
Differential systems

Exercise 1. 1. Compute the solution (y1, y2) to the system{
y′1 = 2y1, y1(0) = 1,

y′2 = y2, y2(0) = 1.

Prove that y1(t) = y2(t)
2 and give a graphical representation in the plan of t 7→ (y1(t), y2(t)) (called the

trajectory of the solution).

Solution: We can first observe that the differential system is made of two decoupled equations (i.e.
each equation is involving only one unkown function). As a consequence, we may solve each equation
separetly. We find for the general solutions of each equations

y1(t) = C1e
2t, y2(t) = C2e

t, C1, C2 ∈ R.

Then, we use the initial conditions to specify the constants C1 and C2. We have for the general
solution

y1(0) = C1e
0 = C1,

hence we must have
C1 = 1.

Similarly, we obtain
C2 = 1.

Therefore, the solution of the system with initial conditions is

(y1, y2)(t) =
(
e2t, et

)
.

We indeed have the relation
y1(t) = e2t =

(
et
)2

= y2(t)
2.

The curve described by (y1, y2) is therefore the part of a parabola, as is represented on the following
picture
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The green part corresponds to t < 0 and the orange part corresponds to t > 0.

2. Compute the solution (y1, y2) of the system{
y′1 = 2y1, y1(0) = 1,

y′2 = −y2, y2(0) = −1.

and represent the trajectory.



Solution: We can first observe that the differential system is made of two decoupled equations (i.e.
each equation is involving only one unkown function). As a consequence, we may solve each equation
separetly. We find for the general solutions of each equations

y1(t) = C1e
2t, y2(t) = C2e

−t, C1, C2 ∈ R.

Then, we use the initial conditions to specify the constants C1 and C2. We have for the general
solution

y1(0) = C1e
0 = C1,

hence we must have
C1 = 1.

Similarly, we obtain
C2 = −1.

Therefore, the solution of the system with initial conditions is

(y1, y2)(t) =
(
e2t,−e−t

)
.

We now have the relation
y1(t) = e2t =

(
−e−t

)−2
= y2(t)

−2.

The curve described by (y1, y2) is represented on the following picture
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The green part corresponds to t < 0 and the orange part corresponds to t > 0.

Exercise 2. 1. Give the matrix diagonalization of A =

(
3 −2
1 0

)
.

Solution: The diagonalization of a matrix requires to find the eigenvalues and the corresponding
eigenvectors.
We start by finding the eigenvalues as the roots of the characteristic polynomial of the matrix. The
polynomial in the variable λ is given by

det(A− λI) =
∣∣∣∣3− λ −2

1 −λ

∣∣∣∣ = λ2 − 3λ+ 2 = (λ− 1)(λ− 2).

Therefore, the eigenvalues of A are 1 and 2.
We now find the eigenvectors, starting with the eigenvectors associated with the eigenvalue λ = 1.
That is, we search for all vectors V =

(
α
β

)
, V 6= 0 such that

AV = V.
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This matrix equation can easily be converted into a system for the coordinates :

AV = V ⇐⇒
(
3 −2
1 0

)(
α
β

)
=

(
α
β

)
⇐⇒

(
3α− 2β

α

)
=

(
α
β

)
⇐⇒

{
3α− 2β = α,

α = β.

This last system reduces in fact to the single equation

α = β.

Hence all eigenvectors V of A associated with 1 are of the form

V =

(
β
β

)
= β

(
1
1

)
, β ∈ R \ {0}.

The same procedure may be followed to find the eigenvectors associated with 2. Indeed, we now
search for all vectors V =

(
α
β

)
, V 6= 0 such that

AV = 2V.

This matrix equation can easily be converted into a system for the coordinates :

AV = V ⇐⇒
(
3 −2
1 0

)(
α
β

)
= 2

(
α
β

)
⇐⇒

(
3α− 2β

α

)
=

(
2α
2β

)
⇐⇒

{
3α− 2β = 2α,

α = 2β.

As before this last system reduces in fact to the single equation

α = 2β.

Hence all eigenvectors V of A associated with 2 are of the form

V =

(
2β
β

)
= β

(
2
1

)
, β ∈ R \ {0}.

