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Abstract. Polynomial automophisms of the affine plane (or space) can be
viewed as birational maps. This subgroup is sufficiently rich to share many
properties with the full Cremona group, but at the same time many more
specific combinatorial tools are available to study them.
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Lecture 1. Amalgamated product structure

1.1. Polynomial automorphisms. A polynomial automorphism is an automor-
phism of the affine space An.

Since An = Spec k[x1, . . . , xn], a polynomial automorphism g can be seen as a
k-automorphism of the algebra k[x1, . . . , xn]. We use the notation

g = (g1, · · · , gn), with gi ∈ k[x1, . . . , xn]
to denote such an automophism, where the condition on the gi is

k[g1, · · · , gn] = k[x1, · · · , xn]
The automophism g ∈ Autk k[x1, . . . , xn] induces a bijective polynomial map from
An to An, which we still denote by g. We will use the notation Aut(An) to de-
note such maps. Observe the groups Aut(An) and Autk k[x1, . . . , xn] are anti-
isomorphic, which causes endless confusion when adepts of one convention try to
understand the work of one of the other side.

We define the tame automorphism group
Tame(An) = 〈GLn, En〉 ⊆ Aut(An)

as the subgroup generated by linear and elementary automorphisms, where
En =

{
(x1, x2, . . . , xn) 7→ (x1 + P (x2, . . . , xn), x2, . . . , xn) | P ∈ k[x2, . . . , xn]

}
.

Observe that:
• Translations are tame automorphisms. Indeed τ = (x1 + 1, x2, . . . , xn) ∈ En,

and any translation is conjugate to τ by an element in GLn.
• The affine group An is a subgroup of the tame group.
• Triangular automorphisms of the form

(a1x1 + P1(x2, . . . , xn), a2x2 + P2(x3, . . . , xn), . . . , anxn)
form a subgroup of Tame(An), that we denote by Bn (B for Borel).

Observe also that polynomial automophism are a special kind of birational maps:
Aut(An) ⊆ Bir(Pn).

1.2. Amalgamated product and tree. Let G be a group, A, B ⊆ G two sub-
groups such that 〈A,B〉 = G. Consider the abstract free product A ∗ B, and
denote by iA : A ∩ B → A ∗ B, iB : A ∩ B → A ∗ B the two natural injective
morphisms. Then we construct N the normal subgroup in A ∗ B generated by all
products iA(h)iB(h)−1, where h ∈ A ∩ B. There is a natural surjective morphism
ϕ : A∗B → G, and N ⊆ kerϕ. We say that G is the amalgamated product of its
subgroups A,B along their intersection, denoted G = A ∗A∩B B, if G is isomorphic
to (A ∗ B)/N , that is, if N = kerϕ. Informally, one can say that all relations in
G = 〈A,B〉 come from the relations inside A or B. In particular, given choices of
representatives (ai), (bj) of the non-trivial left cosets A/(A ∩ B), B/(A ∩ B), any
element g ∈ G admits a unique factorization of the form g = wc, where w (for
word) is a finite alternate composition of some ai and bj , and c ∈ A ∩B.

Given such a structure we can construct an abstract simplicial tree T on which
the group G acts: this is the simplest instance of what is known as Bass-Serre
theory. The construction is as follows. The vertices of T are of two types, namely
the left cosets G/A and G/B, and the edges are the left cosets G/(A ∩ B), with
the following gluing rule: for each f ∈ G, the vertices fA and fE are joined by
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the edge f(A ∩ E). This defines a graph, and the fact that G is the amalgamated
product of A and B translates in the property that this graph has no loop, that is,
this is a tree. The group G acts naturally by isometry on this tree. If f, g ∈ G, we
have

g · fA = (g ◦ f)A, g · fB = (g ◦ f)B, and g · f(A ∩B) = (g ◦ f)(A ∩B).

Moreover the action is without inversion: if an edge is invariant it is point-wise
fixed. This follows from the fact that the two types of vertices are preserved by the
action.

1.3. Amalgamated product structure on Aut(A2). We want to show that any
relation in the group Aut[A2] is induced by the relations in the groups A = A2 and
B = B2. This is equivalent to show that a composition

h = a1 ◦ b1 ◦ · · · ◦ an ◦ bn with ai ∈ A \B, bi ∈ B \A

can never be equal to the identity. Note that we can restrict ourselves to such
compositions h, that is of even length and beginning by an affine automorphism.
Indeed if h is of odd length (and ≥ 3 : if h is of length 1 there is nothing to do) we
can reduce the length of h by a suitable conjugation. Furthermore if h is of even
length and begins by a triangular automorphism, we just consider h−1 instead.

