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Abstract. In this paper we give a description of the possible
limit sets of finitely generated subgroups of irreducible lattices in
PSL(2,R)r.

1. Introduction

While lattices in higher rank Lie groups are fairly well understood,
only little is known about discrete subgroups of infinite covolume of
semi-simple Lie groups. The main class of examples are Schottky
groups.

This paper continues the study of the limit set of finitely generated
subgroups of irreducible lattices in PSL(2,R)r that was started in the
author’s papers [7] and [8]. In the first paper we give necessary and
sufficient conditions for the limit set to be “small” and in the second
paper we give examples of infinite covolume subgroups that have “big”
limit sets.

In this paper we give a description of the possible limit sets of finitely
generated subgroups of irreducible lattices in PSL(2,R)r. We see that
morally we do not have limit sets of surprising types and that the
examples of [7] and [8] are in some sense extremal.

This article is organized as follows. The second section fixes the
notation and gives the necessary background. We provide a detailed
description of the geometric boundary of (H2)r, which is the set of
equivalence classes of asymptotic geodesic rays. We introduce the no-
tion of the limit set as the part of the orbit closure Γ(x) in the geo-
metric boundary where x is an arbitrary point in (H2)r. We also state
a natural structure theorem for the regular limit set LregΓ of discrete
nonelementary groups Γ due to Link [10]: LregΓ is the product of the
Furstenberg limit set FΓ and the projective limit set PΓ.

In Section 3 we study the limit set of finitely generated Zariski dense
subgroups. The main result is the following theorem (Theorem 3.4 in
the text).
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Theorem A. Let Γ be a finitely generated Zariski dense subgroup of
an irreducible arithmetic subgroup of PSL(2,R)r with r ≥ 2.

If there is j ∈ {1, . . . , r} such that pj(Γ) is discrete, then FΓ is
homeomorphic to Lpj(Γ)×(∂H2)m, where m is the number of nondiscrete
projections of Γ.

Otherwise, if pi(Γ) is not discrete for all i = 1, . . . , r, then FΓ is the
whole Furstenberg boundary.

This theorem together with the fact that the projective limit set of
a Zariski dense subgroup of PSL(2,R)r is of nonempty interior (this is
a special case of the theorem by Benoist in Section 1.2 in [2]) describes
the regular limit set of finitely generated Zariski dense subgroups of
PSL(2,R)r.

In Section 4 we treat the general case of finitely generated subgroups.
The main result is the following theorem which is a compilation of
Proposition 4.4 and Proposition 4.5 in the text.

Theorem B. Let Γ be a finitely generated and nonelementary subgroup
of an irreducible arithmetic subgroup ∆ of PSL(2,R)r with r ≥ 2. Fur-
ther let m be the number of nondiscrete projections of Γ and k the
degree of extension k = [Q(Tr(pj(∆

(2))) : Q(Tr(pj(Γ
(2))))] for one and

hence for all j ∈ {1, . . . , r}.
(i) If there is j ∈ {1, . . . , r} such that pj(Γ) is discrete, then FΓ is

homeomorphic to Lpj(Γ)× (∂H2)
m
k , otherwise, FΓ is homeomor-

phic to (∂H2)
m
k .

(ii) The projective limit set PΓ is of dimension r
k
− 1.

A corollary of Theorem B is the fact that dimFΓ ≤ 1 + dimPΓ, i.e.
it is not possible to have simultaneously a big FΓ and a small PΓ.

At the end of the section we give some examples of subgroups of
irreducible arithmetic groups in PSL(2,R)r and their limit sets.

The author thanks Fanny Kassel and Francois Gueritaud for a mo-
tivating discussion and the anonymous referee for valuable comments
and suggestions.

2. Background

In this section we provide some basic facts and notations that are
needed in the rest of this paper.

We will change freely between matrices in SL(2,R) and their action
as fractional linear transformations, namely as elements in PSL(2,R).

For g =

[
a b
c d

]
∈ PSL(2,R) we set tr(g) = |a+ d|.
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For a subgroup Γ of PSL(2,R) we call

Tr(Γ) = {tr(g) | g ∈ Γ}

the trace set of Γ.
The translation length `(g) of a hyperbolic g is the distance between

a point x on the geodesic fixed by g and its image g(x) under g. If g is
elliptic, parabolic or the identity, we define `(g) := 0.

The group Γ is elementary if it has a finite orbit in its action on
H2∪R∪{∞}. Otherwise it is said to be nonelementary. Every nonele-
mentary subgroup of PSL(2,R) contains infinitely many hyperbolic
elements, no two of which have a common fixed point (see Theorem
5.1.3 in the book of Beardon [1]).

A Schottky group is a finitely generated free subgroup of PSL(2,R)
that contains only hyperbolic isometries except for the identity. We
will mainly deal with two-generated Schottky groups.

For each two hyperbolic isometries without common fixed points, we
can find powers of them that generate a Schottky group. This means
that every nonelementary subgroup of PSL(2,R) has a subgroup that
is a Schottky group. A proof of this lemma can be found in [6].

A Schottky group contains isometries without common fixed points
because it is nonelementary.

