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Abstract

The trace set of a Fuchsian group Γ encodes the set of lengths of closed geodesics in the
surface Γ\H. Luo and Sarnak showed that the trace set of a cofinite arithmetic Fuchsian
group satisfies the bounded clustering property. Sarnak then conjectured that the B-C property
actually characterizes arithmetic Fuchsian groups. Schmutz stated the even stronger conjecture
that a cofinite Fuchsian group is arithmetic if its trace set has linear growth. He proposed a
proof of this conjecture in the case when the group Γ contains at least one parabolic element,
but unfortunately this proof contains a gap. In the present paper we point out this gap and we
prove Sarnak’s conjecture under the assumption that the Fuchsian group Γ contains parabolic
elements.

1 Introduction

Let Γ be a Fuchsian group, i.e. a discrete subgroup of PSL(2, R). Such a Γ acts properly discon-
tinuously and isometrically on the hyperbolic plane H and M = Γ\H is a Riemann surface. The
trace set of Γ and the trace set of M are defined as follows:

Tr(Γ) := {tr(T ) | T ∈ Γ},

Tr(M) = {tr(a) := 2 cosh
L(a)

2
| a is a closed geodesic in M of length L(a)}.

These two subsets of R in fact coincide for torsion free Γ.
It is a general question whether certain classes of Fuchsian groups can be characterized by

means of their trace sets or, equivalently, by the trace sets of the surfaces that they define. In
this paper we are interested in characterizations of arithmetic Fuchsian groups. There is a classical
characterization of (cofinite) arithmetic Fuchsian groups due to Takeuchi which is based on number
theoretical properties of their trace sets [7].

Theorem 1.1 ([7]). Let Γ be a cofinite Fuchsian group. Then Γ is derived from a quaternion algebra
over a totally real algebraic number field if and only if Γ satisfies the following two conditions:

(i) K := Q(Tr(Γ)) is an algebraic number field of finite degree and Tr(Γ) is contained in the ring
of integers OK of K.

∗The final version of this article has been published in the Duke Mathematical Journal, Vol. 142, No. 1, published

by Duke University Press.
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(ii) For any embedding ϕ of K into C, which is not the identity, ϕ(Tr(Γ)) is bounded in C.

Remark. If Γ is derived from a quaternion algebra over a totally real algebraic number field F , then
F is equal to K as in the above theorem.

Theorem 1.2 ([7]). Let Γ be a cofinite Fuchsian group and Γ(2) be the subgroup of Γ generated by
the set {T 2 | T ∈ Γ}. Then Γ is an arithmetic Fuchsian group if and only if Γ(2) is derived from a
quaternion algebra.

W. Luo and P. Sarnak pointed out large scale properties of the behavior of the trace set of
arithmetic Fuchsian groups. We say that the trace set of a Fuchsian group Γ satisfies the bounded
clustering or B-C property iff there exists a constant B(Γ) such that for all integers n the set
Tr(Γ) ∩ [n, n + 1] has less than B(Γ) elements. Further set

Gap(Γ) := inf{|a − b| | a, b ∈ Tr(Γ), a 6= b}.

In [3] Luo and Sarnak made a first step toward a new geometric characterization of arithmetic
Fuchsian groups by proving the following result:

Theorem 1.3 ([3]). Let Γ be a cofinite Fuchsian group.

(i) If Γ is arithmetic, then Tr(Γ) satisfies the B-C property.

(ii) If Γ is derived from a quaternion algebra, then Gap(Γ) > 0.

Sarnak conjectured that the converse assertions of Theorem 1.3 also hold:

Conjecture 1.4 (Sarnak [5]). Let Γ be a cofinite Fuchsian group.

(i) If Tr(Γ) satisfies the B-C property, then Γ is arithmetic.

(ii) If Gap(Γ) > 0, then Γ is derived from a quaternion algebra.

In [6] P. Schmutz makes an even stronger conjecture using the linear growth of a trace set
instead of the B-C property. The trace set of a Fuchsian group Γ is said to have linear growth iff
there exist positive real constants C and D such that for every n ∈ N

#{a ∈ Tr(Γ) | a ≤ n} ≤ D + nC.

Remark. If a Fuchsian group Tr(Γ) satisfies the B-C property, then Tr(Γ) has linear growth with
D = 0 and C = B(Γ). But the opposite is not true in general: linear ; B-C.