Now it is easy to check that each automorphism bi, view as a birational map
on P2, contracts the line at infinity to the point [1 : 0 : 0] (because we suppose
bi 6∈ A). Furthermore, ai 6∈ B is equivalent to say that the point [1 : 0 : 0] is not a
fixed point of ai. By computing the images of a general point p at infinity under
bn, an ◦ bn, bn−1 ◦ an ◦ bn, etc, we deduce that the extension of h to P2 contracts
the line at infinity to the point a1([1 : 0 : 0]), which contradicts that h is distinct
from the identity.

1.4. Linearisation of finite subgroups.

Proposition 1.1. Assume the base field has characteristic zero. Let Γ ⊆ Aut(A2)
be a finite subgroup. Then Γ is linearisable, that is, there exists ϕ ∈ Aut(A2) such
that

ϕΓϕ−1 ⊆ GL2(k).

Proof. The first part of the proof is to use the action on the tree, and to observe
that a finite group of isometries on a tree has a global fixed point. Any finite set
of points has a circumcenter: pick any pair realizing the max of the distance, the
middle point is the circumcenter.

The second part of the proof is to show that any finite subgroup of A2 or B2 is
linearisable. We can apply the following quite general lemma. �

Lemma 1.2 ([BFL14, Lemma 5.1], see also [Fur83, Proposition 4]). Let G be a
group of transformations of a vector space V that admits a semi-direct product
structure G = M o L. Assume that M is stable by mean (i.e. for any finite
sequence m1, . . . ,mr in M , the mean 1

r

∑r
1mi is in M) and that L is linear (i.e.

L ⊆ GL(V )). Then any finite subgroup Γ ⊆ G is conjugate by an element of M to
a subgroup of L.
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Proof. Consider the morphism of groups
ϕ : G = M o L→ L

g = m ◦ ` 7→ `

For any g ∈ G we have ϕ(g)−1 ◦ g ∈ M . Given a finite group Γ ⊆ G, define
m = 1

|Γ|
∑
g∈Γ ϕ(g)−1 ◦ g. By the mean property, m ∈ M . Then, for each f ∈ Γ,

we compute:

m ◦ f = 1
|Γ|
∑
g∈Γ

ϕ(g)−1 ◦ g ◦ f

= 1
|Γ|
∑
g∈Γ

ϕ(f) ◦ [ϕ(f)−1 ◦ ϕ(g)−1] ◦ g ◦ f

= ϕ(f) ◦m.

Hence mΓm−1 is equal to ϕ(Γ), which is a subgroup of L. �

Example 1.3. The lemma applies to the following groups:
• The affine group An, with respect to the product

An = kn o GLn(k).
• The triangular group Bn with respect to the product

Bn = {(x1+P1(x2, . . . , xn), x2+P2(x3, . . . , xn), . . . , xn+Pn)}o{(a1x1, . . . , anxn)}.
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Lecture 2. A birational proof of Jung’s theorem

We follow [Lam02]. k is an algebraically closed field.

2.1. Birational extension of a polynomial automorphism. In the sequel we
consider g : X 99K P2 coming from a polynomial automorphism of A2. By this we
mean that we have a partition X = A2 ∪ D where D is an union of irreducible
curves (called the divisor at infinity), and a partition P2 = A2 ∪L where L is a line
(line at infinity), such that g induces an isomorphism from X \D to P2 \ L. This
situation implies some strong restrictions on the base points of g.

Lemma 2.1. Let X be a surface and g be a birational map from X to P2 coming
from a polynomial automorphism of A2. Assume that g is not a morphism. Then

(1) g admits a unique proper base point, located on the divisor at infinity of X;
(2) g admits some base points p1, · · · , ps (s ≥ 1) such that

(i) p1 is the unique proper base point;
(ii) for all i = 2, · · · , s, the point pi is located on the divisor produced by

the blow-up of pi−1;
(3) Every irreducible curve contained in the divisor at infinity of X is contracted

to a point by g;
(4) the first contracted curve of π2 is the strict transform of a curve contained

in the divisor at infinity of X;
(5) in particular, if X = P2, the first contracted curve by π2 is the strict trans-

form of the line at infinity in X.

Proof. We know that if p is a proper base point of g then there exists a curve
contracted to p by g−1. In our situation the only curve of P2 candidate to be
contracted is the line at infinity; so there is at most one proper base point for g
in X. As we suppose that g is not a morphism, g admits exactly one proper base
point.

Assertion (2) then comes from a straightforward induction. Furthermore, each
curve in the divisor at infinity in X either is contracted to a point, or is sent onto
the line at infinity in P2. Since g−1 contracts the line at infinity to a point, this
latter possibility is excluded : we just proved (3).

