Fiche de rappels : Espace Projectif

Exercice 1 Soient $C = \mathbf{V}(Y - X^3) \subset \mathbb{C}^2$ (i.e C est égale au lieu des zéros du polynôme $Y - X^3$) et $\bar{C} \subset \mathbb{P}^2$ la courbe projective correspondante. Quel est le polynôme homogène qui définit \bar{C} ? Quels sont les points singuliers de \bar{C} ?

Exercice 2 Trouver les points d'intersection dans \mathbb{P}^2 des courbes suivantes (définies sur \mathbb{C}^2 de coordonnées x,y):

- 1. les droites y = 1 et y = 2.
- 2. la droite x = 0 et la parabole $y = x^2$.
- 3. Les "cercles" de rayon 2 centrés respectivement en (-1,0) et (1,0).

Exercice 3 On admet le *théorème de Bézout*: "si C_1 et C_2 sont deux courbes dans \mathbb{P}^2 de degrés respectifs d_1 et d_2 , alors $C_1 \cap C_2 = d_1.d_2$ points comptés avec multiplicité." En déduire que le groupe des automorphismes de \mathbb{P}^2 est isomorphe à $\operatorname{PGL}(3,\mathbb{C})$. Quels sont les automorphismes de \mathbb{P}^2 qui envoient la droite à l'infini sur l'axe des y, et le point [1:0:0] sur [0:0:1]? Quelle est l'image de la droite $y=\alpha$ par un tel automorphisme? Quelle est l'image de $\mathbf{V}(x-y^2)$?

Exercice 4 Dans \mathbb{P}^2 de coordonnées homogènes [X:Y:Z] on identifie le plan \mathbb{C}^2 de coordonnées x,y à la carte $Z\neq 0$.

Soient $C_1 = \{y^2 - x = 0\}$, $C_2 = \{xy - 1 = 0\}$, et $\bar{C_1}$, $\bar{C_2}$ les courbes projectives correspondantes.

- 1. Ecrire les équations homogènes qui définissent \bar{C}_1 et \bar{C}_2 et déterminer $\bar{C}_1 \cap \bar{C}_2$.
- 2. Soit p = [0:0:1] et $\bar{D} = \{Z=0\}$ la droite à l'infini. On considère l'application

$$f:[a:b:0] \in \bar{D} \to [f_1:f_2:f_3] \in \bar{C}_1$$

qui à tout point $q \in \bar{D}$ associe le point d'intersection de \bar{C}_1 avec la droite passant par p et q.

Expliciter f_1, f_2 et f_3 et montrer que f est bijective.

- 3. Existe-t-il un automorphisme g de $\mathbb{P}^2_{\mathbb{C}}$ tel que $g(\bar{C}_1) = \bar{D}$? (Si oui expliciter g, si non donner un court argument).
- 4. Existe-t-il un automorphisme g de $\mathbb{P}^2_{\mathbb{C}}$ tel que $g(\bar{C}_1) = \bar{C}_2$? (Si oui expliciter g, si non donner un court argument).

Exercice 5 Soit $C = \{y^2 = x^3\} \subset \mathbb{C}^2$. On dit que C est une *cubique cuspidale*.

- 1. Montrer que le point p=(0,0) est l'unique point singulier de C, et dessiner l'allure de la partie réelle de C.
- 2. En s'inspirant de l'exercice précédent, montrer que la projection π par rapport à p de C vers une droite (ne passant pas par p) est une bijection.
- 3. Choisir une droite, et écrire explicitement l'inverse de π : constater que π n'est pas un isomorphisme.

Exercice 6 Soit $f: x \in \mathbb{C} \to (x^3, x^2, x) \in \mathbb{C}^3$. On note C l'image de f, et $\bar{C} \in \mathbb{P}^3$ la courbe projective correspondante. On dit que \bar{C} est une *cubique gauche*.

- 1. Trouver deux polynômes de degré 2 $P_1, P_2 \in \mathbb{C}[x, y, z]$ tel que $C = \{P_1 = P_2 = 0\}$.
- 2. Expliciter $\bar{f}: \mathbb{P}^1 \to \mathbb{P}^3$ tel que $\bar{f}(\mathbb{P}^1) = \bar{C}$.
- 3. Ecrire les polynômes homogènes \bar{P}_1 et \bar{P}_2 , et montrer que $\bar{\mathbb{C}} \neq \{\bar{P}_1 = \bar{P}_2 = 0\}$.
- 4. Trouver un troisième polynôme quadratique P_3 tel que $\bar{\mathbb{C}} = \{\bar{P}_1 = \bar{P}_2 = \bar{P}_3 = 0\}$.

Exercice 7 On considère l'application

$$\sigma: [x:y:z] \rightarrow [yz:xz:xy]$$

appelée *application quadratique standard*. Quel est le domaine de définition de σ ? Montrer que σ induit un isomorphisme entre deux ouverts de Zariski. Quel est l'inverse de σ ? Exprimer σ dans la carte affine canonique (i.e. sur $\mathbb{C}^2 = \{z \neq 0\}$). Quelle est l'image d'une droite par σ (plusieurs cas à distinguer) ?

Exercice 8 Soit $f:(x,y)\in\mathbb{C}^2\to(x,y,xy)\in\mathbb{C}^3$.

- 1. Expliciter l'application $\bar{f}: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ qui prolonge f.
- 2. Montrer que l'image S de \bar{f} est une surface définie par une équation de degré 2.
- 3. Expliciter deux familles de droites dans \mathbb{P}^3 qui soient contenues dans S.
- 4. Pouvez-vous trouver une surface de \mathbb{P}^3 définie par une équation de degré 2 qui ne soit pas isomorphe à $\mathbb{P}^1 \times \mathbb{P}^1$?