To conclude the diagonalization procedure, we construct an invertible matrix with the eigenvectors
and a diagonal matrix with the eigenvalues. It is easy in the present case, as the eigenvalues are all
real and simple. We may therefore define

P =

(
1 2
1 1

)
, D =

(
1 0
0 2

)
.

Then we have
A = PDP−1,

which concludes the diagonalization procedure for A.

2. Deduce the general expression of the solutions to the system{
y′1 = 3y1 − 2y2,

y′2 = y1.

Solution: It should first be observed that the system may be reinterpreted as a matrix differential
equation. Indeed, define

Y =

(
y1
y2

)
.
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Then the system is equivalent to
Y ′ = AY.

We introduce the auxilliary unknown
Z = P−1Y.

Then, using the diagonalization of A, we may rewrite the matrix equation in the following way :

Y ′ = AY ⇐⇒ Y ′ = PDP−1Y ⇐⇒ P−1Y ′ = DP−1Y ⇐⇒ (P−1Y )′ = DP−1Y ⇐⇒ Z ′ = DZ.

Denote the components of Z by z1 and z2. Then we may reinterpret the matrix equation in Z as a
system :

Z ′ = DZ ⇐⇒

{
z′1 = z1,

z′2 = 2z2.

Compare to the original system, this one has the advantage of being decoupled and therefore each
composing equation may be solved separately. We find

z1(t) = C1e
t, C1 ∈ R, z2(t) = C2e

2t, C2 ∈ R.

To find the solutions of the original system, it is now sufficient to go back to the original variable
using P . Indeed, we have

Z = P−1Y ⇐⇒ Y = PZ.

Therefore, (
y1(t)
y2(t)

)
= P

(
z1(t)
z2(t)

)
=

(
z1(t) + 2z2(t)
z1(t) + z2(t)

)
=

(
C1e

t + 2C2e
2t

C1e
t + C2e

2t

)
, C1, C2 ∈ R.

3. Compute the solution corresponding to the initial conditions y1(0) = 3, y2(0) = 2 and represent its
trajectory.

Solution: At t = 0, the general solution previously computed gives(
y1(0)
y2(0)

)
=

(
C1 + 2C2

C1 + C2

)
,

hence in order to satisfy the initial conditions we request that C1, C2 are such that{
C1 + 2C2 = 3, C1 + C2 = 2.

This system may be solved by elementary manipulations : substracting the second line to the first
gives

C2 = 1,

and by substitution in one of the equation we obtain

C1 = 1.

As a consequence, the solution with initial y1(0) = 3, y2(0) = 2 is

y1(t) = et + 2e2t, y2(t) = et + e2t.

The curve described by (y1, y2) is represented on the following picture.
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The green part corresponds to t < 0 and the orange part corresponds to t > 0.

4. ** Using the same strategy employed in the previous questions compute and represent in the plan the
solution of {

y′1 = 5y1 − 6y2, y1(0) = 3,

y′2 = 3y1 − 4y2, y2(0) = 2.

Solution: It should first be observed that the system may be reinterpreted as a matrix differential
equation. Indeed, define

Y =

(
y1
y2

)
, A =

(
5 −6
3 −4

)
.

Then the system is equivalent to
Y ′ = AY.

As for the previous case, we diagonalize the matrix A. We start by finding the eigenvalues as the
roots of the characteristic polynomial of the matrix. The polynomial in the variable λ is given by

det(A− λI) =
∣∣∣∣5− λ −6

3 −4− λ

∣∣∣∣ = λ2 − λ− 2 = (λ+ 1)(λ− 2)

Therefore, the eigenvalues of A are −1 and 2.
We now find the eigenvectors, starting with the eigenvectors associated with the eigenvalue λ = −1.
That is, we search for all vectors V =

(
α
β

)
, V 6= 0 such that

AV = −V.

This matrix equation can easily be converted into a system for the coordinates :

AV = V ⇐⇒
(
5 −6
3 −4

)(
α
β

)
= −

(
α
β

)
⇐⇒

(
5α− 6β
3α− 4β

)
=

(
−α
−β

)
⇐⇒

{
5α− 6β = −α,
3α− 4β = −β.

This last system reduces in fact to the single equation

α = β.