2.1. The geometric boundary of (H2)r. For i = 1, . . . , r, we denote
by pi : (H2)r → H2, (z1, ..., zr) 7→ zi the i-th projection of (H2)r into
H2. Let γ : [0,∞) → (H2)r be a curve in (H2)r. Then γ is a geodesic
ray in (H2)r if and only if pi ◦ γ is a geodesic ray or a point in H2 for
each i = 1, . . . , r. A geodesic γ is regular if pi ◦ γ is a nonconstant
geodesic in H2 for each i = 1, . . . , r.

Two unit speed geodesic rays γ and δ in (H2)r are said to be asymp-
totic if there exists a positive number c such that d(γ(t), δ(t)) ≤ c for
all t ≥ 0. This is an equivalence relation on the unit speed geodesic
rays of (H2)r. For any unit speed geodesic γ of (H2)r we denote by
γ(+∞) the equivalence class of its positive ray.

We denote by ∂((H2)r) the set of all equivalence classes of unit speed
geodesic rays of (H2)r. We call ∂((H2)r) the geometric boundary of
(H2)r.

The geometric boundary ∂((H2)r) with the cone topology is home-
omorphic to the unit tangent sphere of a point in (H2)r (see Eberlein
[5], 1.7). (For example ∂H2 is homeomorphic to S1.) The homeomor-
phism is given by the fact that for each point x0 and each unit speed
geodesic ray γ in (H2)r there exists a unique unit speed geodesic ray δ
with δ(0) = x0 which is asymptotic to γ.
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The group PSL(2,R)r acts on (H2)r by isometries in the following
way. For g = (g1, . . . , gr) ∈ PSL(2,R)r

g : (H2)r → (H2)r, (z1, . . . , zr) 7→ (g1z1, . . . , grzr),

where zi 7→ gizi is the usual action given by linear fractional transfor-
mation, i = 1, . . . , r.

The action of PSL(2,R)r can be extended naturally to ∂((H2)r). Let
g be in PSL(2,R)r and ξ be a point in the boundary ∂((H2)r). If γ is
a representative of ξ, then g(ξ) is the equivalence class of the geodesic
ray g ◦ γ.

We call g elliptic if all gi are elliptic isometries, parabolic if all gi are
parabolic isometries and hyperbolic if all gi are hyperbolic isometries.
In all the other cases we call g mixed.

If at least one `(gi) is different from zero, then we define the trans-
lation direction of g as L(g) := (`(g1) : . . . : `(gr)) ∈ RPr−1.

2.2. Decomposition of the geometric boundary of (H2)r. In this
section we show a natural decomposition of the geometric boundary
of (H2)r and in particular of its regular part. This is a special case of
a general construction for a large class of symmetric spaces (see e.g.
Leuzinger [9] and Link [10]). This decomposition plays a main role in
this article.

Let x = (x1, . . . , xr) be a point in (H2)r. We consider the Weyl
chambers with vertex x in (H2)r given by the product of the images of
the geodesics δi : [0,∞) → H2 with δi(0) = xi for i = 1, . . . , r. The
isotropy group in PSL(2,R)r of x is PSO(2)r. It acts simply transitively
on the Weyl chamber with vertex x.

Let W be a Weyl chamber with vertex x. In W , two unit speed
geodesics γ(t) = (γ1(t), . . . , γr(t)) and γ̃ = (γ̃1(t), . . . , γ̃r(t)) are differ-
ent if and only if the corresponding projective points

(dH(γ1(0), γ1(1)) : . . . : dH(γr(0), γr(1))) and

(dH(γ̃1(0), γ̃1(1)) : . . . : dH(γ̃r(0), γ̃r(1)))

are different. Here dH denotes the hyperbolic distance in H2. The
point in RPr−1 given by (dH(γ1(0), γ1(1)) : . . . : dH(γr(0), γr(1))) is a
direction in the Weyl chamber and it is the same as (‖v1‖ : . . . : ‖vr‖),
where v = (v1, . . . , vr) := γ′(0) is the unit tangent vector of γ in 0.

In other words we can extend the action of Isox to the tangent space
at x in (H2)r. Then Isox maps a unit tangent vector at x onto a unit
tangent vector at x. Let v be a unit tangent vector at x in (H2)r.
We denote by vi the i-th projection of v on the tangent spaces at xi,
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i = 1, . . . , r. Then all the vectors w in the orbit of v under Isox have
‖wi‖ = ‖vi‖.

Let v be a vector in the unit tangent sphere at x in (H2)r. If v is
tangent to a regular geodesic, then the orbit of v is homeomorphic to
(S1)r ∼= (∂H2)

r
because ∂H2 ∼= S1. The orbit of v under the group

PSO(2)r consists of all unit tangent vectors w at x such that ‖wi‖ =
‖vi‖ for i = 1, . . . , r.

The regular boundary ∂((H2)r)reg of (H2)r consists of the equivalence
classes of regular geodesics. Hence it is identified with (∂H2)

r ×RPr−1
+

where

RPr−1
+ :=

{
(w1 : . . . : wr) ∈ RPr−1 | w1 > 0, . . . , wr > 0

}
.

Here w1, .., wr can be thought as the norms of the projections of the
regular unit tangent vectors on the simple factors of (H2)r.

(∂H2)
r

is called the Furstenberg boundary of (H2)r.
We note that the decomposition of the boundary into orbits under

the group Isox is independent of the point x.

2.3. The limit set of a group. Let x be a point and {xn}n∈N a
sequence of points in (H2)r. We say that {xn}n∈N converges to a point
ξ ∈ ∂ ((H2)r) if {xn}n∈N is discrete in (H2)r and the sequence of geodesic
rays starting at x and going through xn converges towards ξ in the cone
topology. With this topology, (H2)r ∪ ∂ ((H2)r) is a compactification
of (H2)r.

