1. Donner un exemple de corps fini.

R'eponse:

Pour tout nombre premier p, l'anneau quotient $\mathbb{Z}/p\mathbb{Z}$ est un corps.

NB: On peut le justifier soit en disant que $p\mathbb{Z}$ est un idéal maximal de \mathbb{Z} , soit en exhibant directement un inverse \bar{u} pour chaque $\bar{a} \neq \bar{0}$ en écrivant une relation de Bézout au + pv = 1.

2. Donner deux exemples de polynômes irréductibles de degrés différents dans $\mathbb{R}[X]$.

R'eponse:

X et $X^2 + 1$ conviennent.

NB : Les polynômes irréductibles sur $\mathbb R$ sont les polynômes de degré 1, et les polynômes de degré 2 avec deux racines complexes conjuguées. Il n'y en a pas d'autre ! Par exemple $X^4+1=(X^2+\sqrt{2}X+1)(X^2-\sqrt{2}X+1)$ n'est PAS irréductible...

3. Les anneaux quotients $\mathbb{R}[X]/(X^2+1)$ et $\mathbb{R}[X]/(X^2+X+1)$ sont-ils isomorphes ? (Une phrase de justification attendue).

R'eponse:

Ces anneaux sont bien isomorphes, car ils sont tous deux isomorphes à \mathbb{C} .

NB: On montre les isomorphismes vers $\mathbb C$ en utilisant les morphismes d'évaluation $P(x)\mapsto P(i)$ et $P(X)\mapsto P(j)$ où $i,j=e^{2i\pi/3}$ sont racines respectives de X^2+1 , X^2+X+1 .

4. Notons \bar{Y} la classe du polynôme Y dans l'anneau quotient A/I, ou $A = \mathbb{R}[X,Y]$ et I = (X). Donner trois représentants de \bar{Y} de degrés différents.

R'eponse:

 $Y,\,Y+X^2$ et $Y+X^3Y^8$ conviennent (de degrés respectifs 1, 2 et 11).

NB: De façon générale, les représentants de \bar{Y} sont les polynômes de la forme Y + XP(X,Y), avec $P \in \mathbb{R}[X,Y]$ arbitraire.