Hence all eigenvectors V of A associated with 1 are of the form

V =

(
β
β

)
= β

(
1
1

)
, β ∈ R \ {0}.

The same procedure may be followed to find the eigenvectors associated with 2. Indeed, we now
search for all vectors V =

(
α
β

)
, V 6= 0 such that

AV = 2V.
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This matrix equation can easily be converted into a system for the coordinates :

AV = V ⇐⇒
(
5 −6
3 −4

)(
α
β

)
= 2

(
α
β

)
⇐⇒

(
5α− 6β
3α− 4β

)
=

(
2α
2β

)
⇐⇒

{
5α− 6β = 2α,

3α− 4β = 2β.

As before this last system reduces in fact to the single equation

3α = 6β.

Hence all eigenvectors V of A associated with 2 are of the form

V =

(
2β
β

)
= β

(
2
1

)
, β ∈ R \ {0}.

To conclude the diagonalization procedure, we construct an invertible matrix with the eigenvectors
and a diagonal matrix with the eigenvalues. It is easy in the present case, as the eigenvalues are all
real and simple. We may therefore define

P =

(
1 2
1 1

)
, D =

(
−1 0
0 2

)
.

Then we have
A = PDP−1,

which concludes the diagonalization procedure for A.
We now introduce the auxilliary unknown

Z = P−1Y.

Then, using the diagonalization of A, we may rewrite the matrix equation in the following way :

Y ′ = AY ⇐⇒ Y ′ = PDP−1Y ⇐⇒ P−1Y ′ = DP−1Y ⇐⇒ (P−1Y )′ = DP−1Y ⇐⇒ Z ′ = DZ.

Denote the components of Z by z1 and z2. Then we may reinterpret the matrix equation in Z as a
system :

Z ′ = DZ ⇐⇒

{
z′1 = −z1,
z′2 = 2z2.

Compare to the original system, this one has the advantage of being decoupled and therefore each
composing equation may be solved separately. We find

z1(t) = C1e
−t, C1 ∈ R, z2(t) = C2e

2t, C2 ∈ R.

To find the solutions of the original system, it is now sufficient to go back to the original variable
using P . Indeed, we have

Z = P−1Y ⇐⇒ Y = PZ.

Therefore, (
y1(t)
y2(t)

)
= P

(
z1(t)
z2(t)

)
=

(
z1(t) + 2z2(t)
z1(t) + z2(t)

)
=

(
C1e

−t + 2C2e
2t

C1e
−t + C2e

2t

)
, C1, C2 ∈ R.

At t = 0, the general solution previously computed gives(
y1(0)
y2(0)

)
=

(
C1 + 2C2

C1 + C2

)
,

hence in order to satisfy the initial conditions we request that C1, C2 are such that{
C1 + 2C2 = 3,

C1 + C2 = 2.
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This system may be solved by elementary manipulations : substracting the second line to the first
gives

C2 = 1,

and by substitution in one of the equation we obtain

C1 = 1.

As a consequence, the solution with initial y1(0) = 3, y2(0) = 2 is

y1(t) = e−t + 2e2t, y2(t) = e−t + e2t.

The curve described by (y1, y2) is represented on the following picture.
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The green part corresponds to t < 0 and the orange part corresponds to t > 0.

Exercise 3. We consider the system

(S)


y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 1,

y′3 = 2y1 + y2 − 2y3, y3(0) = −3.

1. Give the matrix A such that the system (S) is formulated under the form Y ′ = AY . Then give the
diagonalization of A.

Solution: Define the vector unknown Y and the matrix A by

Y =

y1y2
y3

 , A =

0 1 0
0 0 1
2 1 −2

 .

Then the system is indeed equivalent to
Y ′ = AY.

We now proceed to the diagonalization of A.
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We start by finding the eigenvalues as the roots of the characteristic polynomial of the matrix. The
polynomial in the variable λ is given by

det(A− λI) =

∣∣∣∣∣∣
−λ 1 0
0 −λ 1
2 1 −2− λ

∣∣∣∣∣∣ .
This determinant might be computed using the Sarrus rule or by developing along one line or one
column (forgot how to do that ? check https://youtu.be/4xFIi0JF2AM). We find

det(A− λI) = −λ3 − 2λ2 + λ+ 2.