From the argument above we see that the divisor at infinity in M is composed
from the divisor with self-intersection −1 produced by the blow-up of ps, from
the other divisors produced by the sequence of blow-ups, all of which with self-
intersection less or equal to −2, and finally from the strict transform of the divisor
at infinity in X. The first curve contracted by π2 must have self-intersection −1,
and can not be the last curve produced by π1 (this would contradict the minimality
of the resolution), thus we see that the first curve contracted by π2 is the strict
transform of a curve contained in the divisor at infinity in X.

The last assertion is just another formulation of (4), in the case X = P2. �

2.2. The induction. We consider g a polynomial automorphism of A2, that we
extend as a birational self-map (still denoted g) of P2. If g is written

g : (x, y) 7→ (g1(x, y), g2(x, y))
and if n is the degree of g (i.e. the maximum of the degrees of g1 and g2), then the
extension of g to P2 is written in homogeneous coordinates as

g : [x : y : z] 99K [zng1(x/z, y/z) : zng2(x/z, y/z) : zn].
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The line at infinity in P2 is the line of equation z = 0. We want to prove that g is
a composition of affine and triangular automorphisms. The proof will proceed by
induction on the number #(g) of base points of g.

By Lemma 2.1(1) the extension g : P2 99K P2 admits a unique base point located
on the line at infinity. Composing g by an affine automorphism we can assume that
this point is [1 : 0 : 0]. In other words we have a commutative diagram:

P2

g0=g◦a−1

  

P2

a

>>

g
// P2

where a is affine and g0 admits [1 : 0 : 0] as base point. Obviously we have
#(g0) = #(g).

We are now going to prove that there exists a diagram

P2

g0◦ϕ−1

  

P2

ϕ

>>

g0
// P2

where ϕ is the extension of an triangular automorphism of A2, and such that
#(g0 ◦ ϕ−1) < #(g0).

Our strategy will be to consider the diagram given par Zariski’s theorem

M
π2

  

π1

~~

P2
g0

// P2

and to reorganize the blow-ups occurring in the sequences π1 and π2. Thus, in
the four following steps, ϕ will be constructed from some of the blow-ups of the
sequence π1 and some of the contractions of the sequence π2.

First step : blow-up of [1 : 0 : 0]. The point [1 : 0 : 0] is the first point blown-
up in π1; so we consider the surface F1 obtained by blowing-up P2 at the point
[1 : 0 : 0]. This surface is a completion of A2 which is naturally endowed with a
rational fibration coming from the lines y = constant. The divisor at infinity is
composed of two rational curves (i.e. isomorphic to P1) meeting transversally in
one point. On one hand we have the strict transform of the line at infinity in P2;
this is a fiber that we will denote f∞. On the other hand we have the exceptional
divisor of the blow-up, which is a section for the fibration : it will be denoted
s∞. We have f2

∞ = 0 and s2
∞ = −1. More generally for all n ≥ 1 we will denote

by Fn a completion of A2 with a structure of a rational fibration, such that the
divisor at infinity is composed of two transverse rational curves : one fiber f∞
and one section s∞ with self-intersection −n. These surfaces are classically called
Hirzebruch surfaces.

Now we come back to the map g0. We have a commutative diagram:
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F1
g1

  

P2

ϕ1

>>

g0
// P2

(D1)

where ϕ−1
1 is the blow-up map at the point [1 : 0 : 0]. we have

#(g1) = #(g0)− 1.

We consider again the diagram obtained from Zariski’s theorem applied to g0. From
Lemma 2.1(5) the first contracted curve in π2, which must be a curve with self-
intersection −1 in M , is the strict transform of the line at infinity. This is the fiber
f∞ in F1. Now in F1 we have f2

∞ = 0. The self-intersection of this curve still has
to drop by one, thus the base point p of g1 is located on f∞. Furthermore we know
by Lemma 2.1(2) that this same point p belongs to the curve s∞ produced by the
blow-up ϕ−1

1 . We conclude that p is precisely the intersection point of f∞ and s∞.

Second step : rising induction. In the following reasoning we use some maps
between ruled surfaces generally called “elementary transformations”. These trans-
formations are defined as the composition of one blow-up at a point p, followed
by the contraction of the strict transform of the rule containing p. In this way we
obtain a new ruled surface.

blow-up p

C

Q
Q
Q
Q
Q
Q
Q

�
�
�
�
�

A
A
A
A
A

�
�
�
�
�
�
�

S
F F ′

F

f f ′

p
• contract F

F ′
S′

•

In the proof of Lemmas 2.2 and 2.3 we will use such transformations, applied to
ruled surfaces with basis C isomorphic to P1.

Lemma 2.2. Let n ≥ 1, and let h be a birational map from Fn to P2 coming from
a polynomial automorphism of A2. Suppose that the unique proper base point of
h is the intersection point p of f∞(Fn) and s∞(Fn). Consider the commutative
diagram

Fn+1

h′

!!