Conjecture 1.5 (Schmutz [6]). Let Γ be a cofinite Fuchsian group. Then Tr(Γ) has linear growth
iff Γ is arithmetic.

In [6] Schmutz proposed a proof of Conjecture 1.5 in the case when Γ contains at least one
parabolic element. But unfortunately the proof contains a gap as we will point out in Section 3.

The main result of this paper is Theorem 3.4 which confirms part (i) of Sarnak’s Conjecture
1.4 under the assumption that the Fuchsian group Γ contains at least one parabolic element. We
use techniques similar to those developed by Schmutz.

It remains an open question whether the gap in [6] can be closed. Observe that a positive
answer would imply that there do not exist cofinite Fuchsian groups (with parabolic elements)
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Figure 2.1: The case a1+d
c

> 0.

whose trace set grows linearly but does not satisfy the stronger B-C property. Furthermore we
remark the conjectures of Sarnak and Schmutz remain completely open for cocompact Fuchsian
groups.

A general reference for the notations and concepts in this paper are the books [2] and [4].

The authors would like to thank A. Deitmar for pointing out some inaccuracies in a previous version of

this work and the referee for his constructive criticism.

2 Y-pieces and lengths of geodesics on them

In this section we prove (or list) some auxiliary results that are used later.
An Y-piece is a surface of constant curvature −1 and of signature (0, 3), i.e. homeomorphic to

a topological sphere with three points removed. For non-negative real numbers a, b, c we denote
with Y (a, b, c) an Y-piece with boundary geodesics of lengths a, b, c. It is well known that for given
positive numbers a, b, c there exists an Y-piece Y (a, b, c) which is unique up to isometry, see [1],
Theorem 3.1.7.

We will say that an Y-piece Y (a, b, c) is contained in a surface M iff Y (a, b, c) is contained in a
finite cover of M . Following [6], for a real number a ≥ 0 we set tr(a) := 2 cosh a

2 . This is motivated
by the following fact: if Ta ∈ PSL(2, R) is a hyperbolic isometry giving rise to a closed geodesic of
length a, then tr(Ta) = tr(a).

In the next Proposition 2.1 we give sufficient conditions for two hyperbolic isometries to generate
a group Γ such that Γ\H contains an Y-piece Y (u, v, 0).

Proposition 2.1. Let u and v be non-negative real numbers. Further let Tu and Tv be elements

of PSL(2, R) such that Tu =

[

a1 b1

c d

]

and Tv =

[

a2 b2

c d

]

, with c 6= 0 and such that for ε = ±1,

a1 + d = εtr(u) and a2 + d = −εtr(v). Then Γ = 〈Tu, Tv〉 is a Fuchsian group and the surface Γ\H
contains an Y-piece Y (u, v, 0).

Proof. The group Γ contains a parabolic element

[

1 ε(tr(u) + tr(v))/c
0 1

]

.

Indeed,

T := TuT−1
v =

[

a1 b1

c d

] [

d −b2

−c a2

]

=

[

1 b1a2 − a1b2

0 1

]
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and

(b1a2 − a1b2)c = (a1d − 1)a2 − a1(a2d − 1) = (a1 + d) − (a2 + d) = ε(tr(u) + tr(v)).

The region D in Figure 2.1 is a fundamental domain for the Fuchsian group Γ = 〈T, Tu〉 = 〈Tu, Tv〉
and Γ\D contains Y (u, v, 0).

Remark. The proposition remains true if Tu is an elliptic transformation of finite order, i.e. a1+d ∈
(−2, 2). Then the Fuchsian group 〈Tu, Tv〉 contains a degenerated Y-piece Y (u, v, 0), where u is an
elliptic fixed point.

In the next corollary we use the notation of Proposition 2.1.

Corollary 2.2. Let Γ be a Fuchsian group containing the parabolic element T =

[

1 1
0 1

]

. Then

for every element Tu =

[

a1 b1

c d

]

, c 6= 0, there exists Tv ∈ Γ, v ≥ 0, such that 〈Tu, Tv〉 \H contains

Y (u, v, 0) with tr(u) = |a1 + d|.