This is a cubic polynomial and we have to find its roots. It turns out that 1 is clearly a root and we
may then factorize the characteristic polynomial as follows

det(A− λI) = −(λ− 1)(λ2 + 3λ+ 2) = −(λ− 1)(λ+ 2)(λ+ 1).

Therefore, the eigenvalues of A are −2, −1 and 1.
We now find the eigenvectors, starting with the eigenvectors associated with the eigenvalue λ = −2.
That is, we search for all vectors V =

( α
β
γ

)
, V 6= 0 such that

AV = −2V.

This matrix equation can easily be converted into a system for the coordinates :

AV = −2V ⇐⇒

0 1 0
0 0 1
2 1 −2

αβ
γ

 = −2

αβ
γ



⇐⇒

 β
γ

2α+ β − 2γ

 =

−2α−2β
−2γ

 ⇐⇒

β = −2α,
γ = −2β,
2α+ β − 2γ = −2γ,

This last system reduces in fact to a system of two equations{
β = −2α,
γ = −2β,

which we may reformulate in order to express the parameters β and γ in terms of α :{
β = −2α,
γ = 4α,

Hence all eigenvectors V of A associated with −2 are of the form

V =

 α
−2α
4α

 = α

 1
−2
4

 , α ∈ R \ {0}.

The same procedure may be followed to find the eigenvectors associated with −1. Indeed, we now
search for all vectors V =

( α
β
γ

)
, V 6= 0 such that

AV = −V.
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This matrix equation can easily be converted into a system for the coordinates :

AV = −V ⇐⇒

0 1 0
0 0 1
2 1 −2

αβ
γ

 = −

αβ
γ



⇐⇒

 β
γ

2α+ β − 2γ

 =

−α−β
−γ

 ⇐⇒

β = −α,
γ = −β,
2α+ β − 2γ = −γ,

This last system reduces in fact to a system of two equations{
β = −α,
γ = −β,

which we may reformulate in order to express the parameters β and γ in terms of α :{
β = −α,
γ = α,

Hence all eigenvectors V of A associated with −1 are of the form

V =

 α
−α
α

 = α

 1
−1
1

 , α ∈ R \ {0}.

We follow again the same procedure to find the eigenvectors associated with 1. We now search for
all vectors V =

( α
β
γ

)
, V 6= 0 such that

AV = V.

This matrix equation can easily be converted into a system for the coordinates :

AV = V ⇐⇒

0 1 0
0 0 1
2 1 −2

αβ
γ

 =

αβ
γ



⇐⇒

 β
γ

2α+ β − 2γ

 =

αβ
γ

 ⇐⇒

β = α,

γ = β,

2α+ β − 2γ = γ,

This last system reduces in fact to a system of two equations{
β = α,

γ = β,

which we may reformulate in order to express the parameters β and γ in terms of α :{
β = α,

γ = α,

Hence all eigenvectors V of A associated with 1 are of the form

V =

αα
α

 = α

1
1
1

 , α ∈ R \ {0}.

To conclude the diagonalization procedure, we construct an invertible matrix P with the eigenvectors
and a diagonal matrix D with the eigenvalues. It is easy in the present case, as the eigenvalues are
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all real and simple. We may therefore choose any of the eigenvectors associated with each of the
eigenvalues to construct P . We define

P =

 1 1 1
−2 −1 1
4 1 1

 , D =

−2 0 0
0 −1 0
0 0 1

 .

Then we have
A = PDP−1,

which concludes the diagonalization procedure for A.

2. Compute the general solutions of (S).

Solution: We introduce the auxilliary unknown

Z = P−1Y.

Then, using the diagonalization of A, we may rewrite the matrix equation in the following way :

Y ′ = AY ⇐⇒ Y ′ = PDP−1Y ⇐⇒ P−1Y ′ = DP−1Y ⇐⇒ (P−1Y )′ = DP−1Y ⇐⇒ Z ′ = DZ.

Denote the components of Z by z1, z2 and z3. Then we may reinterpret the matrix equation in Z as
a system :

Z ′ = DZ ⇐⇒


z′1 = −2z1,
z′2 = z2

z′3 = z3.

