Algèbre

Corrigé examen partiel

I - Exemples

- 1. \bar{a} est inversible dans $\mathbb{Z}/8\mathbb{Z}$ si et seulement si a est premier avec 8, on trouve 4 inversibles (qui sont en fait leur propre inverse) $\bar{1}, \overline{-1}, \bar{3}, \overline{-3}$.
- 2. On constate que les 4 classes restantes sont des diviseurs de zéro : $\bar{0}$ (qui est toujours un diviseur de zéro !), $\bar{2}$, $\bar{4}$, $\bar{6}$. On vérifie que chacune de ces classes multipliée par $\bar{4}$ donne la classe nulle.
- 3. Soit K un corps, et $I \subset K$ un idéal. Ou bien I = (0), ou bien I contient un élément non nul a, et alors I contient tout $b \in K$ car $b = (ba^{-1})a$. Ainsi K et (0) sont les deux seuls idéaux de K.
- 4. Premier exemple standard : $A = \mathbb{Z}$ est un anneau principal, et a = 2 est non nul et non inversible dans \mathbb{Z} .
 - Deuxième exemple standard: $A = \mathbb{R}[X]$ est un anneau principal, et a = X est non nul et non inversible dans $\mathbb{R}[X]$.
- 5. Premier exemple standard : $\mathbb{Z}[X]$ est un anneau factoriel, et I = (2, X) est un idéal non principal de $\mathbb{Z}[X]$.
 - Deuxième exemple standard : $\mathbb{R}[X,Y]$ est un anneau factoriel, et I=(X,Y) est un idéal non principal de $\mathbb{R}[X,Y]$.
- 6. Pour tout nombre premier p, $\mathbb{Z}/p\mathbb{Z}$ est un corps fini donc ne contient aucun sous-anneau infini, et en particulier pas de sous-anneau isomorphe à \mathbb{Z} .
- 7. Si P(X) = (X+1)(X-1) alors le quotient $\mathbb{R}[X]/(P)$ n'est pas intègre, et donc non isomorphe au corps \mathbb{C} : on peut invoquer le résultat du cours $(P \text{ n'est pas irréductible}, \text{ ce qui équivaut à pas premier dans } \mathbb{R}[X])$, ou le constater directement : $\overline{(X+1)}(\overline{X-1}) = \overline{0}$ dans le quotient. (On pouvait faire un argument similaire avec $P(X) = X^2$).
- 8. Dans l'anneau $\mathbb{Z}/6\mathbb{Z}$, on a $\bar{3} \cdot \bar{3} = \bar{3}$, ainsi $\bar{3}$ est un idempotent distinct de $\bar{0}$ et $\bar{1}$.

II - Applications du cours

- 1. Considérons dans $\mathbb{C}[X]$ le système de congruence $\begin{cases} P(X) \equiv X & \mod(X^2-1) \\ P(X) \equiv -2 & \mod(X+2) \end{cases}$
 - On constate que P(X) = X est une solution particulière évidente (!). Par ailleurs, $X^2 1$ et X + 2 sont premiers entre eux, donc (en écrivant une relation de Bézout dans l'anneau principal $\mathbb{C}[X]$), les idéaux $(X^2 1)$ et (X + 2) sont comaximaux. On applique le théorème des restes chinois, qui affirme que les solutions du système sont de la forme $P(X) = X + (X^2 1)(X + 2)Q(X)$, avec $Q(X) \in \mathbb{C}[X]$ arbitraire.
- 2. Soit $a \ge 0$ et $n \ge 2$ des entiers. On va utiliser le fait suivant : a et n sont premiers entre eux si et seulement si il existe une relation de Bézout au + nv = 1, avec $u, v \in \mathbb{Z}$.
 - (a) Supposons a et n premiers entre eux, écrivons une relation de Bézout et réduisons là modulo n, pour obtenir $\bar{a}\bar{u}+\bar{n}\bar{v}=\bar{1}$. Comme $\bar{n}=\bar{0}$, on obtient que \bar{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$, d'inverse \bar{u} .