Proof. For any k ∈ Z we consider

T kTu =

[

1 k
0 1

] [

a1 b1

c d

]

=

[

a1 + kc b1 + kd
c d

]

.

Pick k′ ∈ Z such that (a1 + d)(a1 + k′c + d) ≤ 0 and |a1 + k′c + d| ≥ 2. Then set Tv := T k′

Tu and
the claim follows from Proposition 2.1 and the previous remark.

Corollary 2.3. Let Γ be a Fuchsian group containing at least one parabolic element. Then for
every non-parabolic element Tu in Γ there exists Tv ∈ Γ such that 〈Tu, Tv〉 \H contains an Y-piece
Y (u, v, 0) with tr(u) = tr(Tu).

Proof. If Γ contains a parabolic element T1 then, for some R ∈ PSL(2, R), RT1R
−1 = T or

RT−1
1 R−1 = T where T =

[

1 1
0 1

]

. If RΓR−1 contains also an element A =

[

a b
0 d

]

then A is a

parabolic element because otherwise the group 〈T, A〉 would not be discrete. From Corollary 2.2
it follows that for every non-parabolic element RTuR−1 in RΓR−1 there exists RTvR

−1 ∈ RΓR−1

such that
〈

RTuR−1, RTvR
−1

〉

\H contains an Y-piece Y (u, v, 0) with tr(u) = tr(Tu). And hence for
every non-parabolic element Tu in Γ there exists Tv ∈ Γ such that 〈Tu, Tv〉 \H contains an Y-piece
Y (u, v, 0) with tr(u) = tr(Tu).

We next list several technical lemmas due to Schmutz which we need in the proof of Sarnak’s
conjecture.

Lemma 2.4 ( [6]). For all positive integers n, Y (x, y, 0) contains Y (νn, y, 0), where

tr(νn) = n(tr(x) + tr(y)) − tr(y).

In particular, Tr(Y (x, y, 0)) contains the set {tr(νn) : n = 1, 2, 3 . . .}.

Remark. Lemma 2.4 is true even if Y (x, y, 0) is a degenerated Y-piece where x corresponds to
an elliptic fixed point and y is a closed geodesic. In that case tr(x) is equal to the trace of the
generating elliptic element.
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Lemma 2.5 ([6]). Tr(Y (x, 0, 0)) contains Tr(Y (λk, µm, 0)) with tr(λk) = k(tr(x) + 2) + 2 and
tr(µm) = m(tr(x) + 2) − 2 for all pairs (k, m), k, m ∈ Z+.

Lemma 2.6 ([6]). Tr(Y (x, y, 0)) contains Tr(Y (ν, 2y, 0)) with tr(ν) = 2 + tr(x)tr(y).

Lemma 2.7 ([6]). Tr(Y (x, y, 0)) contains Tr(Y (ν, 0, 0)) where tr(ν) = (tr(x) + tr(y))2 − 2.

3 The growth of the length spectrum

In [6] Schmutz proposes a proof of Conjecture 1.5 under the assumption that the group Γ contains
parabolic elements. Unfortunately the proof contains a gap as we will explain in this section.
However, using ideas and methods similar to those in [6] we are able to prove (part of) Sarnak’s
Conjecture 1.4: Let Γ be a cofinite Fuchsian group, which contains parabolic elements. If Γ satisfies
the B-C property, then Γ is arithmetic.

3.1 The attempt of Schmutz to prove Conjecture 1.5

For the results about arithmetic Fuchsian groups that are used in this section we refer to [2],
Chapter 5.

Let Γ be a cofinite Fuchsian group with at least one parabolic element, i.e. Γ\H is not compact.
If Γ is derived from a quaternion algebra A, then A is not a division quaternion algebra and
consequently A is a quaternion algebra over Q. Hence, by Theorem 1.1 and the remark following
it, in order to prove the second part of Conjecture 1.4 (in the case when Γ contains at least one
parabolic element), it is enough to show that Gap(Γ) > 0 implies Tr(Γ) ⊆ Z. If one wishes to show
that Γ is an arithmetic Fuchsian group it is enough to show that Γ(2) is derived from a quaternion
algebra (Theorem 1.2). And since Γ(2) also contains at least one parabolic element it is sufficient
to show that Tr(Γ(2)) ⊆ Z which is the same as to show that {tr(a)2 | a ∈ Γ} ⊆ Z because
tr(a2) = tr(a)2 − 2.