Let Γ be a subgroup of PSL(2,R)r. We denote by Γ(x) the orbit

of x under Γ and by Γ(x) - its closure. The limit set of Γ is LΓ :=

Γ(x)∩∂ ((H2)r). The limit set is independent of the choice of the point
x in (H2)r. The regular limit set is LregΓ := LΓ ∩ ∂ ((H2)r)reg and the

singular limit set is LsingΓ := LΓ\LregΓ .
We denote by FΓ the projection of LregΓ on the Furstenberg boundary

(∂H2)
r

and by PΓ the projection of LregΓ on RPr−1
+ . The projection FΓ

is the Furstenberg limit set of Γ and PΓ is the projective limit set of Γ.

Let h ∈ Γ be a hyperbolic element or a mixed one with only hyper-
bolic or elliptic components. We consider the unit speed geodesics γ
in (H2)r such that h ◦ γ(t) = γ(t + Th) for a fixed Th ∈ R>0 and all
t ∈ R. Their union forms a flat of dimension the number of hyperbolic
components of h. This flat is the product of the axes of the hyperbolic
components and the fixed points of the elliptic components. Hence the
considered geodesics are parallel in the Euclidean sense and therefore
equivalent.
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We take a geodesic γ as above. For y ∈ γ, the sequence hn(y)
converges to γ(+∞). Hence also for every x ∈ (H2)r, the sequence
hn(x) converges to γ(+∞). Thus γ(+∞) is in LΓ. The sequence h−n(x)
converges to γ(−∞) := −γ(+∞) and therefore γ(−∞) is also in LΓ.
The points γ(+∞) and γ(−∞) are the only fixed points of h in LΓ. The
point γ(+∞) is the attractive fixed point of h and the point γ(−∞) -
the repulsive fixed point of h.

If h is hyperbolic, then for all i = 1, . . . , r, the projection pi ◦ γ is
not a point. Hence γ is regular and γ(+∞) ∈ LregΓ . The point γ(+∞)
can be written as (ξF , ξP ) in our description of the regular geometric
boundary where

ξF := (p1 ◦ γ(+∞), . . . , pr ◦ γ(+∞))

is in the Furstenberg boundary and

ξP := (dH(p1 ◦ γ(0), p1 ◦ γ(1)) : . . . : dH(pr ◦ γ(0), pr ◦ γ(1)))

is in the projective limit set. Here we note that ξP is also equal to

(dH(p1 ◦ γ(0), p1 ◦ γ(Th)) : . . . : dH(pr ◦ γ(0), pr ◦ γ(Th))),

which is exactly the translation direction of h.
Thus the translation direction of each hyperbolic isometry h in Γ

determines a point in the projective limit set PΓ. This point does
not change after conjugation with h or after taking a power hm of h,
because in these cases the translation direction remains unchanged.

Recall that following Maclachlan and Reid [12], we call a subgroup Γ

of PSL(2,R) elementary if there exists a finite Γ-orbit in H2 := H2∪∂H2

and nonelementary if it is not elementary. Since H2 and ∂H2 are Γ-
invariant, any Γ-orbit of a point in H2 is either completely in H2 or
completely in ∂H2.

We call a subgroup Γ of PSL(2,R)r nonelementary if for all i =
1, . . . , r, pi(Γ) is nonelementary, and if for all g ∈ Γ that are mixed,
the projections pi ◦ g are either hyperbolic or elliptic of infinite order.
Since for all i = 1, . . . , r, pi(Γ) is nonelementary, Γ does not contain
only elliptic isometries and thus LΓ is not empty.

This definition of nonelementary is more restrictive than the one
given by Link in [10]. By Lemma 1.2 in [7] if a subgroup Γ of PSL(2,R)r

is nonelementary (according to our definition), then it is nonelementary
in the sense of Link’s definition in [10].

The next theorem is a special case of Theorem 3 from the intro-
duction of [10]. It describes the structure of the regular limit set of
nonelementary discrete subgroups of PSL(2,R)r.
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Theorem 2.1 ([10]). Let Γ be a nonelementary discrete subgroup of
the group PSL(2,R)r acting on (H2)r. If LregΓ is not empty, then FΓ

is a minimal closed Γ-invariant subset of (∂H2)r, the regular limit set
equals the product FΓ × PΓ and PΓ is equal to the closure in RPr−1

+ of
the set of translation directions of the hyperbolic isometries in Γ.

2.4. Irreducible arithmetic groups in PSL(2,R)r. In this section,
following Schmutz and Wolfart [13] and Borel [3], we will describe the
irreducible arithmetic subgroups of PSL(2,R)r.

Let K be a totally real algebraic number field of degree n = [K : Q]
and let φi, i ∈ {1, . . . , n}, be the n distinct embeddings of K into R,
where φ1 = id.

