves,
Lorentz transform and finally definitions of solitons and their profiles.

Then we go on with the core of the proof of Theorem 1. We consider a
sequence of times Tn → �, a set of final data un =

∑
�j�T

n� and the associated
solutions �un� of (NLKG) backward in time. The sequence �un� provides us with a
sequence of approximate multi-solitons, and we need to prove its convergence to a
solution of (NLKG) satisfying to the conclusion of Theorem 1. For this purpose,
we show that each un exists backwards in time up to some time T0 independent of
n and decay uniformly in n to the sum of solitons (Proposition 1). Eventually a
compactness argument (Lemma 2) permits to show that �un� converges to a multi-
soliton of (NLKG) on �T0���. Most steps are performed in Section 3, apart from
uniform estimates whose proof needs more preparation.

The proof of the uniform estimates relies on several ingredients: coercivity of
the Hessian of the action around each component of the multi-soliton, modulation
theory and slow variation of localized conservation laws, energy, charge, momenta.

We study the profiles of the solitons in Section 4. We characterize the profiles
variationally using the conserved quantities of (NLKG) (Proposition 3), and show
that the ground state profiles are at the mountain pass level, the least energy level
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and the Nehari level. Our proofs are self-contained and do not rely on the (NLS)
case.

After obtaining the variational characterizations, we prove a coercivity property
(Lemma 8) for the second variation of the action functional around a soliton
(linearized action). To this aim, we study the spectrum of the linearized action and
prove in particular the non-degeneracy of the kernel (i.e., the kernel contains only
the eigenvectors generated by the invariances of the equation, see Lemma 7). It is
usually a crucial point in these matters. We underline that the coercivity properties
are related to the fact that our standing waves are stable.

Coercivity of the linearized action is obtained provided orthogonality conditions
hold. This prompt the question of obtaining orthogonality conditions around
a sum of solitons, which is resolved in Section 5 via modulation theory. The
modulation result is twofold. First, it shows that close to a sum of solitons one can
recover orthogonality conditions (see (35)) by adjusting the modulation parameters
phases, translation and scaling. Second, it gives the dynamical laws followed by the
parameters (see (36)).

Finally, we define cutoff functions around each soliton and use them to localize
the action around each soliton. We use these localized actions to build a global
action adapted to the sum of solitons. Several properties are transported from
the local actions to the global one. In particular, the global action inherits from
the coercivity (see Lemma 12). Due to errors generated by the cutoff it is not a
conserved quantity, but we can however prove that it is almost conserved (i.e., it
varies slowly). We use these properties combined with the modulation result to
prove the uniform estimates.

This work is organized as follows. In Section 2, we set the mathematical work
context. Section 3 contains the proof of the main result, assuming uniform estimates.
In Section 4, we establish variational characterizations of the profiles and use them
to prove a coercivity statement for the hessian of the action functional related to a
soliton. In Section 5, we explain the modulation theory in the neighborhood of a
sum of solitons. Finally, we put all pieces together in Section 6 to prove the uniform
estimates. The Appendix contains the proof of a compact injection used in Section 3
and interactions estimates used in Section 6.

2. Mathematical Context

In this section we introduce rigorously all the necessary material for our study and
restate our result in the Hamiltonian formulation for (NLKG), which is a more
suitable formulation for our needs. But before let us precise some notations. We
denote by Lq��d� the standard Lebesgue space and its norm by 
 · 
q. The space
L2��d� is viewed as a real Hilbert space endowed with the scalar product

�u� v�2 = Re
∫
�d
uv̄dx�

The Sobolev spaces Hs��d� are endowed with their usual norms 
 · 
Hs . For the
product space L2��d�× L2��d� we use the norm∥∥∥∥(u1u2

)∥∥∥∥
L2×L2

=
√

u1
22 + 
u2
22�
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with similar convention for H1��d�× L2��d�, Hs��d�×Hs−1��d�, etc. We shall
sometimes us the following notational shortcut:

�u� �v�2 �=


(
u� �v

�x1

)
2

���(
u� �v

�xd

)
2

 �
Finally, unless otherwise specified the components of a vector W ∈ L2��d�×
L2��d� will be denoted by W1 and W2.

The Hamiltonian Formalism for the nonlinear Klein-Gordon equation (NLKG)
is formulated as follows. For �u1� u2� ∈ H1��d�× L2��d� we define the following
Hamiltonian (which we will call energy in the sequel)

E

(
u1
u2

)
�= 1

2

u2
22 +

1
2

�u1
22 +

m

2

u1
22 −

1
p+ 1


u1
p+1
p+1�

Define the matrix J �= � 0 1
−1 0 �. Then u is a solution of (NLKG) if and only if

�u1� u2� �= �u� ut� solves the following equation

�t

(
u1
u2

)
= JE′

(
u1
u2

)
� (4)

From now on we shall work only with the Hamiltonian equation (4).
Due to this Hamiltonian formulation the energy is (at least formally) conserved.

In addition, the invariance of (4) under phase shifts and space translations generates
two other conservations laws, the charge Q and the (vectorial) momentum P, defined
in the following way:

Q

(
u1
u2

)
= Im

∫
�d
u1ū2dx� P

(
u1
u2

)
= Re

∫
�d
�u1ū2dx�

With our restrictions on the growth of the nonlinearity in Theorem 1 (L2-
subcritical), it is well-known that the Cauchy problem for (4) is globally well-
posedness in the energy space H1��d�× L2��d�. More precisely, the following well-
posedness theory holds.

Cauchy Theory in H1 × L2. Assume 1 < p < 1+ 4
d
. For any initial data U0 =

�u01� u
0
2� ∈ H1��d�× L2��d� there exists a unique maximal solution of (4)

U ∈ ���� H1��d�× L2��d�� ∩�1��� L2��d�×H−1��d���

Furthermore, we have the following properties.

Conservation of energy, charge and momentum: for all t ∈ �, we have

E�U�t�� = E�U0�� Q�U�t�� = Q�U0�� P�U�t�� = P�U0��

Global estimate: there exist C0 > 0 such that 
U
����H1×L2� ≤ C0
U0
H1×L2 .
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Uniqueness in light cones: If Ũ is another solution to (4) on �0� T� for T > 0 with
Ũ �0� = U0 in 
x � �x − x0� < T� for some x0 ∈ �d, then Ũ ≡ U on the backward light
cone 
�t� x� ∈ �0� T�×�d � �x − x0� < T − t�.

Continuous dependency upon the initial data: if �Un
0 � ⊂ H1��d�× L2��d�

converges to U0 in H1��d�× L2��d�, then the associated solutions �Un� of (4)
converge in �

(
I� H1��d�× L2��d�

)
for any compact time interval I ⊂ � to the

solution U of (4) with initial data U�0� = U0.

For this set of results, we refer to the classical papers by Ginibre and Velo [12,
13], or the recent review in the paper [19] by Killip et al. For our purposes, we will
also need a more refined result on local well-posedness in the slightly larger space
Hs��d�×Hs−1��d� for some s < 1 (see Lindblad and Sogge [24] or Nakamura and
Ozawa [37]).

Cauchy Theory in Hs ×Hs−1. Let s > 0 be such that either s > d/2 or 1/2 ≤ s < d/2
and p < 1+ 4

d−2s . For any initial data U0 = �u01� u
0
2� ∈ Hs��d�×Hs−1��d� there exists

a unique maximal solution of (4)

U ∈ ���−T�� T ���Hs��d�×Hs−1��d���

Furthermore, we have the continuous dependent upon the initial data: if �Un
0 � ⊂

Hs��d�×Hs−1��d� converges to U0 in Hs��d�×Hs−1��d� , then the associated
solutions �Un� of (4) converge to U in ��I�Hs��d�×Hs−1��d�� for any compact time
interval I ⊂ �−T�� T ��, where U is the solution to (4) with initial data U�0� = U0.

A useful consequence of the uniqueness in light cones (Cauchy Theory in H1 ×
L2) is the following finite speed of propagation property.

Finite Propagation Speed. Let U = �u1� u2� ∈ H1��d�× L2��d� be a solution of (4)
on �−�� T ��. There exists C0, depending only on 
U�T��
H1×L2 such that if there exist
0 < � and M > 0 satisfying∫

�x�>M
��u1�T ���2 + �u1�T ���2 + �u2�T ���2dx ≤ ��

then for any t ∈ �−�� T �� we have∫
�x�>2M+�T�−t�

��u1�t��2 + �u1�t��2 + �u2�t��2dx ≤ C0��

Proof. Let �M be a cutoff function such that

�M�x� =
{
1 for �x� > 2M

0 for �x� < M
and 
��M
� <

C0

M
�

Define UT��M �= U�T���M and denote by UM the associated solution of (4). By
assumption, we have 
UT��M
2H1×L2 ≤ � and by the Cauchy Theory in H1 × L2 the
solution UM exists on � and verifies for all t ∈ �


UM�t�
2H1×L2 ≤ C0��
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However, by uniqueness on light cones, UM and U coincide on 
�t� x� ∈ �×�d �
�x� > 2M + �T � − t��, and for any t ∈ �−�� T �� this implies∫

�x�>2M+�T�−t�
��u1�t��2 + �u1�t��2 + �u2�t��2dx ≤ 
UM�t�
2H1×L2 ≤ C0��

which was the desired conclusion. �

Lorentz transform. Among the symmetries of (4), we already mentioned the phase
shift and translation. We consider now the Lorentzian symmetry, defined as follows.
Take U�t� x� = �u1� u2��t� x� and v ∈ �d with �v� smaller than the speed of light
for (4), namely �v� < 1. The Lorentz transform �vU of U is the function of �t� x�
defined by

��vU��t� x� �=
(

u1��� y�
	�u2��� y�− v�yu1��� y��

)
where � and y are defined by

� = ��t� x� �= 	�t − v · x� = 1
	
t − 	�x − vt� · v�

y = y�t� x� �= x − xv + 	�xv − vt� = x − vt + �	− 1��x − vt�v�

Here, the Lorentz parameter 	 is defined by

	 �= 1√
1− �v�2 �

and the subscript v denote the orthogonal projection onto the vectorial line
generated by v, that is

xv �=
x · v
�v�2 v�

It is simple algebra to verify that (4) is Lorentz invariant, in the sense that if U is
a solution of (4), then so is �vU . Also note that the Lorentz transform is invertible
with inverse �−v.