The idea of a possible proof of Conjecture 1.5 is now the following: For an Y-piece Y (a, b, c)
we set Gap(Y (a, b, c)) := Gap(〈Ta, Tb〉), where Ta and Tb are isometries generating Y (a, b, c) like in
Proposition 2.1. From Corollary 2.3 we know that for every non-parabolic element Tx in Γ there
exists Ty ∈ Γ such that 〈Tx, Ty〉 \H contains an Y-piece Y (x, y, 0) with tr(x) = tr(Tx). Since the
trace of every parabolic transformation is equal to 2, it is enough to show that if Tr(Γ) has linear
growth then, for every Y (x, y, 0), tr(x)2 and tr(y)2 are integers.

In [6] Schmutz proves the following two propositions:

Proposition 3.1 ([6]). Gap(Y (x, 0, 0)) > 0 if and only if tr(x) is an integer.

Proposition 3.2 ([6]). If Gap(Y (x, y, 0)) > 0, then the numbers tr(x)2, tr(y)2 and tr(x)tr(y) are
integers.

Note that in the proof of Proposition 3.2 the condition Gap(Y (x, y, 0)) > 0 is used only in case
we need Gap(Y (z, 0, 0)) > 0 in order to apply Proposition 3.1 for an Y-piece Y (z, 0, 0) contained
in Y (x, y, 0). If Tr(Γ) has linear growth then Tr(Y (x, y, 0)) has linear growth for every Y-piece
Y (x, y, 0) contained in Γ\H. Our aim is to prove that if Tr(Y (x, y, 0)) has linear growth then tr(x)2

and tr(y)2 are integers. The idea of Schmutz is to proceed as in the proof of Proposition 3.2, but
instead of Proposition 3.1 to use the following

Claim 3.3. Tr(Y (x, 0, 0)) has linear growth if and only if tr(x) is an integer.
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Proposition 3.1 shows that Gap(Y (x, 0, 0)) > 0 if tr(x) is an integer and hence Tr(Y (x, 0, 0))
has linear growth. So in order to prove Claim 3.3 it remains to show that if Tr(Y (x, 0, 0)) has
linear growth then tr(x) ∈ N, which is the same as to show that if tr(x) is not an integer then
Tr(Y (x, 0, 0)) has not linear growth.

If the real number tr(x) is not an integer it can be either rational or irrational. In [6] the author
proposes the following proof in the case when tr(x) is rational: Assume that z := tr(x) + 2 is not
rational. By Lemma 2.5, Tr(Y (x, 0, 0)) contains Tr(Y (λk, µm, 0)) with tr(λk) = k(tr(x) + 2) + 2
and tr(µm) = m(tr(x) + 2) − 2 for all pairs (k, m), k, m ∈ Z+. Hence it follows from Lemma 2.6
that Tr(Y (x, 0, 0)) contains tr(µm)tr(λk) + 2 and thus also the set

{mkz2 − 2(k − m)z − 2 | m, k ∈ Z+}.

Since z /∈ Q, the numbers mkz2 − 2(k−m)z− 2 are different for different pairs of positive integers.
In this case we have that #{a ∈ Tr(Y (x, 0, 0)) | a ≤ Nz2} ≥ 1

2

∑N
i=1 σ0(i), where σ0(i) is the

number of different positive divisors of i. It can be shown that

N log N + N ≥
N

∑

i=1

σ0(i) =
N

∑

j=1

[

N

j

]

≥ N log N − N

which means that
∑N

i=1 σ0(i) grows like N log N and in particular not linear (and in particular
does not satisfy the B-C property). This proves Claim 3.3 in the case when z is not a rational
number.

3.2 The gap in the proof of Claim 3.3 in [6]

Unfortunately the above argument breaks down in the case when z = tr(x)+2 is a rational number a
b

with b > 1 and (a, b) = 1, because v1 := m1k1z
2−2(k1−m1)z−2 and v2 := m2k2z

2−2(k2−m2)z−2
can be equal for different pairs (k1, m1) and (k2, m2). Indeed, assume that v1 = v2 or equivalently,
since z > 0, that

(m1k1 − m2k2)z − 2(k1 − m1 − (k2 − m2)) = 0.