Fn

ϕ
<<

h
// P2

where ϕ is the blow-up of p followed by the contraction of the strict transform of
f∞. Then the birational map h′ = h ◦ ϕ−1 satisfies the following two properties:
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(1) #(h′) = #(h)− 1;
(2) the proper base point of h′ is located on f∞(Fn+1).

Proof. We consider the decomposition of h as a sequence of blow-ups:

M

π1

~~

π2

  

Fn
h

// P2

The (strict) transform of s∞(Fn) inM has self-intersection less or equal to −2; then
Lemma 2.1(assertion 4) allows us to conclude that the first contracted curve in π2 is
the transform of f∞(Fn). Thus the transform of f∞(Fn) in M has self-intersection
−1; on the other hand in Fn we have f∞(Fn)2 = 0. It follows that after the blow-up
of p the rest of the sequence of blow-ups π1 is performed on points outside of f∞.
Instead of doing these blow-ups before contracting the transform of f∞(Fn) we can
reverse the order, that is we can first contract f∞(Fn) and then realize the rest of
the blow-up sequence.

After the blow-up of p and contraction of f∞(Fn), the resulting surface is of type
Fn+1. The blow-up p drops by one the number of base points, and the contraction of
f∞(Fn) do not create a new one : we have #(h′) = #(h)−1. Furthermore the base
point of h′ is located on the curve produced blowing-up p, that is f∞(Fn+1). �

At the end of the first step we can apply Lemma 2.2, with n = 1. The lemma
then gives a map h′ : F2 99K P2 whose proper base point is located on the fiber
f∞(F2). If this point is precisely the intersection point with the section at infinity,
we can apply again the lemma. Iterating this process as long as we remain under
the hypotheses of Lemma 2.2, we obtain a diagram

Fn
g2

  

F1

ϕ2

>>

g1
// P2

(D2)

where ϕ2 is obtained by applying n− 1 times Lemma 2.2. Furthermore we have
#(g2) = #(g1)− n+ 1.

Finally the base point of g2 is located on f∞(Fn), and is not the intersection point
with s∞(Fn) (otherwise we could apply the lemma once more).

Third step : descending induction. We are going to apply the following lemma,
which is similar to Lemma 2.2 (except that now we suppose n ≥ 2).

Lemma 2.3. Let n ≥ 2, and let h be a birational map of Fn to P2 that comes from
a polynomial automorphisms of A2. Suppose that the unique proper base point p of
h is located on f∞, but is not the intersection point of f∞ and s∞. Consider the
commutative diagram

Fn−1

h′

!!

Fn

ϕ
<<

h
// P2
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where ϕ is the blow-up of p followed by the contraction of the strict transform of
f∞(Fn). Then the birational map h′ satisfies the following two properties:

(1) #(h′) = #(h)− 1;
(2) the proper base point of h′ is located on f∞(Fn−1) and is not the intersection

point of f∞(Fn−1) and s∞(Fn−1).

Proof. Consider the decomposition of h given by Zariski’s theorem :

M

π1

~~

π2

  

Fn
h

// P2

The transform of s∞(Fn) in M has self-intersection −n, since n ≥ 2 we deduce
(lemma 2.1) that the first contracted curve of π2 is the transform of f∞(Fn). The
surface obtained by blowing-up p and contracting the transform of f∞ is of type
Fn−1. The equality #(h′) = #(h)−1 is straightforward. Denoting by F ′ the divisor
produced by the blow-up of p, h admits a (non proper) base point located on F ′.
Furthermore this point can not be the intersection point of F ′ and of the transform
of f∞(Fn), because otherwise we would have π−1

1 (f∞(Fn)) with self-intersection
less or equal to −2 and this contradicts that it should be the first contracted curve
of π2. Finally this point is the proper base point of h′, is located on f∞(Fn−1) and
is not the intersection point of f∞(Fn−1) and s∞(Fn−1). �

After the second step we are under the hypotheses of Lemma 2.3. Furthermore
if n ≥ 3 then the map h′ produced by the lemma still satisfies the hypotheses of
this same lemma. After applying n− 1 times Lemma 2.3 we obtain a diagram

F1
g3

  

Fn

ϕ3

>>

g2
// P2

(D3)

with
#(g3) = #(g2)− n+ 1.

Finally, the proper base point of g3 is located on f∞(F1), and is not the intersection
point of f∞(F1) and s∞(F1).