Standing waves. Take � ∈ �. In the Hamiltonian formulation, a standing wave
with frequency � is a solution of (4) of the form U�t� x� = ei�t���x�. Plugging this
ansatz for U into (4), it is easy to see that �� = ( ���1���2

)
must be a critical point of

E + �Q, hence a solution to the stationary elliptic system{
−����1 +m���1 − ����1�p−1���1 + i����2 = 0�

���2 − i����1 = 0�

The solutions of this system are clearly of the form
( ��
i���

)
, where �� satisfies the

scalar equation

−��� + �m− �2��� − ����p−1�� = 0� (5)
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Solutions to (5) and their properties are well-known (see [3, 4, 11, 20] and the
references therein). For every � ∈ �−√

m�
√
m� there exists a unique, positive,

and radial function �� ∈ �2��d� solution of (5). In addition, the function �� is
exponentially decaying at infinity: for any � < �m− �2� there exists C����� > 0
such that

����x�� ≤ C�����e−
√
��x� for all x ∈ �d� (6)

Furthermore, any �� satisfy the scaling property

���x� = �m− �2�
1

p−1 �̃
(
�m− �2�

1
2 x
)
� (7)

where �̃ is the unique positive radial solution to −��̃+ �̃− ��̃�p−1�̃ = 0. The
function �� is called ground state. In dimension d ≥ 2, there exist infinitely many
other solutions to (5), called excited states. In the sequel, we shall deal only with
ground states solutions to (5). Indeed, our analysis deeply relies on properties of the
ground states which do not hold for other solutions, in particular the stability of
the associated standing waves (see Section 4 for details).

Remark 2. It is interesting to notice that, although the presence of the nonlinear
term permits the existence of states with negative energy, the standing waves have
always positive energies. Indeed, a straightforward computation assures that for a
standing wave U�t� x� = ei�t���x� the corresponding energy is given by

E���� =
(
1
2
− 1
p+ 1

) (
���
22 +m
��
22
)+ (1

2
+ 1
p+ 1

)
�2
��
22

The fact that p > 1 guarantees that E���� > 0.

Remark 3. The scaling property (7) guarantees that the energy of the ground
states varies continuously with respect to �. This fact implies that the multi-soliton
solutions for (NLKG) behave at large time like a sum of solitons that are allowed
to have different energies. A straightforward computation indeed gives


��
22 = �m− �2�
4−d�p−1�
2�p−1� 
�̃
22


���
22 = �m− �2�
p�2−d�+2+d

2�p−1� 
��̃
22�

Now �̃ is solution of −��̃+ �̃− ��̃�p−1�̃ = 0 such that, by means of Pohozaev
identity,


��̃
22 =
d�p− 1�

2d − �d − 2��p+ 1�

�̃
22�

Merging all this information we get the relation between energy and � given by

E���� = g���
�̃
22�
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where

g��� = p− 1
2�p+ 1�

(
�m− �2�

p�2−d�+2+d
2�p−1� +m�m− �2�

4−d�p−1�
2�p−1�

)
+
(

p+ 3
2�p+ 1�

�2�m− �2�
4−d�p−1�
2�p−1�

)
�

which can be rewritten as

g��� = �m�p− 1�+ 2�2��m− �2�
2

p−1− d
2

�p+ 1�
�

The monotonicity of g��� when � belongs to �stab follows easily.

Solitons. Starting from a standing wave, one generates a new family of solutions
to (4) simply by boosting them using the Lorentz transform. These new solutions
are the solitary waves (or simply solitons). Precisely, take a frequency ��� ≤ √

m, the
profile �� �=

( ��
i���

)
(where �� is the ground state of (5)), a phase � ∈ �, and a

speed and a position v� x0 ∈ �d with �v� < 1. The associated soliton is

ei
�
	 t+i����v�x − vt − x0��

where the new profile ���v is given by

���v�x� = e−i	�v·x
(

���x + �	− 1�xv�
	�i����x + �	− 1�xv�− v����x + �	− 1�xv��

)
� (8)

By direct computation, and provided we have noticed that

E′
(
u1
u2

)
=
(−�u1 +mu1 − �u1�p−1u1

u2

)
�

Q′
(
u1
u2

)
=
(
iu2
−iu1

)
= iJ

(
u1
u2

)
� P ′

(
u1
u2

)
=
(−�u2
�u1

)
= −J�

(
u1
u2

)
�

it is not difficult to see that ���v is a critical point of

S �= E + �

	
Q+ v · P�

With all these preliminaries out of the way, we can go on with the proof of
Theorem 1.

3. Existence of Multi-Solitons

This section contains the core of the proof of Theorem 1 assuming uniform
estimates (Proposition 1) which are proved in Section 6.

Assume that p < 1+ 4
d
. Take N ∈ �, ��j� �j� vj� xj�j=1�����N ⊂ �stab, �j the

associated Hamiltonian profiles (as in (8)), v� and �� as in (2), (3), �	j� the Lorentz
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parameters, �Rj� the corresponding solitons

Rj�t� x� �= e
i
�j
	j
t+i�j�j�x − vjt − xj��

and R the sum of the solitons:

R�t� x� �=
N∑
j=1

Rj�t� x��

Reformulated using the Hamiltonian expression (4) of (NLKG), our goal is to prove
that there exists � = ��d�N� > 0, such that if vj �= vk for any j �= k, then there exist
T0 ∈ � and a solution U to (4) existing on �T0�+�� and such that the following
estimate holds for all t ∈ �T0�+��


U�t�− R�t�
H1×L2 ≤ e−�
√
m−�2

�v�t�

We are going to define a sequence of approximate multi-solitons and prove
its convergence to the desired solution of (4). Take an increasing sequence of time
Tn → +� and for each n let Un be the solution to (4) obtained by solving (4)
backward in time from Tn with final data Un�T

n� = R�Tn�. Our proof will rely
on two main ingredients. First we have uniform estimates for the sequence of
approximate multi-solitons.

Proposition 1 (Uniform Estimates). There exist � = ��d�N� > 0, and T0 ∈ �
(independent of n) such that for n large enough the solution Un of (4) with Un�T

n� =
R�Tn� exists on �T0� T

n� and satisfies for all t ∈ �T0� Tn� the estimate


Un�t�− R�t�
H1×L2 ≤ e−�
√
m−�2

�v�t� (9)

Proposition 1 establishes that the approximate multi-solitons Un all satisfy the
desired estimate on time intervals of the form �T0� T

n�, with T0 independent of n.
The proof of Proposition 1 is rather involved and we postpone it to Section 6 (useful
informations for this proof are derived in Sections 4 and 5).

The second ingredient of the proof of Theorem 1 is an H1 × L2−compactness
property of the sequence of initial data of the approximate multi-solitons.

Lemma 2 (Compactness). Let T0 be given by Proposition 1. For any � > 0 there exists
M� such that for any n large enough Un verifies∫

�x�>M�

��Un�1�T0��2 + �Un�1�T0��2 + �Un�2�T0��2dx ≤ ��

The argument for the proof of Lemma 2 is different from the Schrödinger
equation case. Indeed, we benefit with the Klein-Gordon equation of the Finite
Propagation Speed, which is not the case for Schrödinger equations where one has
to us virial identities (see e.g., [29, Lemma 2]).
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Proof of Lemma 2. The result is a consequence of the Finite Speed of Propagation
and the uniform estimates of Proposition 1. Indeed, take � > 0 and let T� be such
that e−�

√
m−�2

�v�T
�

< �
2 . Then it follows from Proposition 1 that for n large enough


Un�T��− R�T��
H1×L2 ≤
�

2
� (10)

By exponential decay of the sum of solitons, there exists M̃� such that∫
�x�>M̃�

���R�T��1��2 + ��R�T���1�2 + ��R�T���2�2dx ≤ �

2
� (11)

Combining (10) and (11), we get∫
�x�>M̃�

��Un�1�T ���2 + �Un�1�T ���2 + �Un�2�T ���2dx ≤ ��

By Finite Speed of Propagation, this implies∫
�x�>2̃M�+�T�−T0�

��Un�1�T0��2 + �Un�1�T0��2 + �Un�2�T0��2dx ≤ ��

Setting M� = 2M̃� + �T � − T0� finishes the proof. �

Proof of Theorem 1. With in hand our sequence of approximate multi-solitons
satisfying the desired estimate, the only thing left to do is to prove that it actually
converges to a solution of (4) satisfying the same estimate (9).

First of all, we show the convergence of initial data. Since Un satisfies (9),
the sequence Un�T0� is bounded in H1��d�× L2��d�. Therefore there exists U0 ∈
H1��d�× L2��d� such that Un ⇀ U0 weakly in H1��d�× L2��d�. We are going to
prove that the previous convergence is strong in Hs��d�×Hs−1��d� for any 0 <
s < 1. Take � > 0. Using Lemma 2, we infer the existence of M� > 0 such that for
n large enough∫

�x�>M�

��Un�1�T0��2 + �Un�1�T0��2 + �Un�2�T0��2dx

+
∫
�x�>M�

��U0�1�T0��2 + �U0�1�T0��2 + �U0�2�T0��2dx ≤ �

2
� (12)

Define �� � �
d → �0� 1� a cutoff function such that ���x� = 1 if �x� < M�, ���x� = 0

if �x� > 2M�, and 
���
� ≤ 1. We have


Un�T0�− U0
Hs×Hs−1 ≤ 
�Un�T0�− U0���
Hs×Hs−1 + 
�Un�T0�− U0��1− ���
Hs×Hs−1

From the compactness (a proof of this fact is included in the Appendix, Lemma 17
for the reader’s convenience) of the injection Hs��� ↪→ Hs−���� when � is bounded
and � > 0 , we infer that, for n large enough and maybe up to a subsequence, we
have


�Un�T0�− U0���
Hs×Hs−1 ≤ �

2
�
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Moreover, by (12)


�Un�T0�− U0��1− ���
Hs×Hs−1 ≤ 
�Un�T0�− U0��1− ���
H1×L2 ≤
�

2
�

Combining the last three equations gives us


Un�T0�− U0
Hs×Hs−1 ≤ ��

Hence Un�T0� converges strongly to U0 in H
s��d�×Hs−1��d�.