Let A =
(
a,b
K

)
be a quaternion algebra over K such that for 1 ≤ i ≤ r,

the quaternion algebra
(
φi(a),φi(b)

R

)
is unramified, i.e. isomorphic to

the matrix algebra M(2,R), and for r < i ≤ n, it is ramified, i.e.
isomorphic to the Hamilton quaternion algebra H. In other words, the
embeddings

φi : K −→ R, i = 1, . . . , r

can be extended to embeddings of A into M(2,R) and the embeddings

φi : K −→ R, i = r + 1, . . . , n

can be extended to embeddings of A into H. Note that for φi, i =

1, . . . , r, the identifications of
(
φi(a),φi(b)

R

)
with the matrix algebraM(2,R)

are not canonical.
Let O be an order in A and O1 the group of units in O. Define

Γ(A,O) := φ1(O1) ⊂ SL(2,R). The canonical image of Γ(A,O) in
PSL(2,R) is called a group derived from a quaternion algebra. The
group Γ(A,O) acts by isometries on (H2)r as follows. An element
g = φ1(ε) of Γ(A,O) acts via

g : (z1, . . . , zr) 7→ (φ1(ε)z1, . . . , φr(ε)zr),

where zi 7→ φi(ε)zi is the usual action by linear fractional transforma-
tion, i = 1, . . . , r.

For a subgroup S of Γ(A,O) we denote by S∗ the group

{g∗ := (φ1(ε), . . . , φr(ε)) | φ1(ε) = g ∈ S}.
Instead of (φ1(ε), . . . , φr(ε)), we will usually write (φ1(g), . . . , φq+r(g))
or, since φ1 is the identity, even (g, φ2(g), . . . , φr(g)). The isometries
φ1(g), . . . , φq+r(g) are called φ-conjugates.

Note that g∗ and S∗ depend on the chosen embeddings φi of A into
M(2,R). On the other hand, the type of g∗ is determined uniquely by
the type of g. This is given by the following lemma.
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Lemma 2.2 ([7]). Let S be a subgroup of Γ(A,O) and S∗ be defined
as above. For an element g ∈ S the following assertions are true.

1. If g is the identity, then g∗ is the identity.
2. If g is parabolic, then g∗ is parabolic.
3. If g is elliptic of finite order, then g∗ is elliptic of the same order.
4. If g is hyperbolic, then g∗ is either hyperbolic or mixed such that,

for i = 1, . . . , r, φi(g) is either hyperbolic or elliptic of infinite order.
5. If g is elliptic of infinite order, then its φ-conjugates are hyperbolic

or elliptic of infinite order.

Hence the mixed isometries in this setting have components that are
only hyperbolic or elliptic of infinite order. This justifies the condition
in our definition of nonelementary that the projections of all mixed
isometries can be only hyperbolic or elliptic of infinite order.

By Borel [3], Section 3.3, all irreducible arithmetic subgroups of the
group PSL(2,R)r are commensurable to a Γ(A,O)∗. They have finite
covolume. By Margulis, for r ≥ 2, all irreducible discrete subgroups of
PSL(2,R)r of finite covolume are arithmetic, which shows the impor-
tance of the above construction.

2.5. Properties of nonelementary subgroups of PSL(2,R)r. In
this section we cite several results that are used later in the article and
whose proofs can be found in [7].

Lemma 2.3 ([7]). Let Γ be a nonelementary subgroup of PSL(2,R)r.
Further let g and h be two hyperbolic isometries in Γ. Then there are
hyperbolic isometries g′ and h′ in Γ with L(g) = L(g′) and L(h) = L(h′)
such that the groups generated by the corresponding components are all
Schottky groups (with only hyperbolic isometries).

Lemma 2.4 ([7]). Let Γ be a subgroup of PSL(2,R)r such that all mixed
isometries in Γ have only elliptic and hyperbolic components and pj(Γ)
is nonelementary for at least one j ∈ {1, . . . , r}. Then LregΓ is not
empty.

We define the limit cone of Γ to be the closure in RPr−1 of the set
of the translation directions of the hyperbolic and mixed isometries in
Γ. This definition is equivalent to the definition of the limit cone given
by Benoist in [2]. This is explained in Section 3.4 in [7].

Proposition 2.5 ([7]). Let Γ be a nonelementary subgroup of an irre-
ducible arithmetic group in PSL(2,R)r with r ≥ 2. Then PΓ is convex
and the closure of PΓ in RPr−1 is equal to the limit cone of Γ and in
particular the limit cone of Γ is convex.
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3. The limit set of Zariski dense subgroups

The aim of this section is Theorem 3.4 which describes the Fursten-
berg limit set of Zariski dense subgroups Γ of irreducible lattices in
PSL(2,R)r with r ≥ 2.

The next two theorems are results in this direction in the special
cases when one projection of Γ is an arithmetic Fuchsian group or a
triangle Fuchsian group.

Theorem 3.1 ([7]). Let ∆ be an irreducible arithmetic subgroup of
PSL(2, R)r with r ≥ 2 and Γ a finitely generated nonelementary sub-
group of ∆. Then LregΓ is not empty and PΓ is embedded homeomor-
phically in a circle if and only if pj(Γ) is contained in an arithmetic
Fuchsian group for some j ∈ {1, . . . , r}.

Theorem 3.2 ([8]). Let Γ be a Zariski dense subgroup of an irreducible
arithmetic group in PSL(2,R)r with r ≥ 2 such that pj(Γ) is a triangle
Fuchsian group. Then

(i) the Furstenberg limit set FΓ is the whole Furstenberg boundary
(∂H2)r,

(ii) the limit set LΓ contains an open subset of the geometric bound-
ary of (H2)r.

The next lemma is needed in the proof of Theorem 3.4.