Compare to the original system, this one has the advantage of being decoupled and therefore each
composing equation may be solved separately. We find

z1(t) = C1e
−2t, C1 ∈ R, z2(t) = C2e

−t, C2 ∈ R, z3(t) = C3e
t, C3 ∈ R.

To find the solutions of the original system, it is now sufficient to go back to the original variable
using P . Indeed, we have

Z = P−1Y ⇐⇒ Y = PZ.

Therefore,y1(t)y2(t)
y3(t)

 = P

z1(t)z2(t)
z3(t)

 =

 z1(t) + z2(t) + z3(t)
−2z1(t)− z2(t) + z3(t)
4z1(t) + z2(t) + z3(t)

 =

 C1e
−2t + C2e

−t + C3e
t

−2C1e
−2t − C2e

−t + C3e
t

4C1e
−2t + C2e

−t + C3e
t

 , C1, C2, C3 ∈ R.

3. Give the expression of the solution corresponding to the initial conditions y1(0) = 0, y2(0) = 1 and
y3(0) = −3.

Solution: At t = 0, the general solution previously computed givesy1(0)y2(0)
y3(0)

 =

 C1 + C2 + C3

−2C1 − C2 + C3

4C1 + C2 + C3

 ,

hence in order to satisfy the initial conditions we request that C1, C2 and C3 are such that
C1 + C2 + C3 = 0

−2C1 − C2 + C3 = 1

4C1 + C2 + C3 = −3
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This system may be solved by one of the available techniques to solve linear systems (don’t remember
any of those ? check https://en.wikipedia.org/wiki/System_of_linear_equations). We proceed
to a first part of Gaussian elimination followed by a back-substitution. The augmented matrix of the
system is reduced as follows : 1 1 1 0

−2 −1 1 1
4 1 1 −3

 ∼
 1 1 1 0

0 1 3 1
0 −3 −3 −3

 ∼
 1 1 1 0

0 1 3 1
0 0 6 0

 .

The last row of the augmented matrix gives

C3 = 0.

and back-substitution leads to
C2 = 1, C1 = −1.

As a consequence, the solution with initial data y1(0) = 0, y2(0) = 1 and y3(0) = −3 is

y1(t) = −e−2t + e−t, y2(t) = 2e−2t − e−t, y3(t) = −4e−2t + e−t.

4. ** Using the same strategy employed in the previous questions, compute the solution of
y′1 = y2 + y3, y1(0) = 1,

y′2 = y1 + y3, y2(0) = 1,

y′3 = y1 + y2, y3(0) = 1.

Solution: Define the vector unknown Y , the vector initial data Y0 and the matrix A by

Y =

y1y2
y3

 , Y0 =

1
1
1

 , A =

0 1 1
1 0 1
1 1 0

 .

Then the system is equivalent to
Y ′ = AY, Y (0) = Y0.

We now proceed to the diagonalization of A.
We start by finding the eigenvalues as the roots of the characteristic polynomial of the matrix. The
polynomial in the variable λ is given by

det(A− λI) =

∣∣∣∣∣∣
−λ 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ .
This determinant has the particularity that each row contains the same coefficients in a different
order, a situation in which it is convenient to sum all columns on the first one and then factor out
the appearing term :∣∣∣∣∣∣

−λ 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2− λ 1 1
2− λ −λ 1
2− λ 1 −λ

∣∣∣∣∣∣ = (2− λ)

∣∣∣∣∣∣
1 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ .
The remaining 3× 3 determinant may then be reduced be substracting the first column to the other
two : ∣∣∣∣∣∣

1 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 0 0
1 1− λ 0
1 0 1− λ

∣∣∣∣∣∣ .
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The obtained determinant is lower triangular, hence it may be calculated by doing the product of
the diagonal terms : ∣∣∣∣∣∣

1 0 0
1 −1− λ 0
1 0 −1− λ

∣∣∣∣∣∣ = (−1− λ)2.