Let us now show that the solution U of (4) in H1��d�× L2��d� with data
U�T0� = U0 satisfies the required estimate. By Local Cauchy Theory of (4) in
Hs��d�×Hs−1��d�, we have the strong convergence

Un�t�→ U�t� in Hs��d�×Hs−1��d�

for any t ∈ �T0�+��. In addition, by uniqueness of the limit and since Un�t� is
bounded in H1��d�× L2��d� (by (9)), we have the weak convergence for t ∈
�T0�+��

Un�t� ⇀ U�t� in H1��d�× L2��d��

Therefore, by weak lower semi-continuity of the H1 × L2-norm and (9), we have


U�t�− R�t�
H1×L2 ≤ lim inf
n→+� 
Un�t�− R�t�
H1×L2 ≤ e−�

√
m−�2

�v�t�

which concludes the proof of Theorem 1. �

4. Properties of the Profiles

Since we will be working mainly within the Hamiltonian formulation of (NLKG), it
will be convenient to characterize the soliton profiles using the conserved quantities.
We already mentioned that the profile ���v is a critical point of the functional action

S �= E + �

	
Q+ v · P�

or more explicitly a solution to{
−�w1 +mw1 − �w1�p−1w1 + i �

	
w2 − v · �w2 = 0�

w2 − i �
	
w1 + v · �w1 = 0�

(13)

In this section, we are going to give some variational characterizations of ���v and
study the Hessian S′′����v�.

As far as we know, the variational characterizations given in the following
Proposition 3 were never derived before, although they are expected in view
of what happens in the scalar setting. The ideas on the relationships between
different variational characterizations used further in this section were introduced
by Jeanjean and Tanaka in [17, 18] (see also [2] for related results). We believe that
these variational characterizations of the profile ���v are of independent interest.
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For the purpose of constructing multi-solitons, the main result of this section
is the coercivity property given in Lemma 8. The proof of this result relies on the
variational characterization of the profiles as well as on their non-degeneracy, which
is given by Lemma 7. We shall follow closely the presentation made in [21] for the
standing waves of NLS.

4.1. Variational Characterizations

We define the mountain pass level by

MP �= inf
�∈�

sup
s∈�0�1�

S���s��

where � is the set of admissible paths

� �= 
� ∈ �
(
�0� 1��H1��d�× L2��d�

)

 ��0� = 0� S���1�� < 0��

We define the Nehari constraint for W ∈ H1��d�× L2��d� by

I�W� �= �S′�W��W�

and the Nehari level by

NL �= min
S�W�
 I�W� = 0�W �= 0��

We also define the least energy level by

LE �= min
S�W�
 W ∈ H1��d�× L2��d�� W �≡ 0� S′�W� = 0��

Proposition 3. The profile ���v admits the following variational characterizations:

S����v� = MP = NL = LE�

Let us start by proving using mountain pass arguments that S admits a critical
point. Then we will show that this critical point is at the mountain pass level and
also at the least energy level and at the Nehari level and we will identify it with ���v.

Lemma 4. There exists � ∈ H1��d�× L2��d� a non-trivial critical point of S, i.e.,

� �= 0� S′��� = 0�

Before going further, we make the following useful observations on the
formulation of S: for W = �w1� w2� ∈ H1��d�× L2��d� it is simple algebra to see
that

S�W� = 1
2

�w1
22 −

1
2

v · �w1
22 +

1
2

(
m− �2

	2

)

w1
22 −

1
2
�

	
v · Im

∫
�d
w1�w̄1

+ 1
2

∥∥∥∥v · �w1 − i
�

	
w1 + w2

∥∥∥∥2
2

− 1
p+ 1


w1
p+1
p+1�
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We can remark further that if w̃1 is such that w1�x� = e−i�	v·xw̃1�x + �	− 1�xv� then
we have

S�W� = 1
	

(
1
2

�w̃1
22 +

1
2
�m− �2�
w̃1
22

)

+ 1
2

∥∥∥∥v · �w1 − i
�

	
w1 + w2

∥∥∥∥2
2

− 1
p+ 1


w1
p+1
p+1� (14)

We shall also use the following Lemma at several occasions.

Lemma 5. For any � > 0 there exists � > 0 such that for any W = �w1� w2� ∈
H1��d�× L2��d� we have

�
w1
2H1 + 
v · �w1 − i
�

	
w1 + w2
22 ≥ �
W
2H1×L2 �

Proof. We only have to make 
w2
22 appear. Write

w2 = �

(
v · �w1 − i

�

	
w1

)
+ w⊥

2 �

where � ∈ � and
(
v · �w1 − i �

	
w1� w

⊥
2

)
2
= 0. We have

∥∥∥∥v · �w1 − i
�

	
w1 + w2

∥∥∥∥2
2

= �1+ ��2
∥∥∥∥v · �w1 − i

�

	
w1

∥∥∥∥2
2

+ 
w⊥
2 
22 (15)


w2
22 = �2
∥∥∥∥v · �w1 − i

�

	
w1

∥∥∥∥2
2

+ 
w⊥
2 
22�

There is a possible degeneracy in (15) if � = −1, but we can compensate it by using
a piece of 
w1
2H1 :

�

2

w1
2H1 +

∥∥∥∥v · �w1 − i
�

	
w1 + w2

∥∥∥∥2
2

≥ C
(
�1+ ��2 + �

2

) ∥∥∥∥v · �w1 − i
�

	
w1

∥∥∥∥2
2

+ C
w⊥
2 
22

≥ C̃
w2
22� (16)

The desired inequality is then a direct consequence of (16). �

Proof of Lemma 4. Step 1: Mountain-Pass geometry.
We claim that the functional S has a mountain-pass geometry, i.e.,

MP > 0�
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We start by showing that � is not empty. Indeed, take W = �w1� w2� ∈ H1��d�×
L2��d� and s > 0. Then using (14) we see that

S�sW� = s2

2

(
1
	

(
1
2

�w̃1
22 +

1
2
�m− �2�
w̃1
22

)
+ 1

2

∥∥∥∥v · �w1 − i
�

	
w1 + w2

∥∥∥∥2
2

)

− sp+1

p+ 1

w1
p+1

p+1�

Therefore if s is large enough we have S�sW� < 0, hence the path s �→ S� s
C
W�

belongs to � provided C has been chosen large enough.
To show that MP > 0, it is enough to prove that there exists a function f �

�+ → � such that f�s� > 0 for s close to 0 and S�W� ≥ f�
W
H1×L2�. Using (14),
the continuity of w1 → w̃1 in H

1��d� and Sobolev embeddings, it is easy to see that
there exists � > 0 such that

S�W� ≥ �

2

w1
2H1 + 1

2

∥∥∥∥v · �w1 − i
�

	
w1 + w2

∥∥∥∥2
2

− C
w1
p+1
H1 �

From Lemma 5 we infer that there exists �̃ > 0 such that

S�W� ≥ �̃
W
2H1×L2 − C
W
p+1
H1×L2 �

This implies that S�W� > 0 if 
W
H1×L2 is small and there exist C > 0, � > 0 such
that S�W� > C > 0 for 
W
H1×L2 = �. This implies MP > 0 and S has a mountain
pass geometry.
Step 2: Existence of a Palais-Smale sequence.

From Ekeland variational principle (see e.g., [54]) and Step 1, we infer the
existence of a Palais-Smale sequence Wn = �w1�n� w2�n� at the level MP, i.e.,

S�Wn�→ MP� S′�Wn�→ 0� as n→ +�� (17)

Step 3: Non-vanishing of the Palais-Smale sequence.
Assume by contradiction that the sequence Wn is vanishing, more precisely for

any R > 0 we have

lim
n→+� sup

y∈�d

∫
�x−y�<R

��w1�n�2 + �w2�n�2�dx = 0�

Take � > 0 and R > 0 and let n be large enough so that

sup
y∈�d

∫
�x−y�<R

��w1�n�2 + �w2�n�2�dx < ��

Recall Lions’ Lemma (see [25]): for any w ∈ H1��d� we have


w
p+1
p+1 ≤ C

(
sup
y∈�d

∫
�x−y�<R

�w�2dx
)p−1


w
2H1 � (18)
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Therefore, for n large enough, and using (14) and Lemma 5, we get

S�Wn� ≥ C
Wn
2H1×L2 − �
w1�n
2H1�

which implies (if � has been chosen small enough) that �Wn� is bounded in H1��d�×
L2��d�. This boundedness has two consequences: as n→ +�, we have

�S′�Wn��Wn� → 0 and 
w1�n
p+1 → 0� (19)

where the first limit is due to the fact that �Wn� is a Palais-Smale sequence (see (17))
and the second limit comes from (18). However, we have(

1
p+ 1

− 1
2

)

w1�n
p+1

p+1 = S�Wn�−
1
2
�S′�Wn��Wn�

and therefore (19) implies

lim
n→+� S�Wn� = 0�

which enters in contradiction with limn→+� S�Wn� = MP > 0. Therefore the
sequence �Wn� is non-vanishing.

Step 4: Convergence to a critical point
Since Wn is non-vanishing, there exists R� � > 0 and �yn� ⊂ �d such that for n

large enough ∫
�x−yn�<R

�w1�n�2dx > �� (20)

If we substitute Wn�· − yn� to Wn (keeping the same notation), the sequence �Wn� is
still a Palais-Smale sequence and keeps the same properties. In particular, as known
from Step 3, �Wn� is bounded in H1��d�× L2��d�, and therefore we have the
existence of � ∈ H1��d�× L2��d� such that Wn ⇀ � weakly in H1��d�× L2��d�.
Since Wn is a Palais-Smale sequence and S′ is continuous, we have S′��� = 0. Hence
we only have to show that � is non-trivial. This is a direct consequence of (20) and
the compact injection H1��x� < R� ↪→ L2��x� < R�. Hence � is a non-trivial critical
point of S and the proof of Lemma 4 is finished. �

We turn now to the variational characterizations of the critical point obtained
in Lemma 4.

Lemma 6. Take � the critical point of S found in Lemma 4. The following equality is
satisfied.