Lemma 3.3. Let Γ be a Zariski dense subgroup of an irreducible arith-
metic subgroup of PSL(2,R)r with r ≥ 2. Further let g = (g1, . . . , gr) ∈
Γ be a mixed isometry with g1, . . . , gk−1 hyperbolic and gk, . . . , gr ellip-
tic of infinite order with 2 ≤ k ≤ r − 1. Then there exists a mixed
isometry g̃ ∈ Γ such that g̃1, . . . , g̃k are hyperbolic and g̃k+1 is elliptic
of infinite order.

Proof. Since Γ is nonelementary, by Lemma 2.4 and by the fact that
the fixed points of hyperbolic isometries are dense in LΓ, there is h ∈ Γ
that is a hyperbolic isometry. By Lemma 2.3, we can assume without
loss of generality that for all i = 1, . . . , k − 1, hi and gi generate a
Schottky group.

The idea is to find m ∈ N such that gmk hk is hyperbolic and gmk+1hk+1

is elliptic (of infinite order).
By §7.34 in the book of Beardon [1], the isometries hi, i = k, k + 1,

can be represented as hi = σi,2σi,1 where σi,j are the reflections in
geodesics Li,j that are orthogonal to the axis of hi and the distance
between them equals `(hi)/2. By §7.33 in [1], the elliptic isometries
gmi can be represented as gmi = σi,4σi,3 where σi,j are the reflections
in Li,j that pass through the fixed point of gmi and the angle between
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•
Fix(gk)

Lk,2 = Lk,3

Lk,4

Axis(hk)

Lk,1

•
Fix(gk+1)

Lk+1,2 = Lk+1,3

Lk+1,4

Axis(hk+1)

Lk+1,1

Figure 3.1. The case with tr(gk) 6= tr(gk+1).

them equals the half of the angle of rotation of gmi . We can choose Li,2
and Li,3 to be the same geodesic by choosing them to be the unique
geodesic passing through the fixed point of gmi that is orthogonal to
the axis of hi. Then σi,2 = σi,3 and

gmi hi = (σi,4σi,3)(σi,2σi,1) = σi,4σi,1.

Hence if Li,1 and Li,4 do not intersect and do not have a common point
at infinity, the isometry gmi hi is hyperbolic, and if they intersect, gmi hi
is elliptic.

Aim. Show that we can choose m so that gmk is a rotation of such
an angle that Lk,4 does not intersect Lk,1 and gmk+1 is a rotation such
that Lk+1,4 intersects Lk+1,1.

Case tr(gk) 6= tr(gk+1). First we note that for all n 6= 0 we have
tr(gnk ) 6= tr(gnk+1). Indeed, suppose that it is not the case, i.e. there
is a power n such that tr(gnk ) = tr(gnk+1). The traces tr(g1) and tr(gk)
have the same number l of equal conjugates. Since g1 is hyperbolic,
tr(gn1 ) = tr(gni ) if and only if tr(g1) = tr(gi) for i = 2, . . . , r. Hence
tr(gn1 ) has exactly l equal conjugates. On the other hand tr(gnk ) = tr(gni )
if tr(g1) = tr(gi) for i = 2, . . . , r and additionally tr(gnk ) = tr(gnk+1).
Therefore tr(gnk ) has at least l+1 equal conjugates which is impossible.

Now we use the fact that every orbit of (gk, gk+1) on the 2-torus
(∂H2)2 is dense. For a proof see for example Lemma 3.3 in [8]. This
gives us the possibility to choose m so that gmk is a rotation of a very
small angle such that Lk,4 does not intersect Lk,1 and gmk+1 is a rotation
such that Lk+1,4 intersects Lk+1,1, see Fig. 3.1 .

Case tr(gk) = tr(gk+1). Since Γ is Zariski dense, by a theorem of
Benoist [2], PΓ is of nonempty interior. Therefore we can choose the
hyperbolic element from above so that tr(hk) 6= tr(hk+1).
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•
Fix(gi)

γ

Li,4
h+
k+1h−k+1

h+
kh−k

Lk+1,1

Lk,1

Figure 3.2. The case with tr(gk) = tr(gk+1) and h+
k 6= h+

k+1.

Without loss of generality, after conjugation by an appropriate isom-
etry of (H)2, we can assume the following picture: gk and gk+1 are
rotations in the same direction and they both fix the center in the
unit disc model of the hyperbolic plane. Furthermore, we assume that
the unique geodesic γ passing through the center that is orthogonal to
the axis of hk coincides with the corresponding unique geodesic pass-
ing through the center that is orthogonal to the axis of hk+1. Hence
γ = Lk,2 = Lk,3 = Lk+1,2 = Lk+1,3.