To summarize, we have (arranging the signs) established that

det(A− λI) = −(λ− 2)(λ+ 1)2,

and therefore the eigenvalues of A are −1 and 2, the eigenvalue −1 being double (i.e. it appears with
a power 2 in the characteristic polynomial).
We now find the eigenvectors, starting with the eigenvectors associated with the eigenvalue λ = −1.
That is, we search for all vectors V =

( α
β
γ

)
, V 6= 0 such that

AV = −V.

This matrix equation can easily be converted into a system for the coordinates :

AV = V ⇐⇒

0 1 1
1 0 1
1 1 0

αβ
γ

 = −

αβ
γ

 ⇐⇒
β + γ
α+ γ
α+ β

 =

−α−β
−γ

 ⇐⇒

β + γ = −α
α+ γ = −β
α+ β = −γ

This last system reduces in fact to a single equation

α+ β + γ = 0.

This equation has three unknowns, hence two of them may be chosen as free parameters which will
determine the last one. Thus all eigenvectors V of A associated with −1 are of the form

V =

 α
β

−α− β

 = α

 1
0
−1

+ β

 0
1
−1

 , (α, β) ∈ R2 \ {(0, 0)}.

Observe right now that we have here two non-colinear (hence independent) eigenvectors for −1, which
are

(
1
0
−1

)
and

(
0
1
−1

)
.

The same procedure may be followed to find the eigenvectors associated with 2. Indeed, we now
search for all vectors V =

( α
β
γ

)
, V 6= 0 such that

AV = 2V.

This matrix equation can easily be converted into a system for the coordinates :

AV = 2V ⇐⇒

0 1 1
1 0 1
1 1 0

αβ
γ

 = 2

αβ
γ

 ⇐⇒

β + γ
α+ γ
α+ β

 =

2α
2β
2γ

 ⇐⇒

β + γ = 2α,

α+ γ = 2β,

α+ β = 2γ.

Hence we have to solve the system 
−2α+ β + γ = 0,

α− 2β + γ = 0,

α+ β − 2γ = 0.

We may start a Gaussian elimination procedure by adding 1/2 of the first line to the second and the
third to get 

−2α+ β + γ = 0,

−3
2β + 3

2γ = 0,
3
2β −

3
2γ = 0.
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Hence the system reduces to a system of two equations :{
−2α+ β + γ = 0,

β = γ,

which may then be rearranged to get {
α = γ,

β = γ.

Hence all eigenvectors V of A associated with 2 are of the form

V =

 γ
−γ
γ

 = γ

1
1
1

 , γ ∈ R \ {0}.

To conclude the diagonalization procedure, we construct an invertible matrix P with the eigenvectors
and a diagonal matrix D with the eigenvalues. We have two non-colinear eigenvectors for −1 and
may choose any eigenvector associated with 2 to construct P . We define

P =

 1 0 1
0 1 1
−1 −1 1

 , D =

−1 0 0
0 −1 0
0 0 2

 .

Then we have
A = PDP−1,

which concludes the diagonalization procedure for A.
We introduce the auxilliary unknown

Z = P−1Y.

Then, using the diagonalization of A, we may rewrite the matrix equation in the following way :

Y ′ = AY ⇐⇒ Y ′ = PDP−1Y ⇐⇒ P−1Y ′ = DP−1Y ⇐⇒ (P−1Y )′ = DP−1Y ⇐⇒ Z ′ = DZ.

Denote the components of Z by z1, z2 and z3. Then we may reinterpret the matrix equation in Z as
a system :

Z ′ = DZ ⇐⇒


z′1 = −z1,
z′2 = −z2
z′3 = 2z3.

Compare to the original system, this one has the advantage of being decoupled and therefore each
composing equation may be solved separately. We find

z1(t) = C1e
−t, C1 ∈ R, z2(t) = C2e

−t, C2 ∈ R.z3(t) = C3e
2t, C3 ∈ R.

To find the solutions of the original system, it is now sufficient to go back to the original variable
using P . Indeed, we have

Z = P−1Y ⇐⇒ Y = PZ.

Therefore,y1(t)y2(t)
y3(t)

 = P

z1(t)z2(t)
z3(t)

 =

 z1(t) + z3(t)
z2(t) + z3(t)

−z1(t)− z2(t) + z3(t)

 =

 C1e
−t + C3e

2t

C2e
−t + C3e

2t

−C1e
−t − C2e

−t + C3e
2t

 , C1, C2, C3 ∈ R.