- (b) Réciproquement, supposons que \bar{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$, d'inverse \bar{u} . Alors on a $\bar{a}\bar{u}=\bar{1}$, et donc il existe $v\in\mathbb{Z}$ tel que au=1-nv, autrement dit on a une relation de Bézout au+bv=1 et a et n sont donc premiers entre eux.
- 3. (a) On applique l'algorithme d'Euclide :

$$X^{3} + 7X^{2} + 8X - 16 = (X^{3} + 6X^{2} + 5X - 12) + X^{2} + 3X - 4$$
$$X^{3} + 6X^{2} + 5X - 12 = (X^{2} + 3X - 4)(X + 3) + 0$$

Ainsi le PGCD des polynômes $X^3 + 7X^2 + 8X - 16$ et $X^3 + 6X^2 + 5X - 12$ dans l'anneau $\mathbb{Q}[X]$ est égal à $X^2 + 3X - 4$.

- (b) Le quotient $\mathbb{Q}[X]/(P(X))$ est bien un espace vectoriel sur \mathbb{Q} , de dimension 2, admettant pour base $\bar{1}$, \bar{X} . (En général, si P(X) est un polynôme de degré n sur un corps K, le quotient K[X]/(P) est un espace vectoriel de dimension n et une base est $\bar{1}, \bar{X}, \ldots, \bar{X}^{n-1}$).
- 4. Soit A un anneau intègre, K son corps des fractions, et $P_1, P_2 \in A[X]$. Si P_2 est unitaire, alors le quotient Q obtenu en effectuant la division euclidienne de P_1 par P_2 est un polynôme à coefficient dans A. En effet le quotient Q se construit par récurrence comme une somme de $\frac{c_i}{b}X^i$ où les c_i sont dans A et b est le coefficient dominant de P_2 . (Remarque: en fait demander que b soit inversible dans A suffit).

III - Quizz.

- 1. Vrai, car ils sont tous deux isomorphes à \mathbb{R} . Pour tout $a \in \mathbb{R}$, on montre que $\mathbb{R}[X]/(X-a) \simeq \mathbb{R}$ en appliquant le théorème d'isomorphisme au morphisme surjectif $\phi \colon P(X) \in \mathbb{R}[X] \mapsto P(a) \in \mathbb{R}$, dont le noyau est (X-a).
- 2. Faux, l'anneau quotient $\mathbb{Z}[X]/(X^2-1)$ n'est pas intègre, car $\overline{(X+1)}$ $\overline{(X-1)} = \overline{0}$ dans ce quotient.
- 3. Faux, dans l'anneau quotient $\mathbb{R}[X,Y]/(X)$, $\bar{Y} \neq \bar{0}$ (car Y n'est pas un multiple de X) mais $\overline{YX} = \bar{0}$.
- 4. Vrai, si $a \wedge n = 1$ alors $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ est inversible, et si $a \wedge n = d > 1$ alors en posant $b = n/d \in \mathbb{N}$, on a $\bar{a}\bar{b} = \bar{0}$.
- 5. Faux, dans l'anneau $\mathbb{Z}[i]$ on a 1+i=i(1-i) et i est inversible, ainsi PGCD(1+i,1-i)=1+i.
- 6. Vrai, on montre que $\mathbb{R}[X]/(X^2+X+1)$ est isomorphe à \mathbb{C} en appliquant le théorème d'isomorphisme au morphisme $\varphi \colon P(X) \in \mathbb{R}[X] \mapsto P(j) \in \mathbb{C}$ où $j = e^{2i\pi/3}$ est une racine cubique de l'unité. En effet φ est surjectif (c'est déjà vrai en restriction aux polynômes de degré 1) et ker $\varphi = (X^2+X+1)$ car si P(j) = 0, alors $P(\bar{j}) = 0$ et donc P est multiple de $(X-j)(X-\bar{j}) = X^2+X+1$.