First we notice that the attractive and repulsive fixed points of hj,
for j ∈ {k, k + 1}, are symmetric with respect to γ. Hence it is not
possible that only the attractive or only the repulsive fixed points of
hk and hk+1 coincide, i.e. it is not possible to have h+

k = h+
k+1 and

h−k 6= h−k+1 or to have h+
k 6= h+

k+1 and h−k = h−k+1.
If hk and hk+1 have different attractive fixed points, i.e. h+

k 6= h+
k+1

(and hence h−k 6= h−k+1), then we can take hn instead of h for some
power n so that Lk,1 ∩ Lk+1,1 = ∅, Lk,1 ∩ Axis(hk+1) = ∅ and Lk+1,1 ∩
Axis(hk) = ∅. And since gk and gk+1 are rotations of the same irrational
angle, there exists m such that Lk,4 does not intersect Lk,1 and Lk+1,4

intersects Lk+1,1 (see Fig. 3.2).
If hk and hk+1 have the same attractive fixed points, i.e. h+

k = h+
k+1

(and hence h−k = h−k+1), then Lk,1 and Lk+1,1 do not intersect because
tr(hk) 6= tr(hk+1). In this case, since gk and gk+1 are rotations of the
same irrational angle, there exists m such that Lk,4 intersects both Lk,1
and Lk+1,1 under different angles (see Fig. 3.3). So for the isometry

11



•
Fix(gi)

γ

Li,4

h+
k = h+

k+1
h−k = h−k+1

Lk+1,1

Lk,1

Figure 3.3. The case with tr(gk) = tr(gk+1) and h+
k = h+

k+1.

g′ = gmh, for i = 1, . . . , k − 1 the components g′i are hyperbolic as
elements in Schottky groups and g′k and g′k+1 are elliptic with tr(g′k) 6=
tr(g′k+1). Hence instead of g we can take g′ and we use the previous big
case.

�

Our aim is to describe the possible Furstenberg limit sets of sub-
groups of irreducible lattices in PSL(2,R)r with r ≥ 2. For a general
Zariski dense group, we obtain the following result.

Theorem 3.4. Let Γ be a finitely generated Zariski dense subgroup of
an irreducible arithmetic subgroup of PSL(2,R)r with r ≥ 2.

If there is j ∈ {1, . . . , r} such that pj(Γ) is discrete, then FΓ is
homeomorphic to Lpj(Γ)×(∂H2)m, where m is the number of nondiscrete
projections of Γ.

Otherwise, if pi(Γ) is not discrete for all i = 1, . . . , r, then FΓ is the
whole Furstenberg boundary.

Proof. For simplicity, we denote Γi := pi(Γ), for i = 1, . . . , r.
First we remark that by Lemma 2.4 the regular limit set of Γ is

not empty and hence there is ξ = (ξ1, . . . , ξr) ∈ FΓ. Without loss of
generality, we can assume that ξ is the projection in the Furstenberg
boundary of the attractive fixed point of a hyperbolic isometry in Γ.
By Theorem 2.1, FΓ is the minimal closed Γ-invariant subset of the
Furstenberg boundary (∂H2)r. Therefore FΓ = Γ(ξ).

12



We consider first the case where all projections are nondiscrete and
then the case where there is j ∈ {1, . . . , r} such that pj(Γ) is discrete.

The case without discrete projections. The idea is to show by induction
for n = 1, . . . , r that Γ(ξ) is the whole Furstenberg boundary (∂H2)r

and hence FΓ = (∂H2)r.
For i = 1, . . . , r, we note by Γ1,i the projection of Γ to the first i

factors. For simplicity of the notation, we write FG instead of LG if G
is a subgroup of PSL(2,R).

For n = 1 it is clear that FΓ1,1 = ∂H2 because a nondiscrete nonele-
mentary subgroup of PSL(2,R) contains elliptic elements of infinite
order. An elliptic element e of infinite order acts on ∂H2 as a ”rota-
tion” of irrational angle. That is why the orbit of a point in ∂H2 under
the action of e is dense in ∂H2.

Let us assume that Γ1,n−1((ξ1 . . . , ξn−1)) = (∂H2)n−1.
By Lemma 3.3 we can find g = (g1, . . . , gr) ∈ Γ such that g1, . . . , gn−1

are hyperbolic and gn is elliptic of infinite order. Let ηi denote the
attractive fixed point of gi for i = 1, . . . , n− 1. We can assume that ξi
is none of the fixed points of gi. The reason is that ξ is the projection on
the Furstenberg boundary of the attractive fixed point of an element g̃
in Γ. By Lemma 2.3, we can find g̃′ such that g̃′i and gi do not have any
common fixed point for i = 1, . . . , n−1. Then instead of the attractive
fixed point of g̃ we can take the attractive fixed point of g̃′.

We note that {η1} × . . .× {ηn−1} × ∂H2 is a subset of Γ1,n(ξ). The
reason is that for any point ηn ∈ H2 there is a sequence {nk} of powers
of the elliptic element of infinite order gn such that gnk

n (ξn) −→ ηn when
nk −→∞ and additionally, because of the dynamical properties of the
hyperbolic isometries gi for all i = 1, . . . , n− 1, we have gnk

i (ξi) −→ ηi
when nk −→∞.

Hence by the induction hypothesis, for any point (ζ1, . . . , ζn−1) in
(∂H2)n−1, the points in {ζ1}×. . .×{ζn−1}×∂H2 are in the closure of the

orbits of {η1}×. . .×{ηn−1}×∂H2. Therefore we have Γ1,n((ξ1 . . . , ξn)) =
(∂H2)n.

The case with discrete projections. Now we consider the case where
there is j ∈ {1, . . . , r} such that pj(Γ) is discrete. Without loss of gen-
erality we can assume that Γi is discrete for i = 1, . . . , q and nondiscrete
for i = q + 1, . . . , r where q = r −m. We denote by Γdisc the projec-
tion of Γ to the first q factors (the discrete factors) and by Γndisc the
projection of Γ to the rest of the factors.
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The plan is to prove first (Step 1) that FΓdisc is homeomorphic to
LΓ1 . If there are no nondiscrete projections, this finishes the proof.
Otherwise, we prove that FΓ = FΓdisc × FΓndisc (this is Step 2).