At t = 0, the general solution previously computed givesy1(0)y2(0)
y3(0)

 =

 C1 + C3

C2 + C3

−C1 − C2 + C3

 ,

Page 13



hence in order to satisfy the initial conditions we request that C1, C2 and C3 are such that
C1 + C3 = 1

C2 + C3 = 1

−C1 − C2 + C3 = 1

This system may be solved by one of the available techniques to solve linear systems (don’t remember
any of those ? check https://en.wikipedia.org/wiki/System_of_linear_equations). We proceed
to a first part of Gaussian elimination followed by a back-substitution. The augmented matrix of the
system is reduced as follows : 1 0 1 1

0 1 1 1
−1 −1 1 1

 ∼
 1 0 1 1

0 1 1 1
0 −1 2 2

 ∼
 1 0 1 1

0 1 1 1
0 0 3 3

 .

The last row of the augmented matrix gives

C3 = 1.

and back-substitution leads to
C2 = 0, C1 = 0.

As a consequence, the solution with initial data y1(0) = 1, y2(0) = 1 and y3(0) = 1 is

y1(t) = e2t, y2(t) = e2t, y3(t) = e2t.

Exercise 4. We consider an electrical circuit given by

.
The intensities I1 and I2 are solutions of the differential system

dI1
dt

= −
(
R+R1

L1

)
I1 −

(
R2

L1

)
I2 +

UCA
L1

,

dI2
dt

= −
(
R1

L2

)
I1 −

(
R+R2

L2

)
I2 +

UDA
L2

.

In the following, we consider the case where L1 = L2 = 1, R = 1, R1 = 2, R2 = 3.
1. Prove that the system verifies by the couple (I1, I2) is

dI1
dt

= −3I1 − 3I2 + UCA,

dI2
dt

= −2I1 − 4I2 + UDA.

Solution: The assertion follows immediately from the fact that, with the given values of the
parameters, we have

−
(
R+R1

L1

)
= −3, −

(
R2

L1

)
= −3, 1

L1
= 1, −

(
R1

L2

)
= −2, −

(
R+R2

L2

)
= −4, 1

L2
= 1.
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2. Compute the associated general solution of the homogenous system (i.e. for UCA = 0 and UDA = 0).

Solution: We want to find the general solution of
dI1
dt

= −3I1 − 3I2,

dI2
dt

= −2I1 − 4I2.

The system may be reinterpreted as a matrix differential equation. Indeed, define

I =

(
I1
I2

)
, A =

(
−3 −3
−2 −4

)
.

Then the system is equivalent to
I ′ = AI.

We diagonalize the matrix A. We start by finding the eigenvalues as the roots of the characteristic
polynomial of the matrix. The polynomial in the variable λ is given by

det(A− λI) =
∣∣∣∣−3− λ −3
−2 −4− λ

∣∣∣∣ = λ2 + 7λ+ 6 = (λ+ 6)(λ+ 1)

Therefore, the eigenvalues of A are −6 and −1.
We now find the eigenvectors, starting with the eigenvectors associated with the eigenvalue λ = −6.
That is, we search for all vectors V =

(
α
β

)
, V 6= 0 such that

AV = −6V.

This matrix equation can easily be converted into a system for the coordinates :

AV = V ⇐⇒
(
−3 −3
−2 −4

)(
α
β

)
= −6

(
α
β

)
⇐⇒

(
−3α− 3β
−2α− 4β

)
=

(
−6α
−6β

)
⇐⇒

{
−3α− 3β = −6α,
−2α− 4β = −6β.

This last system reduces in fact to the single equation

α = β.

Hence all eigenvectors V of A associated with 1 are of the form

V =

(
β
β

)
= β

(
1
1

)
, β ∈ R \ {0}.

The same procedure may be followed to find the eigenvectors associated with −1. Indeed, we now
search for all vectors V =

(
α
β

)
, V 6= 0 such that

AV = −V.

This matrix equation can easily be converted into a system for the coordinates :

AV = −V ⇐⇒
(
−3 −3
−2 −4

)(
α
β

)
= −

(
α
β

)
⇐⇒

(
−3α− 3β
−2α− 4β

)
=

(
−α
−β

)
⇐⇒

{
−3α− 3β = −α,
−2α− 4β = −β.