S��� = MP = NL = LE�

Proof. Let us start by showing

S��� ≤ MP� (21)
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Using S′��� = 0, we have

S��� = S���− 1
p+ 1

�S′������

=
(
1
2
− 1
p+ 1

)(
1
	

(
�w̃1
22 + �m− �2�
w̃1
22
)

+
∥∥∥∥v · �w1 − i

�

	
w1 + w2

∥∥∥∥2
2

)
≤ · · · (22)

Recall that w̃1 is such that w1�x� = e−i�	v·xw̃1�x + �	− 1�xv� (see (14)). Using the
weak lower semi-continuity of the norm, we can continue the inequality started
in (22) by

· · · ≤
(
1
2
− 1
p+ 1

)
lim inf
n→+�

(
1
	
�
�w̃1�n
22 + �m− �2�
w̃1�n
22�

+
∥∥∥∥v · �w1�n − i

�

	
w1�n + w2�n

∥∥∥∥2
2

)

= lim inf
n→+�

(
S�Wn�−

1
p+ 1

�S′�Wn��Wn�
)
� (23)

Since �Wn� is a Palais-Smale sequence we have

lim
n→+�

(
S�Wn�−

1
p+ 1

�S′�Wn��Wn�
)
= MP�

and we can conclude from (22) and (23) that � verifies (21).
We continue by showing that

MP ≤ NL� (24)

Take an element of the Nehari manifold W ∈ H1��d�× L2��d�, I�W� = 0. The idea,
as in [17, 18], is to construct a path in � so that S���s�� achieves its maximum when
��s� = W . It is easy to see that for C large enough the path �C defined by �C�s� =
CsW fulfills our needs. Indeed, we have

�

�s
S�sW� = s

(
1
	
�
�w̃1
22 + �m− �2�
w̃1
22�

+
∥∥∥∥v · �w1 − i

�

	
w1 + w2

∥∥∥∥2
2

− sp−1
w1
p+1
p+1

)
�

In particular, �
�s
S�sW��s=1 = I�W� = 0. Therefore �

�s
S�sW� > 0 for s ∈ �0� 1� and

�
�s
S�sW� < 0 for s > 1. Hence the path S��C�s�� achieves its maximum when s = 1

C

and �� 1
C
� = W . Therefore,

ML ≤ S�W��

and since this is true for any W on the Nehari manifold this proves (24).
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It is easy to see that

NL ≤ LE� (25)

Indeed, any solution W of (13) (i.e., any critical point of S) satisfies the Nehari
identity I�W� = 0. Thus the infimum for NL is taken on a larger set than the infimum
for LE, hence (25).

Finally, as a direct consequence of S′��� = 0 and the definition of LE we have

LE ≤ S���� (26)

Combining (21), (24), (25), (26) finishes the proof of Lemma 6. �

Proof of Proposition 3. In view of Lemmas 4 and 6, the only thing left to prove is
that � = ���v. Let us first see the case v = 0. Since � = � 1�  2� is a critical point
of S, we have  2 = i� 1. Therefore, since �� is a ground state of (5), we have

S��� = 1
2

� 1
22 +

1
2
�m− �2�
 1
22 −

1
p+ 1


 1
p+1
p+1

≥ 1
2

���
22 +

1
2
�m− �2�
��
22 −

1
p+ 1


��
p+1
p+1 = S����0��

Therefore when v = 0, we indeed have � = ���0. Let us now treat the case v �= 0.
Let  ̃1 be such that  1�x� = e−i�	v·x ̃1�x + �	− 1�xv� and define  ̃2 �= i� ̃1. Then
�̃ �= � ̃1�  ̃2� is a solution to (13) with v = 0. Indeed, it is not hard to see that

−� 1 + i
�

	
 2 − v · � 2 = e−i�	v·x�−� ̃1 − �2 ̃1��

Hence

S��� = 1
	
�E + �Q���̃� ≥ 1

	
�E + �Q�����0� = S����v��

This implies that � = ���v for any v and finishes the proof of Proposition 3. �

4.2. Kernel

Lemma 7. The following description holds for the kernel of S′′����v�:

Ker�S′′����v�� = Span
i���v� ����v��

Proof. The inclusion ⊃ is easy to obtain. Indeed, due to invariance by translation
and phase shifts, for any � ∈ � and y ∈ �d we have

S′�ei����v�· + y�� = 0�

The result is obtained by deriving with respect to � and y at � = 0� y = 0. The
reverse inclusion is much more delicate. We shall rely on existing results for standing
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waves of NLS to prove it. First remark that if W = �w1� w2� belongs to the kernel
of S′′����v�, then it satisfies

−�w1 +m2w1 − �p− 1���1
��v�p−3�1

��vRe��1
��vw̄1�

+ ��1
��v�p−1w1 + i �

	
w2 − v · �w2 = 0�

w2 − i �
	
w1 + v · �w1 = 0�

Here, we have denoted by �1
��v the first component of ���v, i.e.,

�1
��v �= e−i	�v·x���x + �	− 1�xv��

Take W̃ �= �w̃1� w̃2� such that(
w1

w2

)
= e−i	�v·x

(
w̃1�x + �	− 1�xv�

	w̃2�x + �	− 1�xv�− 	v�w̃1�x + �	− 1�xv�

)
�

It is a lengthy but straightforward computation to verify that W̃ satisfies
−�w̃1 +m2w̃1 − �p− 1���1

��0�p−3�1
��0Re��1

��0w̃1�

− ��1
��0�p−1w̃1 + i�w̃2 = 0�

w̃2 − i�w̃1 = 0�

Remembering now that �1
��0 = �� and using the second equation to substitute in

the first we get{
−�w̃1 + �m− �2�w̃1 − �p− 1�����p−1Re�w̃1�− ����p−1w̃1 = 0�

w̃2 = i�w̃1�
(27)

Fortunately we arrive on a known ground: it is well-known since the celebrated
work of Weinstein [52] and Kwong [20] (see [5] for a modern short proof of this
result) that the only solutions to (27) are(

w̃1

w̃2

)
∈ Span

{(
���
i����

)



(
i��

−���
)}

= Span
����0
 i���0��

Coming back into the original variables, this implies that

W ∈ Span
����v
 i���v�

and finishes the proof. �

4.3. Coercivity

The proof of our result relies on the fact that the solitary waves we are considering
are stable. In particular, we have at our disposal a coercivity property on the
Hessian of the action S related to the soliton profile ���v which allows us to control
the difference between a soliton and a function in a neighborhood of its orbit. The
coercivity property is the following.
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Lemma 8 (Coercivity). Assume p < 1+ 4
d
and let � ∈ � and v ∈ �d be such that

1
1+ 4

p−1−d
< �2

m
< 1� and �v� < 1 (i.e., they are compatible with �stab defined in (1)) and

let ���v be the associated ground state. There exists � such that for any W ∈ H1��d�×
L2��d� satisfying the orthogonality conditions

�W� ����v�2 = �W� iJ���v�2 = �W� i���v�2 = 0 (28)

we have

H��v�W� ≥ �
W
2H1×L2

where for brevity in notation we defined

H�W� �= �S′′����v�W�W��

Similar results date back to the work of Weinstein [52, 53] for NLS equations.
These ideas were later generalized by Grillakis, Shatah and Strauss [14] in an
abstract setting. More recently, Stuart [51] described precisely the orbital stability of
solitons of NLKG using also a coercivity statement, but with different orthogonality
conditions and a slightly more complicated proof.

Proof of Lemma 8. Step 1: Analysis of the spectrum of S′′����v�.
We first remark that, due the exponential localization of ���v, the operator

S′′����v� is a compact perturbation of the self-adjoint operator

� �=
(−�+m 0

0 1

)
+ �

	

(
0 i
−i 0

)
+ v ·

(
0 −�
� 0

)
� D��� = H2��d�×H1��d��

By Weyl’s Theorem, S′′����v� and � share the same essential spectrum, that we now
analyze. Observe that for W = �w1� w2� ∈ H2��d�×H1��d� we have

��W�W� = 
�w1
22 +m
w1
22 + 
w2
22 − 2
�

	
�iw1� w2�2 + 2v · ��w1� w2�2�

which, after some factorizations (similar to those used in (14)), we can rewrite

��W�W� = 1
	

(
�w̃1
22 + �m− �2�
w̃1
22
)+ ∥∥∥∥v · �w1 − i

�

	
w1 + w2

∥∥∥∥2
2

where w̃1 is such that w1�x� = e−i�	v·xw̃1�x + �	− 1�xv�. From Lemma 5, we see that
there exists � > 0 such that for any W ∈ H2��d�×H1��d� we have

��W�W� ≥ �
W
2H1×L2 �

This implies that the essential spectrum of S′′����v� is positive and away from 0.
The rest of its spectrum consists in a finite number of isolated eigenvalues. It turns
out that from the variational characterization of ���v, we can infer that S′′����v�
has Morse Index 1, i.e., it admits only one negative simple eigenvalue (see e.g., [1]).
We denote this eigenvalue by −! < 0, and � an associated normalized eigenvector,
i.e., S′′����v�� = −!� and 
�
L2×L2 = 1.
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Step 2: A positivity property. We prove now that if W ∈ H1��d�× L2��d� satisfies
the orthogonality conditions (28), then

�S′′����v�W�W� > 0�

A particular vector associated with S′′����v� is "����v, where "� �= �
��
. Indeed,

deriving S′����v� = 0 with respect to � we get

S′′����v�"����v = −1
	
Q′����v� = −1

	
iJ���v� (29)

This implies, using (7),

�S′′����v�"����v� "����v�

= −1
	
�Q′����v��"����v� = −1

	
"�Q����v�

= "�

(
�

	

��
22

)
= �m− �2�

2
p−1− d

2

	

−2�2
(

2
p−1 + d

2

)
m− �2

− 1

 
�̃
22 < 0 (30)

where the last inequality follows from the fact that � is compatible with �stab (see
the definition (1)). It is easy to verify that "����v is orthogonal to the kernel of
S′′����v�, namely that we have

�"����v� i���v�2 = �"����v� ����v�2 = 0�

Let us write the orthogonal decomposition of "����v along the spectrum of
S′′����v�:

"����v = �� +#� (31)

where � �= 0 and # is in the positive eigenspace of S′′����v�, in particular

�S′′����v�#�#� ≥ �
#
2H1×L2 �

From (30) and (31), we infer that

−!�2 + �S′′����v�#�#� = �S′′����v�"����v� "����v� < 0� (32)

Take now W ∈ H1��d�× L2��d� satisfying the orthogonality conditions (28).
We also write the orthogonal decomposition of W along the spectrum of S′′����v�:

W = $� +%� (33)

where $ ∈ � and % is in the positive eigenspace of S′′����v�. If $ = 0, the conclusion
follows, so we assume $ �= 0. Using (28), (29), (31) and (33), we have

0 = �S′′����v�"����v�W� = −!�$ + �S′′����v�#�%��
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Note that on the positive spectral subspace of S′′����v�, Cauchy-Schwartz inequality
holds:

�S′′����v�#�%�2 ≤ �S′′����v�#�#��S′′����v�%�%��

Therefore,

�S′′����v�W�W� = −!$2 + �S′′����v�%�%�

≥ −!$2 + �S′′����v�#�%�2
�S′′����v�#�#� > −!$2 + �−!�$�2

!�2
= 0�

Step 3. The coercivity property.
Assume by contradiction that there exists �Wn = �wn

1� w
n
2�� ⊂ H1��d�× L2��d�

satisfying the orthogonality conditions (28) and such that


Wn
H1×L2 = 1 and lim
n→+��S

′′����v�Wn�Wn� = 0�

Recall that, as for (14), we have

�S′′����v�Wn�Wn� =
1
	

(
�w̃n
1
22 + �m− �2�
w̃n

1
22
)+ ∥∥∥∥v · �w1 − i

�

	
w1 + w2

∥∥∥∥2
2

−
∫
�d

(
�p− 1���1

��v�p−3Re��1
��vw̄

n
1�

2 + ��1
��v�p−1�wn

1 �2
)
dx�

where w̃n
1 is such that wn

1�x� = e−i�	v·xw̃n
1�x + �	− 1�xv�.