Step 1. For all i = 1, . . . , q, the natural isomorphism φi := pi ◦
p−1

1 : Γ1 → Γi is type preserving. Since Γ and hence Γi are finitely
generated, Γi is geometrically finite. Hence, by Theorem 3.3 in the
paper of Tukia [14], there is a unique homeomorphism fi between LΓ1

and LΓi
such that fi(g1(x)) = φi(g1)(fi(x)) for all g1 ∈ Γ1 and x ∈ H2∪

∂H2. We remark that fi maps the attractive fixed points of hyperbolic
elements g1 in Γ1 to the attractive fixed points of hyperbolic elements
gi = φi(g1) in Γ1.

We consider the map f : LΓ1 → (∂H2)q, ξ1 7→ (ξ1, f2(ξ1), . . . , fq(xq)).
It is a homeomorphism on its image, i.e. f : LΓ1 → f(LΓ1) is a home-
omorphism. By the remark above, f is a bijection between the at-
tractive fixed points of the hyperbolic isometries in Γ1 and the pro-
jections to the Furstenberg boundary of the attractive fixed points of
Γdisc. Since the attractive fixed points of hyperbolic elements are dense
in the corresponding limit sets, we have FΓdisc = f(LΓ1). Therefore
f : LΓ1 → FΓdisc is a homeomorphism.

Step 2. The idea is to show by induction on the nondiscrete factors
that Γ(ξ) and hence FΓ is FΓdisc × (∂H2)m. The induction step is
essentially the same as in the case without discrete projections. The
difference is in the induction base (for which we consider only the the
first nondiscrete factor).

By Step 1, there is a bijection between FΓdisc and LΓ1 compatible
with the Γ-action. So, for convenience of the notation, we can consider
only the case with one discrete factor.

Let g = (g1, g2) ∈ Γ be a transformation such that g2 is an elliptic
transformation of infinite order. Such a g2 exists because Γ2 is not
discrete. The isometry g1 is hyperbolic because Γ1 is discrete.

Let η1 be the attractive fixed point of g1. First we note that {η1} ×
∂H2 is in Γ(ξ). The reason is that for any point η2 ∈ H2 there is
a sequence {nk} of powers such that gnk

2 (ξ2) −→ η2 when nk −→ ∞
and additionally, because of the dynamical properties of the hyperbolic
isometries, gnk

1 (ξ1) −→ η1 when nk −→∞. The only problem could be
that ξ1 is the repelling fixed point of g1. In this case we consider g−1

instead of g.
Now let ζ = (ζ1, ζ2) be a point in LΓ1 × ∂H2. Since LΓ1 = Γ1(η1),

there is a sequence of elements {hn} in Γ such that (hn)1(η1)
n→∞−→ ζ1.

The points (η1, (hn)−1
2 (ζ2)) are points in Γ(ξ) because it contains

{η1} × ∂H2. Hence all the points ((hn)1(η1), ζ2) are in Γ(ξ). Therefore

14



their limit ζ = limn→∞((hn)1(η1), ζ2) is also in Γ(ξ). Thus Γ(ξ) =
LΓ1 × ∂H2. �

Remark. This theorem together with the fact that the projective limit
set of a Zariski dense subgroup of PSL(2,R)r is of nonempty interior
(this is a special case of the theorem by Benoist in Section 1.2 in [2])
describes the regular limit set of finitely generated Zariski dense sub-
groups of PSL(2,R)r.

Remark. By Theorem 4.10 of Link [11], the attractive fixed points of
the hyperbolic isometries in a nonelementary subgroup of PSL(2,R)r

are dense in the limit set. Therefore the regular limit set of a nonele-
mentary subgroup of PSL(2,R)r is dense in the limit set. Thus by the
above theorem and the previous remark we have also a description of
the whole limit set of Zariski dense subgroups of PSL(2,R)r.

4. The limit set of finitely generated and nonelementary
subgroups

The aim of this section is to describe the limit set in the general
case, i.e. the limit set of finitely generated and nonelementary sub-
groups of irreducible lattices in PSL(2,R)r with r ≥ 2. We do it with
Proposition 4.4 and Proposition 4.5.

First we recall a result about the Zariski closure of subgroups of
PSL(2,R)r.

Proposition 4.1 ([8]). Let Γ be a nonelementary subgroup of PSL(2,R)r.
Then the following holds for the Zariski closure of Γ.

Γ
Z

=
n∏
i=1

Diagki(PSL(2,R)),

where Diagki(PSL(2,R)) is a conjugate of the diagonal embedding of
PSL(2,R) in PSL(2,R)ki and where k1 + · · ·+ kn = r.

For a group S we denote as usual by S(2) the subgroup of S generated
by the set {g2 | g ∈ S}. If S is a finitely generated nonelementary
subgroup of PSL(2,R) then S(2) is a finite index normal subgroup of
S.

Corollary 4.2 ([8]). Let Γ be a finitely generated nonelementary sub-
group of an irreducible arithmetic group ∆ in PSL(2,R)r. Then Γ
is Zariski dense in PSL(2,R)r if and only if the fields generated by
Tr(pi(Γ

(2))) and Tr(pi(∆
(2))) are equal for one and hence for all i ∈

{1, . . . , r}.
15



We can generalize this corollary in the following way.