Fourth step : last contraction. Applying Zariski’s theorem to g3 we get a
diagram :

M

π1

~~

π2

  

F1 g3
// P2

Lemma 2.1(4) ensures that the first contracted curve in π2 is the strict transform
by π1 of either f∞ or s∞. Suppose this is the transform of f∞. Then after the
sequence of blow-ups π1 and the contraction of this curve, the transform of s∞
has self-intersection 0 and thus will not be contracted in the sequel of π2; this
contradicts the third assertion of Lemma 2.1. So the first contracted curve must
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be the transform of s∞, and we can contract the latter straight away to obtain the
following diagram:

P2

g4

  

F1

ϕ4

>>

g3
// P2

(D4)

The morphism ϕ4 is the blow-up map with exceptional divisor s∞, and since it is
defined up to isomorphism we can decide that the point onto which we contract is
[1 : 0 : 0]. Furthermore we have

#(g3) = #(g4).

Conclusion.

We can add up the four diagrams (D1), · · · , (D4) into only one

F1
ϕ2 //

g1

��

Fn
ϕ3 //

g2

��

F1
ϕ4

  

g3

��

P2

ϕ1

>>

g0
((

P2

g4
vvP2

or in more compact form :

P2

g4

  

P2

ϕ4◦ϕ3◦ϕ2◦ϕ1

>>

g0
// P2

with

#(g4) = #(g0)− 2n+ 1 (where n ≥ 2).
We now just have to check that ϕ = ϕ4 ◦ϕ3 ◦ϕ2 ◦ϕ1 is a triangular automorphism.
This is equivalent to show that ϕ preserve the foliation y = constant, that is that
ϕ preserves the pencil of lines passing through [1 : 0 : 0]. Now this fact is clear :
the blow-up ϕ1 sends the lines through [1 : 0 : 0] to the fibers of F1, ϕ2 and ϕ3
preserve the fibrations of F1 and Fn, and finally the contraction ϕ4 sends the fibers
of F1 to the lines passing through [1 : 0 : 0]. Thus the map g4 is an automorphism
of A2 obtained from g by composing first with an affine automorphism and then
with a triangular automorphism, and we have the inequality:

#(g4) < #(g).
By induction on #(g), this ends the demonstration.
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Lecture 3. Non simplicity

We follow [MO15].

3.1. The question of simplicity. We define the special automorphism group
of the affine plane SAut(A2) as the subgroup of automorphisms with Jacobian
1. This is the derived subgroup of Aut(A2), that is, the subgroup generated by
commutators, and a natural question is whether this group is simple or not. As an
application of classical small cancellation theory, it was proved by Danilov [Dan74]
that SAut(A2) is not simple; see also [FL10] where this result was revisited.

By recent versions of the small cancellation theory (see [DGO11, Cou14]), to
obtain the existence of proper normal subgroups in a given group G, it is sufficient
to find an action of G on a δ-hyperbolic space X and an element g ∈ G that acts
“Weakly Properly Discontinuously” on X (WPD property for short, see definition
below).

Here is a more precise (but not optimal) statement:

Proposition 3.1. Let G acting by isometries on a hyperbolic space X, and assume
g ∈ G is a hyperbolic isometry satisfying the WPD property. Then for sufficiently
large n the normal subgroup N = �gn� ⊆ G is a free proper normal subgroup of
G.

This strategy was successfully applied to the following groups:
• The mapping class group of a surface of genus ≥ 2: Dahmani & Guirardel
[DGO11].

• Aut(A2): Minasyan & Osin [MO15].
• Cremona group Bir(P2): Lonjou [Lon16].
• Tame(V ) where V is an affine quadric 3-fold: Martin [Mar15].
• Tame(A3): Lamy & Przytycki ([LP16], see poster!)

3.2. The WPD property on trees. Let G be a group acting by isometries on
a metric space X. Let A ⊆ X any subset, and ε ≥ 0. We define the pointwise
ε-stabilizer of A as the subset

StabεA = {g ∈ G; d(a, ga) ≤ ε for all a ∈ A}.
Observe that a priori StabεA is not stable under composition: this is not a subgroup
in general!

We leave the following lemma as an exercise.

Lemma 3.2. Let G be a group acting by isometries on a metric space X, and let
g ∈ G. The following are equivalent:

(1) ∃x ∈ X, ∀R ≥ 0, there exists M ∈ N such that StabR{x, gMx} is finite.
(2) ∀y ∈ X, ∀R ≥ 0, there exists M ∈ N such that StabR{y, gMy} is finite.

Any element g satisfying one of the equivalent properties of Lemma 3.2 is called
WPD (Weakly Properly Discontinuous). This notion is mostly relevant for a hy-
perbolic element g in the context of an action on a hyperbolic space. We focus now
on the case of a group acting on a tree.

For any isometry f of a tree T we denote by Min(f) the subtree of points
minimizing the distance d(x, f(x)), and `(f) this minimum (translation length). So
Min(f) corresponds to Fix(f) or Ax(f) according whether f is elliptic (`(f) = 0)
or hyperbolic (`(f) > 0).
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Recall the classical lemma (which also justifies that the infimum in the definition
of `(f) is indeed a minimum)

Lemma 3.3. Let g be an isometry d’un arbre T .
(1) If gx is the middle point of the segment [x, g2x] then the segment [x, g2x]

is contained in Min(g).
(2) For all point x ∈ T , the middle point m of the segment [x, gx] is contained

in Min(g).