Since �Wn� is bounded in H1��d�× L2��d�, there exists W ∈ H1��d�× L2��d�
such that

Wn ⇀ W as n→ +� weakly in H1��d�× L2��d��

On one hand W must satisfy (28) and from Step 2 we have, if W �= 0.

�S′′����v�W�W� > 0�

On the other hand, by weak convergence and exponential decay of ���v we have

�S′′����v�W�W� ≤ lim inf
n→+� �S′′����v�Wn�Wn� = 0�

Therefore W must be W ≡ 0. However, in this case it would implies

−
∫
�d

(
�p− 1���1

��v�p−3Re��1
��vw̄

n
1�

2 + ��1
��v�p−1�wn

1 �2
)
dx→ 0

and since 
Wn
H1×L2 = 1, we would have (using Lemma 5)

�S′′����v�Wn�Wn� ≥ � > 0�

which is a contradiction. �
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5. Modulation Theory

The use of a coercivity property similar to Lemma 8 but adapted to a multi-
soliton (see Lemma 12) will require to deal with orthogonality conditions. These
orthogonality conditions will obtained by modulation.

Given parameters ��� L�, consider a neighborhood of the sum of solitons

	��� L� �=

U ∈ H1��d�× L2��d�
 inf
&j>&j−1+L
'j∈�

j=1�����N

∥∥∥∥∥U −
N∑
j=1

ei'j�j�· − &j�

∥∥∥∥∥
H1×L2

< �

 �
The main result of this section is the following.

Proposition 9 (Dynamical Modulation). There exists �̃� L̃� C� C̃ > 0 such that for any
0 < � < �̃ and L > L̃ the following property is verified.

Let U�t� x� = �u1� u2��t� x� be a solution of (4) satisfying on a time interval I

U ∈ 	��� L�� for all t ∈ I�

For j = 1� � � � � N , there exist (unique) �1 functions

�̃j � I → �� �̃j � I → �−√
m�

√
m�� x̃j � I → �d�

such that if we define R̃j�t� and (�t� by

R̃j�t� = ei�̃j �t���̃j�t��vj
�· − x̃j�t��� (�t� = U�t�−

N∑
j=1

R̃j�t�� (34)

then ( satisfies for all t ∈ I the orthogonality conditions

�(� iR̃j�2 = �(� iJR̃j�2 = �(� �R̃j�2 = 0� j = 1� � � � � N� (35)

Moreover, for all t ∈ I we have


(
H1×L2 +
N∑
j=1

��̃j − �j� ≤ C̃�� x̃j+1 − x̃j >
L

2
� j = 1� � � � � N − 1�

and the derivatives in time verify

N∑
j=1

(
��t�̃j� +

∣∣∣∣�t�̃j − �̃j

	j

∣∣∣∣2 + ��tx̃j − vj�2
)
< C

(

(
22 + e−3�

√
m−�2

�v�t
)
� (36)

The proof of Proposition 9 relies on the following Lemma. Note that this lemma
is valid for time-independent functions.

Lemma 10 (Static Modulation). There exist L̃� C̃� �̃ > 0 such that for any L > L̃, 0 <
� < �̃, the following property is verified.
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For j = 1� � � � � N , there exist (unique) �1 functions

�̃j � 	��� L�→ �� �̃j � 	��� L�→ �−√
m�

√
m�� x̃j � 	��� L�→ �d�

such that if we define �̃j and ( by

�̃j = ei�̃j��̃j�vj
�· − x̃j�� ( = U −

N∑
j=1

�̃j

then ( satisfies the orthogonality conditions

�(� i�̃j�2 = �(� iJ�̃j�2 = �(� ��̃j�2 = 0� j = 1� � � � � N� (37)

Moreover,


(
H1×L2 +
N∑
j=1

��̃j − �j� ≤ C̃�� x̃j+1 − x̃j >
L

2
� j = 1� � � � � N − 1�

In the proofs, we will use the notation "�j
for the scaling operator, i.e.,

"�j
�̃j �=

�

��
ei�̃j���vj

�· − x̃j�
∣∣∣
�=�̃j

�

Proof. We start by proving the lemma in a ball. Take � > 0, L > 0, �'j�j=1�����N ⊂ �
and �&j�j=1�����N ⊂ �d such that &j+1 > &j + L for j = 1� � � � � N − 1. Let 
��� denote
the ball of H1��d�× L2��d� defined by


��� =
{
U ∈ H1��d�× L2��d�


∥∥∥∥∥U −
N∑
j=1

ei'j�j�x − &j�

∥∥∥∥∥
H1×L2

< �

}
�

Define �0 �= �'1� � � � � 'N ��1� � � � � �N � &1� � � � � &N �, and let � ⊂ �N ×�N × ��d�N ,
be a neighborhood of �0. We denote by

� = ��1� � � � � �N � )1� � � � � )N � y1� � � � � yN �

a generic element of �. We define the functional F � �×
���→ ���d+2��N by

F��� U� �=
Fk�1��� U�Fk�2��� U�
Fk�3��� U�


k=1�����N

�

where for k = 1� � � � � N we have set

Fk�1��� U� =
(
U −

N∑
j=1

ei�j �yj�)j�vj
� iei�k�yk�)k�vk

)
2

�

Fk�2��� U� =
(
U −

N∑
j=1

ei�j �yj�)j�vj
� iei�k�ykJ�)k�vk

)
2

�
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Fk�3��� U� =
(
U −

N∑
j=1

ei�j �yj�)j�vj
� ei�k�yk��)k�vk

)
2

�

Here, �y is the translation by y, i.e., �yv�x� = v�x − y�. We clearly have

F

(
�0�

N∑
j=1

ei'j�j�x − &j�

)
= 0�

The lemma inside the ball will follow from the Implicit Function Theorem if we
prove that

�F

��

(
� = �0� U =

N∑
j=1

ei'j�j�x − &j�

)
is invertible� (38)

The computation of the derivative is not very hard. Many terms will be made small
using the exponential decay of the profiles. Other will cancel due to orthogonality.
We will essentially be left with a diagonal matrix with nonzero entries, hence the
invertibility. We give only some representative calculations. Let’s start by

�Fk�1
��j

(
�0�

N∑
j=1

ei'j�j�x − &j�

)
= −�iei'j �&j��j�vj

� iei'k�&k��k�vk
�2�

When j = k, we readily have

�Fk�1
��k

(
�0�

N∑
j=1

ei'j�j�x − &j�

)
= −
��k�vk


22�

Assume now j �= k. Then, by exponential decay (see (6)), we have

��&j��j�vj
�&k��k�vk

� ≤ Ce−
√

m−�2j
2 �x−&j �e−

√
m−�2

k
2 �x−&k�

≤ Ce−
√

m−�2j
4 �x−&j �e−

√
m−�2

k
4 �x−&k�e−

√
min
m−�j2�m−�k2�

4 �&j−&k��

Therefore, since �&j − &k� > L, this implies∣∣∣∣∣�Fk�1��j

(
�0�

N∑
j=1

ei'j�j�x − &j�

)∣∣∣∣∣ ≤ Ce−
√

min
m−�2j �m−�2k�
4 L� (39)

This quantity can be made as small as we need by increasing the value of L. For the
derivative with respect to )j , we have

�Fk�1
�)j

(
�0�

N∑
j=1

ei'j�j�x − &j�

)
= −�ei�j �&j"�j

��j�vj
� iei�k�&k��k�vk

�2�
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When j �= k, this quantity can be made small as in (39). For j = k, since �� ∈ �,
we simply have

�Fk�1
�)k

(
�0�

N∑
j=1

ei'j�j�x − &j�

)
= −1

	
�"�j

��k
� i��k

� = 0�

All other computations follow from similar arguments and we finally find that

�F

��

(
�0�

N∑
j=1

ei'j�j�x − &j�

)
= DIAG+ O�e−

√
m−�2�
4 L�

where DIAG is a diagonal matrix with nonzero entries on the diagonal. Therefore,
for L large enough, we have the desired invertibility property (38) and the Implicit
Function Theorem implies the result inside the ball. Since any U ∈ 	��� L� belongs
to some ball 
���, the existence part follows in the cylinder 	��� L�. To show
uniqueness, one has to prove that the functions obtained are independent of the ball
chosen, we leave the details of this argument to the reader. �

Proof of Proposition 9. The first part of the statement follows from Lemma 10
(except the regularity that follows from other regularization arguments, see [28]),
hence the main thing to check is (36). We first write the equation verified by ( .
Recall that U satisfies �tU = JE′�U�. We replace U by

∑N
j=1 R̃j�t�+ (�t� in the

previous equation to get

�t( +
N∑
j=1

(
i�t�̃jR̃j + �t�̃j"�̃j

R̃j − �tx̃j · �R̃j
)
= JE′

( N∑
j=1

R̃j�t�+ (�t�

)

such that it follows

�t( +
N∑
j=1

(
i

(
�t�̃j −

�̃j

	j

)
R̃j + �t�̃j"�̃j

R̃j − ��tx̃j − vj� · �R̃j
)

= 
( +��(�+ O�e−3�
√
m−�2

�v�t� (40)

where 
 is the linearized operator defined by


 �= J

((−�+m 0
0 1

)
−

N∑
j=1

(
�p− 1��R̃j�p−3R̃jRe�R̃j ·̄�+ �R̃j�p−1 0

0 0

))

and ��(� is the remaining nonlinear part. To write this equation, we have used
Lemma 18, the fact that