Now, if Az + B = 0 for some integers A and B and z = a
b
, then A must not be 0, it can also be

divisible by b. But if |A| < b then A = 0 and thus B = 0 and as in the case when z is irrational
we have k1 = k2 and m1 = m2. Therefore, since k1, m1, k2 and m2 are positive, we can guarantee
that v1 and v2 are different for different pairs (k1, m1) and (k2, m2), if m1k1 < b and m2k2 < b and
thus as in the case z /∈ Q we get

#{y ∈ Tr(Y (x, 0, 0)) | y ≤ bz2} ≥
1

2

b
∑

i=1

σ0(i) ≥
1

2
(b log b − b).

From Lemma 2.7 it follows that Tr(Y (x, 0, 0)) contains Tr(Y (x2, 0, 0)) with tr(x2) = (tr(x) + 2)2 −
2 = z2 − 2. By induction Tr(Y (x, 0, 0)) contains Tr(Y (xn, 0, 0)) with tr(xn) = z(2n) − 2.

In [6] the author suggests to use the above estimates of the trace set for every Y (xn, 0, 0) (in

this case tr(xn) + 2 = z2n
= a2n

b2
n ):

#{y ∈ Tr(Y (xn, 0, 0)) | y ≤ b2n

z2n+1
} ≥

1

2

b2
n

∑

i=1

σ0(i) ≥
1

2
(b2n

log b2n

− b2n

).
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He claims that Tr(Y (x, 0, 0)) has not linear growth because for every n ∈ N

#{y ∈ Tr(Y (x, 0, 0)) | y ≤ b2n

z2n+1
} ≥ #{y ∈ Tr(Y (xn, 0, 0)) | y ≤ b2n

z2n+1
}

≥
1

2

b2
n

∑

i=1

σ0(i) ≥
1

2
(b2n

log b2n

− b2n

).

If z2n+1
were a constant then this argumentation would work. However, z2n+1

also grows when n
grows! An immediate counter-example are the Y-pieces Y (x = z − 2, 0, 0) with z2 = a2

b2
> b: If the

estimate

#{y ∈ Tr(Y (x, 0, 0)) | y ≤ b2n

z2n+1
} ≥

1

2

b2
n

∑

i=1

σ0(i)

implies non-linear growth then there exists n0 ∈ N such that for infinitely many n ≥ n0 the

inequality b2n
z2n+1

≤ 1
2

∑b2
n

i=1 σ0(i) holds. But this is not the case when z2 > b. In fact, for all
positive integers n, one has in that case

b2n

z2n+1
= b2n

(z2)2
n

> b2n

b2n

>
1

2
b2n

(log b2n

+ 1) ≥
1

2

b2
n

∑

i=1

σ0(i).

At first view a possible reason why the above considerations did not suffice to prove the non-
linear growth of Tr(Y (x, 0, 0)) might be that not enough elements of the set

Sn = {mkz2n+1
− 2(k − m)z2n

− 2 | m, k ∈ Z+}

have been taken into account. But it turns out that even in the union
⋃

∞

n=0 Sn there are not enough
different numbers to guarantee non-linear growth of Tr(Y (x, 0, 0)). Indeed, every y ∈ S0 has the
form

mk
a2

b2
− 2(k − m)

a

b
− 2 =

a

b2
(mka − 2(k − m)b) − 2.

Hence
S0 ⊆ B0 := {v :=

a

b2
j − 2 | j ∈ N, v > 0}.

The number of the elements in B0 which are smaller than N ∈ N is bounded by N+2
a

b2
= (N + 2) b2

a
.

Analogously we get for every n ∈ N and N ∈ N and Bn = {v :=
(

a
b2

)2n

j − 2 | j ∈ N, v > 0}

#{w ∈ Sn | w ≤ N} ≤ #{v ∈ Bn | v ≤ N} ≤ (N + 2)

(

b2

a

)2n

.

Hence

#{w ∈
∞
⋃

n=0

Sn | w ≤ N} ≤ #{v ∈
∞
⋃

n=0

Bn | v ≤ N} ≤ (N + 2)
∞

∑

n=0

(

b2

a

)2n

.

If a > b2 the last sum is convergent and independent of N , i.e.