As before this last system reduces in fact to the single equation

−2α = 3β.

Hence all eigenvectors V of A associated with 2 are of the form

V =

(
−3β/2
β

)
=
β

2

(
−3
2

)
, β ∈ R \ {0}.
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To conclude the diagonalization procedure, we construct an invertible matrix with the eigenvectors
and a diagonal matrix with the eigenvalues. It is easy in the present case, as the eigenvalues are all
real and simple. We may therefore define

P =

(
1 −3
1 2

)
, D =

(
−6 0
0 −1

)
.

Then we have
A = PDP−1,

which concludes the diagonalization procedure for A.
We now introduce the auxilliary unknown

J = P−1I.

Then, using the diagonalization of A, we may rewrite the matrix equation in the following way :

I ′ = AI ⇐⇒ I ′ = PDP−1I ⇐⇒ P−1I ′ = DP−1I ⇐⇒ (P−1I)′ = DP−1I ⇐⇒ J ′ = DJ.

Denote the components of J by j1 and j2. Then we may reinterpret the matrix equation in J as a
system :

J ′ = DJ ⇐⇒

{
j′1 = −6j1,
j′2 = −j2.

Compare to the original system, this one has the advantage of being decoupled and therefore each
composing equation may be solved separately. We find

j1(t) = C1e
−6t, C1 ∈ R, j2(t) = C2e

−t, C2 ∈ R.

To find the solutions of the original system, it is now sufficient to go back to the original variable
using P . Indeed, we have

J = P−1I ⇐⇒ I = PJ.

Therefore,(
y1(t)
y2(t)

)
= P

(
j1(t)
j2(t)

)
=

(
j1(t)− 3j2(t)
j1(t) + 2j2(t)

)
=

(
C1e

−6t − 3C2e
−t

C1e
−6t + 2C2e

−t

)
, C1, C2 ∈ R.

3. We suppose that the tensions UCA and UDA are constants and equal to UCA = 3 and UDA = 8. Moreover
we suppose that the initial intensities I1(0) and I2(0) are equal to 0. Compute the corresponding solution
(I1, I2).

Solution: From the superposition principle, the general solution of the system with second member is
the sum of the general solution of the homogeneous system (which we already know) and a particular
solution of the system with second member. Here, the second member is(

UCA
UDA

)
=

(
3
8

)
.

Since the second member is given by constants, we expect to find a particular solution of the system
as constants. We search for (i1, i2) ∈ R2 such that the function defined by I1(t) = i1 and I2(t) = i2
verify the system. This is equivalent to request that{

0 = −3i1 − 3i2 + 3,

0 = −2i1 − 4i2 + 8.
⇐⇒

{
3i1 + 3i2 = 3,

2i1 + 4i2 = 8.
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This system may be solved in the following way. Calling L1 and L2 the first and second lines, do
2× L1− 3× L2 to get

−6i2 = −18 ⇐⇒ i2 = 3.

By substitution in L1 or L2, we readily get

i1 = −2.

Hence the constants functions equal to (3, 2) are a particular solution of the system, and the general
solution of the system is therefore given by{

I1(t) = C1e
−6t − 3C2e

−t − 2,

I2(t) = C1e
−6t + 2C2e

−t + 3.

To find the solution satisfying I1(0) = I2(0) = 0, we first observe that at t = 0 the general solution
verifies {

I1(0) = C1 − 3C2 − 2,

I2(0) = C1 + 2C2 + 3.

Hence we have to find C1, C2 such that{
0 = C1 − 3C2 − 2,

0 = C1 + 2C2 + 3.
⇐⇒

{
C1 − 3C2 = 2,

C1 + 2C2 = −3.

This system may be solved in the following way. We first substract the first line to the second to find

5C2 = −5 ⇐⇒ C2 = −1.

Then by substitution in any of the equations we get

C1 = −1.

Hence the solutions of the differential system that we were looking for are{
I1(t) = −e−6t + 3e−t − 2,

I2(t) = −e−6t − 2e−t + 3.
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