Proof. (1) If gx = x there is nothing to show. Otherwise, the segments [gix, gi+1x]
form an infinite geodesic Γ on which g acts as a translation of length `(g) = d(x, gx).
If y is another point, and z is the projection of y on Γ, then d(y, gy) = `(g)+2d(y, z).
Thus Γ = Min(g), and by definition Γ contains the segment [x, g2x].

(2) Let [x, p] be the maximal subsegment of [x,m] such that [gp, gx] ⊆ [x, gx].
Then gp is the middle point of [p, g2p] (which also contains m), and we can apply
the previous point. �

We deduce the following result, which allows to construct hyperbolic isometries
with an axis containing a prescribed segment.

Lemma 3.4. Let g, h be two isometries of a tree T . Assume Min(g)∩Min(h) = ∅,
and denote by S the unique segment joining Min(g) and Min(h). Then g ◦ h is an
hyperbolic isometry whose axis contains S.

Proof. Assume that g and h are elliptic, the other cases are similar. We have
S = [x, y] with x ∈ Stab(g) and y ∈ Stab(h). The point x is the middle of
[y, (g ◦ h)y], and y is the middle point of [h−1x, x], so we can conclude by Lemma
3.3. �

Now we restrict ourselves to the case of simplicial trees, endowed with a metric
such that each edge is isometric to the segment [0, 1]. However such trees might
very well be non locally compact.

Lemma 3.5. [MO15, Lemma 4.1 and Corollary 4.2] Let G acting on a simplicial
tree T , and h ∈ G hyperbolic. Suppose there exist u, v ∈ Ax(h) such that Stab{u, v}
is finite. Then h is WPD.

Proof. Let ε ≥ 0. Without loss in generality, we can assume ε > d(u, v), and that h
translates from u to v along Ax(h). Pickm ∈ N such that d(u, hmu) > ε, and define
x = h−mu, y = h2mu. We are going to show that Stabε{u, h3mu} is finite, which
will show that h is WPD: see Lemma 3.2(1). Translating by h−m, it is equivalent
to show that Stabε{x, y} is finite.

• •
•

• • • •

•

• •
x=h−mu a u v hmu b y=h2mu h3mu

gx
gy

Let g ∈ Stabε{x, y} (so also g−1 ∈ Stabε{x, y}). Denote by a, b the projections
of gx, gy on the segment [x, y]. We have a ∈ [x, u] and b ∈ [hmu, y]. In particular
[u, v] ⊆ [a, b] = [x, y] ∩ [gx, gy]. Similarly, working with g−1 instead of g, we
obtain [u, v] ⊆ [x, y]∩ [g−1x, g−1y], and so translating by g we get g[u, v] ⊆ [a, b] =
[x, y] ∩ [gx, gy].
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There exist some ti ∈ G, i = 1, . . . , r, such that any image by an element of G
of the segment [u, v] contained in [x, y] is equal to one of the [tiu, tiv]. Moreover
by assumption Stab{u, v} = {fj ; j = 1, . . . , s} for some fj ∈ G. By definition
g[u, v] = ti[u, v] for some i, and so t−1

i g ∈ Stab{u, v} is equal to one of the fj .
Finally Stabε{x, y} ⊆ {tifj} is finite, as expected. �

Observe that Lemma 3.5 is false for the action of R on itself by translation: the
assumption that T is simplicial is crucial... Let us mention (we will not use this
fact) that conversely one can characterise WPD isometries on simplicial trees:
Proposition 3.6. [MO15, Proposition 4.7] Let G be a non virtually cyclic group
acting minimaly (no invariant subtree) on a simplicial tree T with at least 3 vertices.
The following are equivalent:

(1) G contains a WPD hyperbolic element (with respect to the action of G on
T );

(2) G does not fix any end of T , and there exist 2 vertices v1, v2 ∈ T such that
Stab{v1, v2} is finite.

3.3. Application to polynomial automorphisms. Let k be any field. We want
to apply the previous criterion to find WPD elements in the group Aut(A2

k), us-
ing the action on the Bass-Serre tree associated with the amalgamated product
structure

Aut(A2) = A ∗A∩B B.
Observe that the tree is not locally finite (even if the base field k is the field with
two elements!). We shall use the two involutions

β = (−x+ y2, y) ∈ B rA and τ = (y, x) ∈ ArB.

Proposition 3.7 (Compare with [MO15, Lemma 4.22]). Assume that char k 6= 2.
Then βτ = (−y + x2, x) ∈ Aut(A2) is a hyperbolic isometry satisfying the WPD
property.
Proof. We study automorphisms that fix the following path of length 6 (which is
included in the axis of βτ).