#{w ∈
∞
⋃

n=0

Sn | w ≤ N} ≤ const(N + 2)

which means that
⋃

∞

n=0 Sn has only linear growth! Thus if tr(x) is rational the previous argument
due to Schmutz is not conclusive: tr(x) ∈ Q\Z does not necessarily imply that Tr(Y (x, 0, 0))
does not grow linearly! However, we will see in the next section that tr(x) ∈ Q\Z implies that
Tr(Y (x, 0, 0)) does not satisfy the B-C property.

7



3.3 Tr(Y (x, 0, 0)) satisfies the B-C property if and only if tr(x) is an integer

In this section we prove the main result of the present paper, namely we confirm the first part of
Sarnak’s Conjecture 1.4:

Theorem 3.4. Let Γ be a cofinite Fuchsian group with at least one parabolic element. Then Tr(Γ)
satisfies the B-C property if and only if Γ is arithmetic.

Proof. By Theorem 1.3, if Γ is an arithmetic group then Tr(Γ) satisfies the B-C property. So it
remains to show that if Tr(Γ) satisfies the B-C property then Γ is an arithmetic Fuchsian group.
The proof below follows the ideas of Section 3.1 but instead of the unproven Claim 3.3 we use
Proposition 3.6 below.

By Corollary 2.3, for every non-parabolic element Tx in Γ there exists Ty ∈ Γ such that
〈Tx, Ty〉 \H contains an Y-piece Y (x, y, 0) with tr(x) = tr(Tx). If Tx is an elliptic element, then
Y (x, y, 0) is a degenerated Y-piece. By §3.1 it is enough to show that if Tr(Γ) satisfies the B-C
property then, for every Y (x, y, 0), tr(x)2 and tr(y)2 are integers.

If Γ satisfies the B-C property then, for every Y-piece Y (x, y, 0) contained in Γ\H, the trace
set Tr(Y (x, y, 0)) also satisfies the B-C property. Hence it is enough to show that if Tr(Y (x, y, 0))
satisfies the B-C property then tr(x)2 and tr(y)2 are integers.

If Y (x, y, 0) is non-degenerated then the claim follows from the next Proposition 3.5.
If Y (x, y, 0) is degenerated, i.e. x corresponds to an elliptic fixed point, then by the remark after

Lemma 2.4 the Y-piece Y (x, y, 0) contains Y (ν2, y, 0) and Y (ν3, y, 0) with tr(ν2) = 2tr(x) + tr(y)
and tr(ν3) = 3tr(x) + 2tr(y). Since tr(y) ≥ 2 then tr(ν2) and tr(ν3) are also greater or equal 2.
Hence Y (ν2, y, 0) and Y (ν3, y, 0) are non-degenerated and by the next Proposition 3.5 it follows
that tr(ν2)

2, tr(ν3)
2 and tr(y)2 are integers. So 4tr(x)2+4tr(x)tr(y) = tr(ν2)

2−tr(y)2 and 3tr(x)2+
4tr(x)tr(y) = tr(ν3)

2 − tr(y)2 are integers and hence tr(x)2 is an integer.

Proposition 3.5. If Tr(Y (x, y, 0)) satisfies the B-C property then tr(x)2, tr(y)2 and tr(x)tr(y) are
integers.

Proof. The proof is the same as that of Proposition 3.2 but instead of Proposition 3.1 we use
Proposition 3.6 below.

Proposition 3.6. Tr(Y (x, 0, 0)) satisfies the B-C property if and only if tr(x) is an integer.

In the rest of this Section we are going to prove Proposition 3.6. We will need the following
Lemma:

Lemma 3.7. Let a and b be coprime natural numbers, which are greater than 1. Further let b = pb1,
where p is a prime number and b1 ∈ N. Then there exist u, v ∈ N\{0} such that |ua − vb| = 1,
v < a and (v, p) = 1 (and thus also (v, a) = 1 and (u, b) = 1).

Proof. Bezout’s identity yields u′, v′ ∈ Z\{0} such that u′a + v′b = 1. We can also write this
equivalently as |ũa − ṽb| = 1, where ũ and ṽ are positive natural numbers. Furthermore, we have
that ṽ = qa + r, where q, r ∈ N, r < a and r > 0, because (ṽ, a) = 1 and a > 1. Thus after
subtracting 0 = q(ba − ab) from |ũa − ṽb| we get:

|(ũ − qb)a − rb| = 1.