E′
(

N∑
j=1

R̃j

)
=

N∑
j=1

E′�R̃j�+ O�e−3�
√
m−�2

�v�t��


 = JE′′
(

N∑
j=1

R̃j

)
+ O�e−3�

√
m−�2

�v�t�
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and that R̃j is a critical point of E + �̃j
	j
Q+ vj · P. An analogous computation is

derived in all details in Lemma 14.
Take now the scalar product of (40) with iJR̃k. By using Lemma 18, the

definition of R̃k, and the orthogonality conditions (35) it follows that

��R̃k� iJR̃k�2 = �iR̃k� iJR̃k�2 = 0

�"�̃j
Rj� iJR̃k�2 = ��R̃j� iJR̃k�2 = �iR̃j� iJR̃k�2 = O�e−3�

√
m−�2

�v�t� if j �= k

��t(� iJR̃k�2 = −�(� �tiJR̃k�2�

Therefore

�t�̃k�"�̃k
Q�R̃k�� = �
(� iJR̃k�2 + �(� �tiJR̃k�2 + O�
(
2H1×L2�+ O�e−3�

√
m−�2

�v�t��

(41)

where the term "�̃k
Q�R̃k� comes from

�"�̃k
R̃k� iJR̃k�2 = �R̃k� iJ"�̃k

R̃k�2 = "�̃k
Q�R̃k��

Note that by exponential localization

�
(� iJR̃k�2 = �(�
�iJR̃k�2 = �(� �JE′′�R̃k��
�iJR̃k�2 + O�e−3�

√
m−�2

�v�t��

We want to use the fact that iR̃k belongs to the kernel of S′′�R̃k� (see Lemma 7),
namely that (

J

(
E′′ + �̃k

	k
Q′′ + vk · P ′′

)
�R̃k�

)�
iJR̃k = 0�

To this aim, we use the definition (34) of R̃k, to compute the following time
derivative and make the missing parts appear.

�(� �tiJR̃k�2 =
�̃k

	k
�(� �JQ′′�R̃k��

�iJR̃k�2 + vk · �(� �JP ′′�R̃k��
�iJR̃k�2

+
(
�̃k

	k
− �t�̃k

)
�(� JR̃k�2 + �vk − �tx̃k� · �(� iJ�R̃k�2

+ �t�̃k�(� iJ"�̃k
R̃k�2�

Therefore, (41) gives

�t�̃k�"�̃k
Q�R̃k�� =

(
�̃k

	k
− �t�̃k

)
�(� JR̃k�2 + �vk − �tx̃k��(� iJ�R̃k�2

+ �t�̃k�(� iJ"�̃k
R̃k�2 + O�
(
2H1×L2�+ O�e−3�

√
m−�2

�v�t�� (42)
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Take the scalar product of (40) with �
�xj
R̃k for j = 1� � � � � d to get from similar

arguments

�vk − �tx̃k�
1
d

∥∥∥�R̃k∥∥∥2
2
= �
(��R̃k�2 + �(� �t�R̃k�2 + O�
(
2H1×L2�+ O�e−3�

√
m−�2

�v�t��

(43)

Conversely to what happened for (42), we do not expect to have a cancellation on
the linear term. We just estimate it by

�
(��R̃k�2 = �(�
��R̃k�2 ≤ C
(
2�

Therefore (43) gives

�vk − �tx̃k�
1
d

∥∥∥�R̃k∥∥∥2
2
= O�
(
H1×L2�+ O�e−3�

√
m−�2

�v�t�� (44)

Finally, take the scalar product of (40) with iR̃k and argue as previously to obtain

��t�̃k − �̃k�
∥∥∥R̃k∥∥∥2

2
= O�
(
H1×L2�+ O�e−3�

√
m−�2

�v�t�� (45)

Putting together (42), (44) and (45) we obtain a differential system for the
modulation equations vector Mod�t� �= ��t�̃j� �t�̃j − �̃j� �tx̃j − vj�j=1�����N of the
form

A ·Mod�t� = M�(�+ O�e−3�
√
m−�2

�v�t��

where �M�(�� ≤ C
(
H1×L2 . As long as the modulation parameter do not vary too
much and 
(
H1 remains small, A is invertible (it is of the form DIAG+ small with
DIAG a diagonal nondegenerate matrix) and we can deduce that

�Mod�t�� ≤ C
(
H1×L2 + O�e−3�
√
m−�2

�v�t�� (46)

Coming back now to (42), it is now easy to see that in fact we can improve in part
the previous estimate into

N∑
j=1

��t�̃j� ≤ C
(
2H1×L2 + O�e−3�
√
m−�2

�v�t�� (47)

This improvement is due to our choice of orthogonality conditions. Combining (46)
and (47) gives the desired result. �

6. Uniform Estimates

This Section is devoted to the proof of Proposition 1. We essentially follow the same
line as in the Schrödinger case [29]. Since our approximate multi-solitons have final
data Un�Tn� = R�Tn�, they satisfy the desired estimate at least on some interval �Tn −
�� Tn�. Thus the idea is to reduce things to a bootstrap argument: proposition 1 is a
consequence of the following proposition.
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Proposition 11 (Bootstrap). There exist � = ��d�N� > 0, and T0 ∈ � (independent
of n) such that for n large enough the following bootstrap property holds. For t† ∈
�T0� T

n�, if Un satisfies for all t ∈ �t†� Tn� the estimate


Un�t�− R�t�
H1×L2 ≤ e−�
√
m−�2

�v�t� (48)

then it will also satisfies for all t ∈ �t†� Tn� the better estimate


Un�t�− R�t�
H1×L2 ≤
1
2
e−�

√
m−�2

�v�t� (49)

Let us quickly indicate how to obtain Proposition 1 from Proposition 11.

Proof of Proposition 1. Proposition 11 implies Proposition 1 by means of a classical
continuity argument (see e.g., [29]). First, let us notice that the map t �→ Un�t� ∈
H1��d�× L2��d� is continuous. Second, let us define

t� �= inf
� ∈ �T0� Tn� such that (48) holds for all t ∈ ��� Tn���
Recall that Un�T

n� = R�Tn�, therefore we have T0 ≤ t� < Tn. Our purpose is to show
that t� = T0. Let us suppose that t� > T0. Thanks to (49) we get


Un�t�− R�t�
H1×L2 ≤
1
2
e−�

√
m−�2

�v�t�

for all t ∈ �t�� Tn�. By continuity it exists �1 > 0 such that


Un�t�− R�t�
H1×L2 ≤ e−�
√
m−�2

�v�t�

for all t ∈ �t� − �1� T
n�. This contradicts the definition of t� and finishes the

proof. �

Hence now we only have to prove Proposition 11. For the rest of the paper, we
make the following assumption.

Bootstrap Assumption. Let T0 > 0 to be determined later and assume that there exists
t† ∈ �T0� Tn� such that Un satisfies for all t ∈ �t†� Tn� the estimate


Un�t�− R�t�
H1×L2 ≤ e−�
√
m−�2

�v�t� (50)

We want to prove that in fact (50) holds with the better constant 1
2 on the left

hand side.
To prove Proposition 11, we need a way to control the difference between the

sum of solitons and the approximate multi-soliton Un. If there is only one soliton, it
is known since the ground work of Weinstein [52] that the coercivity property of the
hessian of the action functional (Lemma 8) provides a mean to control the difference
between a soliton and a solution close to the orbit of the soliton. As in [7, 8, 29, 34],
we are going to generalize such a property to the case of N solitons. To that purpose,
we define localized versions of the conservation laws around each solitons and prove
that a coercivity property also holds for the functional action related to the multi-
solitons.
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6.1. Bootstrap

In this section, we prove Proposition 11, assuming three intermediate Lemmas
proved in the later sections.

First of all, we begin by selecting a particular direction of propagation. Define
the application � � �d−1 → � by

��e� �= ∏
j �=k

��vj − vk� e��d �� e ∈ �1�

Let e1 be such that

��e1� = max
��e�� e ∈ �d−1� > 0� (51)

Here, the sup is a max since we are maximizing a continuous function on a compact
set. Let us prove the last inequality. We have

�−1�
0�� = ⋃
j �=k

e ∈ �d−1� �vj − vk� e��d = 0��

Each set composing the union on the right is of 0 Lesbegue measure, therefore so
is �−1�
0��. Hence �d−1 \�−1�
0�� �= ∅ and this proves (51). We can complete e1
into an orthonormal basis �e1� � � � � ed� of �

d and we infer from (51) that there exists
�̃ > 0 such that for any j �= k,

��vj − vk� e1��d � ≥ �̃�vj − vk�� (52)

Since (4) is rotation-invariant, we can assume that �e1� � � � � ed� is the canonical basis
of �d. Calling v1j the first component of the j-th velocity vector, up to reindexing
the solitons, we can assume that

v11 < v12 < · · · < v1N �

The localization works as follows. We first define a partition of unity �*j�j=1�����N :
take  a cutoff function such that

 �s� = 0 for s < −1 and  �s� = 1 for s > 1� 0 ≤  ′�s� ≤ 1 in �−1� 1��

∃C > 0� ∀s ∈ �� � ′�s�� ≤ C
√
 �s�� (53)

Define

 1�t� x� = 1�  j�t� x� =  

(
1√
t
�x1 −mjt�

)
� mj =

1
2
�v1j−1 + v1j ��

*j =  j −  j+1 for j = 1� � � � � N − 1 and *N =  N �

We consider the following localized action functional for W = �w1� w2� ∈ H1��d�×
L2��d�

� �t�W� =
N∑
j=1

Sj�t�W� =
N∑
j=1

Ej�t�W�+
�j

	j
Qj�t�W�+ vj · Pj�t�W��
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where for j = 1� � � � � N we have defined the localized energies, charges and
momenta by

Ej�t�W� �=
1
2

∫
�d

��w1�2*jdx +
m

2

∫
�d

�w1�2*jdx

+ 1
2

∫
�d

�w2�2*jdx −
1

p+ 1

∫
�d

�w1�p+1*jdx�

Qj�t�W� �= Im
∫
�d
w1w̄2*jdx�

Pj�t�W� �= Re
∫
�d
�w1w̄2*jdx�

Since Un verifies (50), we can assume that T0 is large enough, so that Un satisfies
the hypotheses of Proposition 9 and thus there exists a modulated sum of solitons
R̃ =∑N

j=1 R̃j and (n verifying the orthogonality conditions (35) such that

Un�t� = R̃�t�+ (n�t��


(n
H1×L2 ≤ Ce−�
√
m−�2

�v�t� (54)

Let us define the localized linearized action for R̃ by

�n�(n�t�� (n�t�� �=
N∑
j=1

�S′′j �R̃j�t��(n�t�� (n�t���

It turns out that �n is inheriting the coercivity property of the hessian of the
action around a single soliton (Lemma 8).