• • • • • • •τβτB τβA τB idA idB βA βτB

Let f an element stabilizing the edge between idA and idB, that is, f ∈ A ∩ B
can be written as

f = (ax+ by + c, dy + e).
Now f fixes the vertex τB if and only if τ−1fτ ∈ B. We compute:

τ−1fτ = (dx+ e, bx+ ay + c).
So f fixes the vertex τB if and only if b = 0, that we assume from now. Observe
also that ad 6= 0 since f is invertible.

Similarly, f fixes the vertices βA and βτB if and only if β−1fβ ∈ A and
τ−1β−1fβτ ∈ B, which is equivalent to β−1fβ of the form (a′x + c′, d′y + e′).
We compute:

β−1fβ = (−x+ y2, y) ◦ (ax+ c, dy + e) ◦ (−x+ y2, y)
= (−x+ y2, y) ◦ (−ax+ ay2 + c, dy + e)
= (ax− ay2 − c+ (dy + e)2, dy + e).
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So f fixes βA and βτB imply d2 = a and 2de = 0. Since char k 6= 2, this implies
e = 0.

Now f fixes pointwise the path of length 4 from τβτB to idB if and only if τfτ =
(dx, ay+c) fixes the path of length 4 from τB to βτB. By the above discussion, we
obtain the conditions a2 = d and c = 0. Finally the only automorphisms that fix
the path of length 6 from τβτB to βτA are the (ax, dy) with a2 = d and d2 = a,
which implies that a, d are cubic roots of unity. So this is a group of order at most
3, and we can conclude by Lemma 3.5. �

In characteristic 2, the automorphism g = (−y + x2, x) is definitely not WPD,
and the normal subgroup generated by any iterate of g is the whole group Aut(A2)
(see [Lon16, p. 2024]). However we have:

Proposition 3.8. Assume char k = 2. The element (y + x3, x) ∈ Aut(k2), which
is a hyperbolic isometry on the tree, satisfies the WPD property.

Proof. The proof is similar, working now with the involution β = (x+ y3, y). The
computation for β−1fβ becomes:

β−1fβ = (x+ y3, y) ◦ (ax+ c, dy + e) ◦ (x+ y3, y)
= (x+ y3, y) ◦ (ax+ ay3 + c, dy + e)
= (ax+ ay3 + c+ d3y3 + d2ey2 + de2y + e3, dy + e).

We obtain e = 0 and a = d3. By symmetry c = 0 and d = a3, and again the
subgroup of elements fixing pointwise this path of length 6 is finite. �
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Lecture 4. A glimpse at higher dimension

4.1. Three conjectures. The results discussed in the previous lectures become
conjectures in higher dimension.
Conjecture 1. Any finite subgroup Γ ⊆ Tame(An) is linearisable (here char k =
0).
Conjecture 2. For n ≥ 3, Tame(An) ( Aut(An).
Conjecture 3. The group STame(An) is not simple.
4.2. About the relation between Conjectures 1 and 2. First we should men-
tion that Conjecture 2 is settled in the case n = 3 and char k = 0, by a result
of Shestakov and Umirbaev [SU04], see also [Kur10, Lam15] where the proof was
simplified. All other cases (n = 3 in positive characteristic, or n ≥ 4 in any charac-
teristic) are open.

In relation with Conjecture 1 let us mention the following result:
Theorem 4.1 ([FMJ02]). Let k be a field of characteristic zero. Then there exists a
subgroup Γ ∈ Aut(An) isomorphic to the symetric group S3, which is not linearisable

In view of this theorem, we observe that for n ≥ 4 and char k = 0, Conjecture 1
implies Conjecture 21.

4.3. About Conjecture 3. Following the strategy explained during the third lec-
ture, we need to find:

• A δ-hyperbolic space X with an action Tame(An) y X;
• A WPD element g ∈ Tame(An) with respect to this action.

We describe a candidate to be such a hyperbolic space X, with a construction
that imitate the Bass-Serre tree. For any 1 ≤ r ≤ n, define Hr ⊂ Tame(An)
the subgroup of elements of the form (f1, . . . , fr, fr+1, . . . , fn) with (f1, . . . , fr) ∈
GLr(k) o kr.
Example 4.2. For n = 3, we obtain the three subgroups:

H3 = A3 the affine group;
H2 =

{(
ax1 + bx2 + c, a′x1 + b′x2 + c′, αx3 + P (x1, x2)

)}
;

H1 =
{(
ax1 + b, f2, f3

)}
;

Then we define a (n− 1)-dimensional simplicial complex Cn as follows:
• vertices: left cosets Tame(An)/Hi, i = 1, . . . , n;
• edges: left cosets Tame(An)/(Hi ∩Hj);
• 2-facets: left cosets Tame(An)/(Hi ∩Hj ∩Hk);
• ...
• (n− 1)-facets: left cosets Tame(An)/(H1 ∩H2 ∩ · · · ∩Hn).