If (r, p) = 1 we set u := ũ − qb and v := r. Note that u is positive because a is positive and
rb > 1.
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If (r, p) = p then we subtract 0 = ba−ab from (ũ−qb)a−rb. We obtain |(ũ−(q+1)b)a+(a−r)b| =
1, where 0 < a − r < a and (a − r, p) = 1, because (a, p) = 1 (since p is a divisor of b). From
(a−r)b > 1 and a > 0 it follows that ũ−(q+1)b < 0. We set u = −(ũ−(q+1)b) and v = a−r.

Proof of Proposition 3.6. If tr(x) is an integer, then it follows from Proposition 3.1 that Gap(Y (x, 0, 0)) >

0. This means that in every interval [n, n + 1] there are at most
[

1
Gap(Y (x,0,0)) + 1

]

elements from

the set Tr(Y (x, 0, 0)) and hence Tr(Y (x, 0, 0)) satisfies the B-C property.
Now let Tr(Y (x, 0, 0)) satisfy the B-C property. We assume that tr(x) is not an integer. There

are two possibilities for tr(x):

Case 1: tr(x) is not a rational number.

At the end of Section 3.1 we already showed that in this case Tr(Y (x, 0, 0)) does not have linear
growth and, in particular, does not satisfy the B-C property. Hence Case 1 does not occur.

Case 2: tr(x) is a rational number (but not an integer).

Then the number z = tr(x)+2 is equal to a
b

with a and b coprime natural numbers, b > 1 and a > b
because z > 2. As in §3.2, it follows from Lemma 2.7 that Tr(Y (x, 0, 0)) contains Tr(Y (xk, 0, 0))

with tr(xk) = z2k
− 2, k ∈ N. By Lemma 2.4 Tr(Y (xk, 0, 0)) contains the set

{

m(z2k

− 2 + 2) − 2 | m ∈ N\{0}
}

=

{

m
(a

b

)2k

− 2 | m ∈ N\{0}

}

.

Claim. For every n ∈ N there exist n different numbers zmi,ki
:= mi

(

a
b

)2ki

− 2, i = 1, . . . , n, such
that

max {zmi,ki
| i = 1, . . . , n} − min {zmi,ki

| i = 1, . . . , n} ≤ 1.

In order to prove this claim we proceed in 5 steps.
Step 1. First we consider a function f : N → N with the following properties: f(0) = 0 and for

n > 0, b2f(n)
> 2

∏n−1
i=0 a2f(i)

. Such function f exists, because if we assume that we have defined
f for 0, . . . , n − 1, then the right-hand side of the inequality is fixed and we can choose f(n) big
enough so that the inequality holds. We notice that f(n + 1) > f(n) for every n ∈ N because

b2f(n+1)
> 2

n
∏

i=0

a2f(i)
≥ a2f(n)

> b2f(n)
.

For convenience we set g(n) := 2f(n). Then we have g(0) = 1 and for n > 0, bg(n) > 2
∏n−1

i=0 ag(i).
Step 2. We fix an arbitrary natural number n greater than 1. Let b = pb1 where p is a prime

number and b1 ∈ N.
Step 3. We can find positive integers ui, vi, i = 1, . . . , n, such that

∣

∣

∣

∣

ui

(a

b

)g(i)
− vivi+1 . . . vn

a

b

∣

∣

∣

∣

=
a

bg(i)
,

where vi < ag(i)−1, (vi, a) = 1 and (vi, p) = 1. In fact, by Lemma 3.7 there exist un, vn ∈ N\{0}
such that

∣

∣unag(n)−1 − vnbg(n)−1
∣

∣ = 1, vn < ag(n)−1, (vn, a) = 1 and (vn, p) = 1. Hence

∣

∣

∣

∣

un

(a

b

)g(n)
− vn

a

b

∣

∣

∣

∣

=
a

bg(n)

∣

∣

∣
unag(n)−1 − vnbg(n)−1

∣

∣

∣
=

a

bg(n)
.
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Since (ag(n−1)−1, vnbg(n−1)−1) = 1, then by Lemma 3.7 there exist un−1, vn−1 ∈ N\{0} such that
∣

∣un−1a
g(n−1)−1 − vn−1vnbg(n−1)−1

∣

∣ = 1, where vn−1 < ag(n−1)−1, (vn−1, a) = 1 and (vn−1, p) = 1.
Hence

∣

∣

∣

∣

un−1

(a

b

)g(n−1)
− vn−1vn

a

b

∣

∣

∣

∣

=
a

bg(n−1)

∣

∣

∣
un−1a

g(n−1)−1 − vn−1vnbg(n−1)−1
∣

∣

∣
=

a

bg(n−1)
.