Lemma 12 (Coercivity). There exists C > 0 such that for all t ∈ �T0� Tn� the localized
Hessian verifies

�n�(n�t�� (n�t�� ≥ C
(n�t�
2H1×L2 �

In addition, since � �t� Un�t�� is made of localized versions of conserved
quantities, it varies slowly.

Lemma 13 (Almost conservation). For t ∈ �t�� Tn�, we have∣∣∣∣ ��t� �t� Un�t��
∣∣∣∣ ≤ o�e−2�

√
m−�2

�v�t��

We also have the following Taylor-like expansion for � �t� Un�t��.

Lemma 14 (Taylor-like expansion). The action � �t� Un�t�� satisfies for t ∈ �t�� Tn�

� �t� Un�t�� =
N∑
j=1

(
E�Rj�t��+

�j

	j
Q�Rj�t��+ vj · P�Rj�t��

)
+ �n�(n�t�� (n�t��+ o�e−2�

√
m−�2

�v�t��
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With Lemmas 12, 13 and 14 in hand, we can now conclude the proof of
Proposition 11.

Proof of Proposition 11. The first step is to show that


(n
2H1×L2 = o
(
e−2�

√
m−�2

�v�t
)
� (55)

Indeed, thanks to Lemma 13 we obtain

� �t� Un�t�� ≤ � �Tn� Un�T
n��+ o�e−2�

√
m−�2

�v�t�� (56)

Now notice that
∑N

j=1

(
E�Rj�t��+ �j

	j
Q�Rj�t��+ vj · P�Rj�t��

)
is a time independent

quantity. Therefore,

N∑
j=1

(
E�Rj�t��+

�j

	j
Q�Rj�t��+ vj · P�Rj�t��

)

=
N∑
j=1

(
E�Rj�Tn��+

�j

	j
Q�Rj�Tn��+ vj · P�Rj�Tn��

)
= � �Tn� Un�Tn���

Combined with Lemma 14 and (56), this implies

��(n�t�� (n�t�� = � �t� Un�t��−� �Tn� Un�Tn��+ o�e−2�
√
m−�2

�v�t� = o�e−2�
√
m−�2

�v�t��

By Lemma 12 we get

C
(n
2H1×L2 ≤ ��(n�t�� (n�t�� ≤ o�e−2�
√
m−�2

�v�t��

Hence (55) is proved. Now we have


Un − R
2H1×L2 ≤ 2
R̃− R
2H1×L2 + 2
(n
2H1×L2�

such that, by (55) and (36) we infer


Un − R
2H1×L2 ≤ C

(
N∑
j=1

��̃j�t�− �j�2 + ��̃j�t�− �j�2 + �x̃j�t�− xj�2
)
+ o�e−2�

√
m−�2

�v�t�

≤ o�e−2�
√
m−�2

�v�t��

Choosing t large enough we have


Un − R
H1×L2 ≤
1
2
e−�

√
m−�2

�v�t�

This concludes the proof. �
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6.2. Coercivity

From now on and until the end of this paper, the subscript n is removed when there is
no possible confusion. For example, Un is now denoted simply by U .

We first prove Lemma 12.

Proof of Lemma 12. From Lemma 8, we already know that for any j = 1� � � � � N
we have

�S′′�R̃j�t��(�t�� (�t�� ≥ C
(�t�
2H1×L2

where the dependency of S in j is understood (recall that S = E + �̃j
	j
Q+ vj · P). We

remark that

�Q′′
j �R̃j�(�t�� (�t�� = Im

∫
�d
(1�t��(2�t�*jdx

= Im
∫
�d
�
√
*j(1�t��

√
*j(2�t��dx = �Q′′�R̃j�

√
*j(�t��

√
*j(�t���

Similar computations can be performed for the momentum and the 0-order part of
the energy. We deal with the gradient part by means of the classical IMS localization
formula (see e.g., [50]):


�(1
22 =
N∑
j=1

(∥∥∥� (√*j(1

)∥∥∥2
2
−
∥∥∥∣∣∣� (√*j)∣∣∣(1

∥∥∥2
2

)
�

Straightforward computations using the definition of the cutoff functions *j
and (53) imply that ∥∥∥� (√*j)∥∥∥� ≤ C ′

√
t
�

This implies that ∥∥∥� (√*j)(1

∥∥∥2
2
≤ C ′

√
t

(
2H1×L2 �

Combining these informations, we infer that

��(�t�� (�t�� =
N∑
j=1

�S′′j �R̃j�t��(�t�� (�t��

=
N∑
j=1

�S′′�R̃j�t��
√
*j(�t��

√
*j(�t�� −

∥∥∥� (√*j)(1

∥∥∥2
2

≥
(
C − C ′

√
t

)

(�t�
2H1×L2 ≥

C

2

(�t�
2H1×L2�

where the last inequality follows from the fact that t ≥ T0 and T0 can be chosen so
that T0 ≥

(
2C′
C

)2
. �
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6.3. Almost Conservation

In this section, we prove Lemma 13. Recall that we have assumed that U ≡ Un
verifies the bootstrap assumption (50). We start with a preliminary lemma.

Lemma 15. Let * be a �1 function of the variable x1 such that * and *′ are bounded.
Then for all t in the time interval of existence of U we have

�

�t
Im
∫
�d
u1ū2*�x1�dx = Im

∫
�d
�x1u1ū1*

′�x1�dx�

�

�t
Re
∫
�d
�xj u1ū2*�x1�dx = −Re

∫
�d
�xj u1�x1 ū1*

′�x1�dx �j �= 1��

�

�t
Re
∫
�d
�x1u1ū2*�x1�dx =

∫
�d

(
− ��x1u1�2 +

1
2
���u1�2 +m�u1�2 − �u2�2�

− 1
p+ 1

�u1�p+1

)
*′�x1�dx�

Proof. The results follows from elementary computations using the fact that U is
a solution to (4). �

Proof of Lemma 13. Let U = �u1� u2� and let us start by looking at the derivative
of the localized charge. By Lemma 15 we have∣∣∣∣ ��t Im ∫�d

u1ū2 jdx

∣∣∣∣ = ∣∣∣Im ∫
�d
�x1u1ū1�x1 jdx + Im

∫
u1ū2�t jdx

∣∣∣
= 1√

t

∣∣∣∣∣Im ∫�d

(
�x1u1ū1 −

mj

2
u1ū2

)
 ′
(
x1 −mjt√

t

)
dx

∣∣∣∣∣
≤ C√

t

∫
Ãj

���x1u1ū1� + �u1ū2��dx�

where Ãj �= 
x ∈ �d
  ′
j�x� �= 0�. Remembering that *j =  j −  j+1 for j =

1� � � � � N − 1 and *N =  N , and defining Aj �= 
x ∈ �d
 *′
j �= 0� we have∣∣∣∣ ��t Im ∫�d

u1ū2*jdx

∣∣∣∣ ≤ C√
t

∫
Aj

���x1u1ū1� + �u1ū2��dx�

and then ∣∣∣∣ ��t Im ∫ u1ū2*jdx

∣∣∣∣ ≤ C√
t

(

u1
2H1�Aj�

+ 
u2
2L2�Aj�
)
�

Now notice that 
U
2
H1�Aj�×L2�Aj� ≤ 2
U − R
2

H1��d�×L2��d�
+ 2
R
2

H1�Aj�×L2�Aj�. Thanks
to Lemma 18 we have


R
2H1�Aj�×L2�Aj� ≤ 
Rj
2H1�Aj�×L2�Aj� + O�e−3�
√
m−�2

�v�t��
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By using the properties of our partition of unity and the decay of the profile of Rj
it follows that


Rj
2H1�Aj�×L2�Aj� ≤
∫
�x1�≥ �̃

2 v�t
Ce−

1
2

√
m−�2

� �x�dx ≤ Ce−
�̃
4

√
m−�2

�v�t�

Recall that �̃ stems from (52). We conclude thanks to the bootstrap assumption (50)
that ∣∣∣∣ ��tQj�t� U�t��

∣∣∣∣ = o�e−2�
√
m−�2

�v�t� (57)

if we choose � < �̃
8 . Now we focus on the derivative of the localized momenta. We

start with the first component of the momentum. By Lemma 15 we have∣∣∣∣ ��tRe
∫
�x1u1ū2 jdx

∣∣∣∣
≤ 1√

t

∫
�d

[
�x1u1ū2 −

(
−m1

2
��x1u1�2 +

�u2�2
2

− ��u1�2
2

− m�u1�2
2

)
− �u1�p+1

p+ 1

]
 ′
(
x1 −m1t√

t

)
dx

≤ C√
t

[

u1
2H1�Aj�

+ 
u2
2L2�Aj� + 
u1
p+1
Lp+1�Aj�

]
≤ C√

t

[

u1
2H1�Aj�

+ 
u2
2L2�Aj� + 
u1
p+1
H1�Aj�

]
�

Now we argue as for the derivative of the localized charge. The other components
of the momentum can be estimated in a similar fashion. Thus we have∣∣∣∣ ��tPj�t� U�t��

∣∣∣∣ = o�e−2�
√
m−�2

�v�t�� (58)

Remark now that

� �t� U�t�� = E�U�t��+
N∑
j=1

�j

	
Qj�t� U�t��+ vj · Pj�t� U�t���

Since E is a conserved quantity, combining (57) and (58) gives the desired result. �

6.4. The Taylor Expansion

We now prove Lemma 14. We start by an estimate on the modulation parameters.