The tame group acts by left translation on this simplicial complex. When n = 2,
this is exactly the definition of the Bass-Serre tree. When n = 3 and char k = 0, one
can show that the previously mentioned result by Shestakov-Umirbaev and Kuroda
implies that C3 is simply connected ([Lam15]). This is the starting point for the
proof of the following:

1 It was pointed out by several participants of the conference that in fact Conjecture 1 and
[FMJ02] would imply the existence of non-stably tame automorphisms. This might be an indica-
tion that Conjecture 1 is too optimistic...
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Theorem 4.3 ([LP16]). Assume char k = 0. The 2-dimensional simplicial com-
plex C3 is hyperbolic and there exist WPD elements with respect to the action
STame(A3) y C3. In particular, STame(A3) is not simple.

4.4. About Conjecture 1. To imitate the proof given in the first lecture, we need
a fixed point theorem. Observe that the existence of circumcenter for a bounded
set, which is the property we used on the Bass-Serre tree, also holds for Euclidean
space Rn, and more generally for complete CAT(0) spaces: see [BH99, p.179].

The complex C3 described above is not CAT(0), for any choice of Euclidean
metric on the triangles. Here is another space X on which Tame(An) acts, which
might be a good candidate to be a CAT(0) space.

A degree on k[x1, . . . , xn] is a function d : k[x1, . . . , xn]→ {−∞}∪ [0,+∞[ such
that (for any P1, P2):

• d(P ) = −∞ if and only if P = 0;
• d(P1 + P2) ≤ max d(P1), d(P2);
• d(P1P2) = d(P1) + d(P2).

We denote by D the space of such degree, up to a multiplicative constant (d ∼ λd
for λ > 0). The group Tame(An) acts on D by precomposition:

f · d(P ) := d(P ◦ f−1).
We define the set ∆ of monomial degree as follows. For any choice of weight

α = (α1, . . . , α2) ∈ (R>0)n, and any polynomial with support S:

P =
∑

(i1,...,in)∈S

ci1,...,inx
i1
1 . . . xinn ,

we define the degree dα:
dα(P ) := max

(i1,...,in)∈S
i1α1 + · · ·+ inαn.

Since we only consider degrees up to a constant, we can normalize by adding the
condition

∑
αi = 1, and then ∆ identifies with the (open) simplex in Rn. Finally

we define X ⊂ D as the orbit of ∆ under the action of Tame(An).
In the case n = 2, X is a tree, and in dimension n, it might be a CAT(0) space. In

any case the stabilizers for the action Tame(An) y X admit a semi-direct structure
as in Lemma 1.2, so Conjecture 1 might not be completely out of reach.
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Exercises

Exercise 1. Let n ≥ 1. Find a bijective polynomial map from Rn to Rn that is
not a polynomial automorphism. Then meditate on that for a minute or two.

Exercise 2. Let k be the field with two elements. Your first instinct might be that
Aut(A2

k) is a finite group. However, the exercise is to show that Aut(A2
k) contains

a free group over two generators!

Exercise 3. (1) Let T be a tree, and f, g two elliptic isometries of T without
a common fixed point. Prove that 〈f, g〉 = 〈f〉 ∗ 〈g〉.

(2) Let k be your favourite field. Find an example of two involutions f, g ∈
Aut(A2

k) such that you can apply the previous question to the action on
the Bass-Serre tree.

Exercise 4. Let E = {(x, y) 7→ (x+P (y), y) | P ∈ k[X]} be the elementary group,
and let Eλ be the conjugate of E by aλ : (x, y)→ (λx+ y, x), where λ ∈ k. Prove
that the subgroup of Aut(A2) generated by the Eλ is a free product (and observe
that if the field k is uncountable, this is a free product over uncountably many
factors...):

〈Eλ | λ ∈ k〉 = ∗
λ ∈ k

Eλ ⊆ Aut(A2) ⊆ Bir(P2).

Exercise 5. Let k be your favourite field again. Give an explicit example of a
polynomial automorphism g ∈ Aut(A2

k) with exactly 8 base points.

Exercise 6. We know by the classical theorem of Noether & Castelnuovo that any
birational self-map g of P2 can be decomposed as a product of quadratic maps σi,
with each σi with three proper base points (that is, no infinitely near base point).
Moreover, any polynomial automorphism of A2 can be naturally extended as a
birational map of P2. The question is: what is the minimal number of such quadratic
maps that you will need to factorize the polynomial automorphism g : (x, y) 7→
(x+ y3, y)?
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