For 1 ≤ i ≤ n−1 we assume that uj , vj are defined for all j = i+1, . . . , n. We then define ui and
vi: Since (ag(i)−1, vi+1 . . . vn−1vnbg(i)−1) = 1, then again by Lemma 3.7 there exist ui, vi ∈ N\{0}
such that

∣

∣uia
g(i)−1 − vivi+1 . . . vn−1vnbg(i)−1

∣

∣ = 1, where vi < ag(i)−1, (vi, a) = 1 and (vi, p) = 1.
Hence

∣

∣

∣

∣

ui

(a

b

)g(i)
− vivi+1 . . . vn−1vn

a

b

∣

∣

∣

∣

=
a

bg(i)

∣

∣

∣
uia

g(i)−1 − vivi+1 . . . vn−1vnbg(i)−1
∣

∣

∣
=

a

bg(i)
.

Step 4. Set m0 := v1 . . . vn−1vn and mi := v1 . . . vi−1ui for all i = 1, . . . , n. We claim that the

numbers zmi,f(i) = mi

(

a
b

)2f(i)

− 2, i = 0, . . . , n, are all inside an interval of length 1. Indeed, for
every i = 1, . . . , n:

∣

∣zmi,f(i) − zm0,f(0)

∣

∣ =

∣

∣

∣

∣

mi

(a

b

)g(i)
− 2 − m0

(a

b

)g(0)
+ 2

∣

∣

∣

∣

= v1 . . . vi−1

∣

∣

∣

∣

ui

(a

b

)g(i)
− vi . . . vn

a

b

∣

∣

∣

∣

= v1 . . . vi−1
a

bg(i)

<
ag(1)−1 . . . ag(i−1)−1a

bg(i)
≤

∏i−1
j=0 ag(j)

bg(i)
<

1

2
,

where the last inequality follows from our choice of the function g.
Step 5. We finally show that the numbers zmi,f(i), i = 0, . . . , n are all different.
For every i = 1, . . . , n, ui satisfies (ui, p) = 1, because (ui, b) = 1 (otherwise the difference

∣

∣uia
g(i)−1 − vi . . . vnbg(i)−1

∣

∣ could not be equal to 1). We have chosen vi, i = 1, . . . , n, such that
(vi, p) = 1. Hence p does not divide mi = v1 . . . vi−1ui and m0 = v1 . . . vn−1vn. Note also that
(p, a) = 1.

Let d be the exponent of p in the prime number decomposition of b. Write zmi,f(i) = mi

(

a
b

)2f(i)

−

2 = s
t
, with s, t ∈ N\{0}, (s, t) = 1. Then pd2f(i)

divides t and pd2f(i)+1 does not divide t. Hence,
since for i 6= j, f(i) 6= f(j), the numbers zmi,f(i) and zmj ,f(j) are different.

This completes the proof of the claim, which in turn implies that Tr(Y (x, 0, 0)) does not sat-
isfy the B-C property and we have a contradiction also in Case 2. This completes the proof of
Proposition 3.6.

3.4 Final remarks

In spite of the gap, Theorem 9 in [6] remains true: A cofinite Fuchsian group Γ containing parabolic
elements is arithmetic if and only if, for every Y-piece Y (x, 0, 0) that is contained in Γ\H, tr(x) is
an integer.

On the other hand, it is not clear yet if Theorem 10 and Corollary 4 in [6] are also true, i.e. that
the trace set of a non-arithmetic Fuchsian group grows faster than the trace set of any arithmetic
Fuchsian group. By Theorem 1.3 the trace set of an arithmetic Fuchsian group satisfies the B-C
property and hence grows linearly. But it is an open question if there is a non-arithmetic Fuchsian
group whose trace set also grows linearly.
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