Lemma 16. For any t ∈ �t�� Tn�, we have

N∑
j=1

��̃j�t�− �j� = O�e−2�
√
m−�2

�v�t��
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Proof. Recall that U =∑N
j=1 R̃j + ( . Thanks to the interaction estimates given by

Lemma 18 and the orthogonality conditions it follows

Qj�t� U� = Q�R̃j�+ Im
∫
�d
(1

�(2*jdx + O�e−3�
√
m−�2

�v�t�� (59)

We already computed the time-derivative of Qj during the proof of Lemma 13
(see (57)), and it implies

�Qj�t� U�t��−Qj�T
n� U�Tn��� = o�e−2�

√
m−�2

�v�t�� (60)

Thanks to the scaling property (7) of the profile we get

Q�R̃j�t��−Q�R̃j�Tn��

= 	j

(
−�̃j�t��m− �̃j�t�

2�
2

p−1− d
2 + �̃j�T

n��m− �̃j�T
n�2�

2
p−1− d

2

)

�̃�x�
22�

= 	j

(
−�̃j�t�

(
m− �̃j�t�

2
) 2
p−1− d

2 + �̃j

(
m− �̃2

j

) 2
p−1− d

2

)

�̃�x�
22�

where the last inequality is due to the fact that �̃j�T
n� = �j . By simple Taylor

expansion in frequencies we conclude

Q�R̃j�t��−Q�R̃j�Tn��

= 	j

[
−�m− �2

j �
2

p−1− d
2 + 2�2

j �
2

p− 1
− d

2
��m− �2

j �
2

p−1− d
2 −1

]
��̃j�t�− �j�
�̃�x�
22

+ o��̃j�t�− �j�� (61)

Since �j is part of the set �stab (see (1)) we have

−�m− �2
j �

2
p−1− d

2 + 2�2
j

(
2

p− 1
− d

2

)
�m− �2

j �
2

p−1− d
2 −1 > 0�

Combining the bootstrap assumption (50), and (59)–(61) gives the desired
result. �

Proof of Lemma 14. The first step consists in splitting the action using U =∑N
j=1 R̃j + ( . We start with the energy part. We have

N∑
j=1

Ej�t� U� = E�U� = E�R̃+ (� = E�R̃�+ E′�R̃�( + 1
2
�E′′�R̃�(�(� + o�
(
2H1×L2��

We treat the 0 order term first. By Lemma 18, we have

E�R̃� = 1
2

∥∥∥∥∥�
(

N∑
j=1

R̃j�1

)∥∥∥∥∥
2

2

+ m

2

∥∥∥∥∥ N∑
j=1

R̃j�1

∥∥∥∥∥
2

2

+ 1
2

∥∥∥∥∥ N∑
j=1

R̃j�2

∥∥∥∥∥
2

2

− 1
p+ 1

∥∥∥∥∥ N∑
j=1

R̃j�1

∥∥∥∥∥
p+1

p+1

=
N∑
j=1

(
1
2

�R̃j�1
22 +

m

2

R̃j�1
22 +

1
2

R̃j�2
22 −

1
p+ 1


R̃j�1
p+1
p+1

)
+ O�e−3�

√
m−�̃2

�v�t�
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where �̃� = max
��̃j�
 j = 1� � � � � N�. In short, we have

E�R̃� =
N∑
j=1

E�R̃j�+ O�e−3�
√
m−�̃2

�v�t��

Now notice that

e−3�
√
m−�2

�v�t − e−3�
√
m−�̃2

�v�t = −��e
−3�

√
m−�2

�v�t�3�v�t�√
m− �2

�

��̃� − ���+ o���̃� − �����

such that, thanks to Lemma 16, we get

E�R̃� =
N∑
j=1

E�R̃j�+ O�e−3�
√
m−�2

�v�t��

Using similar arguments we have

E′�R̃�( =
N∑
j=1

E′�R̃j�( + O�e−3�
√
m−�2

�v�t��

�E′′�R̃�(�(� =
N∑
j=1

�E′′�R̃j�(�(� + O�e−3�
√
m−�2

�v�t��

The proof follows the same steps for the localized charges and momenta: we have

Qj�U� =
N∑
j=1

(
Q�R̃j�+Q′�R̃j�( + 1

2
�Q′′

j �R̃j�(�(�
)
+ O�e−3�

√
m−�2

�v�t��

Pj�U� =
N∑
j=1

(
P�R̃j�+ P ′�R̃j�( + 1

2
�P ′′

j �R̃j�(�(�
)
+ O�e−3�

√
m−�2

�v�t��

The second step consists in expanding �̃j around �j using Lemma 16. Remembering
that R̃j is a critical point of E + �̃j

	j
Q+ vj · P, we infer

E′�R̃j�+
�j

	j
Q′�R̃j�+ vj · P ′�R̃j� =

�j − �̃j

	j
Q′�R̃j��

From Lemma 16, (50) and (54), it follows that∣∣∣∣�j − �̃j

	j
Q′�R̃j�(

∣∣∣∣ ≤ O�e−2�
√
m−�2

�v�t�
(
H1×L2 ≤ O�e−3�
√
m−�2

�v�t��

The only thing left to see is to remove the tildes corresponding to modulation. We
have

N∑
j=1

(
E�R̃j�+

�j

	j
Q�R̃j�+ vj · Pj�R̃j�

)

=
N∑
j=1

(
E�Rj�+

�j

	j
Q�Rj�+ vj · Pj�Rj�+ O���̃j − �j�

2�

)
�
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where we have used the fact that

��̃j − �j��E
′ + �j

	j
Q′ + vj · P ′��Rj�

�Rj

��
= 0�

Thanks to Lemma 16 we have

N∑
j=1

��̃j − �j�2 ≤ O�e−4�
√
m−�2

�v�t��

Gathering all these informations we get the desired result. �

A Appendix

Lemma 17 (Rellich-Kondrachov in Hs). Let � be a bounded open set, s ≥ 0 and � >
0, and un ∈ Hs��d� be a bounded sequence such that supp un ⊂ �. Then there exists
u ∈ Hs such that 
un − u
Hs−� = o�1�.

Proof. Let un be a bounded sequence in Hs��� weakly converging to u ∈ Hs, we
shall prove that, up to subsequences, 
un − u
Hs−� = o�1�. By Plancherel identity we
have


un − u
2Hs−� =
∫
�&�≤R

�1+ �&�2�s−��ûn�&�− û�&��2d&

+
∫
�&�>R

�1+ �&�2�s−��ûn�&�− û�&��2d&�

We have∫
�&�>R

�1+ �&�2�s−��ûn�&�− û�&��2d& ≤ 1
�1+ R2��

∫
�1+ �&�2�s�ûn�&�− û�&��2d&

≤ 2
�1+ R2��


un
2Hs �

In addition � is bounded and by weak convergence we have ûn�&�→ û�&�. To
conclude it suffices to show that∫

�&�≤R
�1+ �&�2�s−��ûn�&�− û�&��2d& = o�1�� (62)

Notice that


ûn
L���� ≤ 
un
L1��� ≤ ����
1
2 
un
L2��� ≤ ����

1
2 
un
Hs

and hence �1+ �&�2�s−��ûn�&�− û�&��2 is dominated by C�1+ �R�2�s−� such that (62)
holds.

Now, fix � > 0 and choose R > 0 and N sufficiently large such that∫
�&�>R

�1+ �&�2�s−��ûn�&�− û�&��2d& ≤ �

2
�
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and for all n ≥ N ∫
�&�≤R

�1+ �&�2�s−��ûn�&�− û�&��2d& ≤ �

2
�

i.e., 
un − u
Hs−� ≤ �. �

Lemma 18 (Interactions estimates). There exists f ∈ L�
t L

1
x����

d� ∩ L�
t L

�
x ����

d�
such that if j �= k

�RjRk� + �Rj�Rk� + ��Rj�Rk� + �Rj�*k + ��Rj�*k ≤ Ce−3�
√
m−�2

�v�tf�t� x�∣∣∣∣∣�R�p+1 −
N∑
l=1

�Rl�p+1

∣∣∣∣∣+
∣∣∣∣∣�R�p−1R−

N∑
l=1

�Rl�p−1Rl

∣∣∣∣∣+
∣∣∣∣∣�R�p−1 −

N∑
l=1

�Rl�p−1

∣∣∣∣∣
≤ Ce−3�

√
m−�2

�v�tf�t� x��

Proof. We start proving that there exists f ∈ L�
t L

1
x����

d� ∩ L�
t L

�
x ����

d� such
that if j �= k

�RjRk� ≤ Ce−3�
√
m−�2

�v�tf�t� x��

Thanks to (6) (the Lorenz transform gives indeed only a contraction along the
direction of propagation) we know that

�Rj� ≤ Ce−
1
2

√
m−�2

j �x−vj t� ≤ Ce−
1
2

√
m−�2

� �x−vj t�

�Rk� ≤ Ce−
1
4

√
m−�2

k�x−vj t� ≤ Ce−
1
4

√
m−�2

� �x−vkt��

By a simple change of variable we get

�Rj��Rk� ≤ Ce−
1
2

√
m−�2

� �x�e−
1
4

√
m−�2

� �x−�vk−vi�t���

such that, thanks to the following inequality

�x − �vk − vj�t� ≥ ��vk − vj�t� − �x� ≥ v�t − �x�
we conclude

�Rj��Rk� ≤ Ce−
1
4

√
m−�2

� �x�e−
1
4

√
m−�2

�v�t�

Taking 3� ≤ 1
4 we get the desired estimate. The estimates for �Rj�Rk� and ��Rj�Rk�

follow analogously.
Now we shall prove that if j �= k

�Rj�*k ≤ Ce−3�
√
m−�2

�v�tf�t� x��

Let us suppose without any lack of generality that j < k− 1. Notice that

�Rj�*k ≤ C− 1
2

√
m−�2

� �x−vj t��� 12 �vk−1+vk�t−
√
t� 12 �vk+1+vk�t+

√
t�
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that implies

�Rj�*k ≤ Ce−
1
2

√
m−�2

� �x−vj t����vj+v��t−
√
t�vkt+

√
t��

By a simple change of variable we get

�Rj�*k ≤ Ce−
1
2

√
m−�2

� �x���v�t−
√
t��vk−vj�t+

√
t��

Now, for t ≥ max
 4
v2�
� 1�, it follows

�Rj�*k ≤ Ce−
1
4

√
m−�2

� �x�e−
1
4

√
m−�2

� �x��� 12 v�t��vk−vj+1�t� ≤ Ce−
1
8

√
m−�2

�v�te−
1
4

√
m−�2

� �x�� (63)

Now for � < 1
24 we conclude

�Rj�*k ≤ Ce−3�
√
m−�2

�v�te−
1
4

√
m−�2

� �x��

The case j ≥ k− 1, j �= k, follows identically as well as the estimates concerning the
gradient. The second part of the lemma follows from the inequality

��a+ b�p − �a�p − �b�p� ≤ C��a��b�p−1 + �a�p−1�b�� with p > 0

that derives from the elementary inequality

��1+ t�p − 1− �t�p� ≤ C��t� + �t�p−1� with p > 0�

By arguing as before we get the desired estimates. �
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