Groupes

Examen final

Durée: 2 heures

Documents, calculatrice ou téléphone interdits. Le barême sur 20 est indicatif.

I - Exemples (5 points)

Justifier chacun des exemples en une ou deux phrases.

- 1. Donner un exemple d'élément d'ordre 15 dans le groupe symétrique S_8 .
- 2. Donner un exemple de deux éléments d'ordre 3 non conjugués dans le groupe symétrique S_6 .
- 3. Donner un exemple de groupe G et de deux éléments $a,b \in G$ d'ordre 2 tel que ab soit d'ordre 3.
- 4. Donner un exemple d'élément d'ordre 4 dans le groupe $GL_2(\mathbb{R})$ des matrices 2×2 inversibles à coefficients réels.
- 5. Donner un exemple d'élément d'ordre infini dans le groupe $\mathrm{SO}_2(\mathbb{R})$ des rotations du plan.

II - Groupes abéliens (5 points)

Les questions de cet exercice sont indépendantes. On attend une rédaction concise et précise.

- 1. Soit G un groupe abélien, $a \in G$ d'ordre m, et $b \in G$ d'ordre n, avec m et n premiers entre eux. Montrer que ab est d'ordre mn.
- 2. Soit G un groupe dont tous les éléments (à part le neutre) sont d'ordre 2. Montrer que G est abélien.
- 3. Soit \mathbb{R} le groupe additif des nombres réels, et $U \subset \mathbb{C}^*$ le sous-groupe multiplicatif des complexes de module 1. Expliciter un morphisme surjectif de \mathbb{R} vers U, et en déduire que U est isomorphe à un quotient de \mathbb{R} que l'on précisera.

III - Centre d'un p-groupe (5 points)

1. Rappeler la définition générale du centre $\mathcal{Z}(G)$ d'un groupe G.

Soit p un nombre premier, et G un p-groupe non trivial, c'est-à-dire un groupe d'ordre $|G|=p^a$ avec $a \ge 1$.

- 2. Ecrire une action de G sur lui-même de façon à ce que les orbites singleton soit précisément les éléments du centre $\mathcal{Z}(G)$.
- 3. Montrer que $|\mathcal{Z}(G)|$ est congru à 0 modulo p. Que cela implique-t-il sur $\mathcal{Z}(G)$?

Dans les deux dernières questions on suppose que G est un groupe d'ordre p^2 non cyclique.

- 4. Montrer que $\mathcal{Z}(G)$ contient un sous-groupe K isomorphe à $\mathbb{Z}/p\mathbb{Z}$.
- 5. Soit $h \in G$ un élément non contenu dans K. Donner l'ordre de h, et montrer qu'on a une structure de produit direct $G = K \times \langle h \rangle$.

IV - Le groupe du tétraèdre (5 points)

Soit T un tétraèdre régulier de \mathbb{R}^3 , on notera A_1, A_2, A_3, A_4 ses sommets. On rappelle que la notation $\operatorname{Isom}(T)$ désigne le groupe des isométries de \mathbb{R}^3 préservant T.

- 1. Expliciter de façon synthétique (sans faire de listes !) un morphisme injectif φ de Isom(T) vers le groupe symétrique S_4 (et justifier l'injectivité).
- 2. Quelle est la préimage de la transposition (12) par le morphisme φ ? Et celle de la permutation (12)(34)?
- 3. Montrer que φ est un isomorphisme entre Isom(T) et S_4 .
- 4. En utilisant l'action de Isom(T) sur les paires d'arêtes opposées de T, montrer qu'il existe un morphisme surjectif de Isom(T) vers S_3 .
- 5. En déduire que S_3 est isomorphe à un quotient de S_4 , en précisant le sous-groupe distingué mis en jeu dans ce quotient.