Corollary 4.3. Let Γ be a finitely generated nonelementary subgroup of
an irreducible arithmetic group ∆ in PSL(2,R)r. Then for the Zariski
closure of Γ we have

Γ
Z

=
n∏
i=1

Diagk(PSL(2,R)),

where k = [Q(Tr(pj(∆
(2))) : Q(Tr(pj(Γ

(2))))], for one and hence for all
j ∈ {1, . . . , r}.

Proof. By the proof of the previous corollary in [8], we can assume
without loss of generality that ∆ is an arithmetic group derived from
a quaternion algebra Γ(A,O)∗. In this case Γ is equal to S∗, where S
is a subgroup of Γ(A,O)∗.

We denote by K the field generated by Tr(Γ(A,O)(2)) and by F the
field generated by Tr(S(2)).

First we remark that, by Lemma 2.4, φi(Γ(A,O)(2)) contains hyper-
bolic elements if and only if φi(S

(2)) contains hyperbolic elements, for
all i = 1, . . . ,m, where m is the degree of K over Q. This means that
for each Galois embedding σ of F into R, that is the restriction of
some φi, i = 1, . . . , r, there are exactly k = [K : F ] embeddings φl with
l ∈ {1, . . . , r}, such that σ is the restriction of φl to F .

The statement of the corollary follows from the above considerations
and the fact that if the restrictions to F of φk1 and φk2 are the same,
then φk1(S) = φk2(S). �

Notice that in this corollary n is equal to [Q(Tr(pj(∆
(2))) : Q] if and

only if r is equal to [Q(Tr(pj(Γ
(2)))) : Q].

Using the theorem in the previous section (Theorem 3.4) and Corol-
lary 4.3, we prove the following proposition, which describes the Fursten-
berg limit set of a finitely generated and nonelementary subgroup of
an irreducible arithmetic group in PSL(2,R)r with r ≥ 2.

Proposition 4.4. Let Γ be a finitely generated and nonelementary
subgroup of an irreducible arithmetic subgroup ∆ of PSL(2,R)r with
r ≥ 2. Further let m be the number of nondiscrete projections of Γ and
k the degree of extension k = [Q(Tr(pj(∆

(2))) : Q(Tr(pj(Γ
(2))))] for one

and hence for all j ∈ {1, . . . , r}.
If there is j ∈ {1, . . . , r} such that pj(Γ) is discrete, then FΓ is

homeomorphic to Lpj(Γ) × (∂H2)
m
k , otherwise, FΓ is homeomorphic to

(∂H2)
m
k .
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The description of the projective limit set comes from the following
proposition, which is an immediate corollary of Corollary 4.3 and the
theorem by Benoist in Section 1.2 in [2] that states in our particular case
that the projective limit set of a Zariski dense subgroup of PSL(2,R)r

is of nonempty interior.

Proposition 4.5. Let Γ be a finitely generated nonelementary subgroup
of an irreducible arithmetic subgroup ∆ of PSL(2,R)r with r ≥ 2. Then
PΓ is of dimension r

k
− 1 with k as above.

The above two propositions give us a relation between the dimensions
of FΓ and PΓ:

Corollary 4.6. Let Γ be a finitely generated nonelementary subgroup
of an irreducible arithmetic subgroup ∆ of PSL(2,R)r with r ≥ 2. Then

dimFΓ ≤ 1 + dimPΓ.

In particular, this corollary implies that it is not possible to have
simultaneously a big FΓ and a small PΓ. For example, it is shown in
[7] that if PΓ is just one point, then there is a projection of Γ that is
contained in an arithmetic Fuchsian group and hence FΓ is the smallest
possible, i.e. FΓ is embedded homeomorphically in a circle.

Some examples of small FΓ and big PΓ can be obtained by the nonar-
ithmetic examples of semi-arithmetic groups constructed by Schmutz
and Wolfart in Theorem 1 and Theorem 2 in [13]: A semi-arithmetic
group is a Fuchsian group that can be embedded naturally in an ir-
reducible lattice in PSL(2,R)r. Let S be a semi-arithmetic group as
above. From Theorem 1 and Theorem 2 in [13] we can deduce that S
can be embedded in an irreducible lattice in PSL(2,R)2. We note Γ
this natural embedding. On one hand, by [13], all projections of Γ are
discrete and hence FΓ is homeomorphic to a circle. On the other hand,
Γ is Zariski dense and therefore PΓ is of nonempty interior. In these
examples we have dimFΓ = 1 and dimPΓ = 1 and so the inequality of
Corollary 4.6 is strict.

Finally we note that it is possible to have infinite covolume groups
Γ with big limit sets, i.e. big FΓ and big PΓ. In [8] it is shown that
the minimal embeddings of groups admitting modular embeddings (e.g.
triangle Fuchsian groupes as shown by Cohen and Wolfart in [4]) are
examples of infinite covolume subgroupes with big FΓ and big PΓ, i.e.
FΓ is the whole Furstenberg boundary and PΓ is of nonempty interior.
In this case we have dimFΓ = 1 + dimPΓ.

17



References

[1] A. Beardon, The Geometry of discrete groups, Graduate Texts in Mathematics
91, Springer-Verlag, New York, 1995.

[2] Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal.
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route de Narbonne, 31062 Toulouse, France

E-mail address: geninska@math.univ-toulouse.fr

18


