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INTRODUCTION

The classical Gindikin - Karpelevich formula expresses an integral over a nilpo-
tent subgroup of a semisimple real Lie group as a ratio of products of Gamma
functions.

We will show how some remarkable structures connected with this formula
appear in different (but related) areas: the Langlands’ theory of Eisenstein se-
ries, integrable models of Quantum field theory, the Knizhnik - Zamolodchikov
equations.

The reader may consult [Karp] (a) for the history of this formula.

I have given lectures on these subjects in Higher School of Economics in Moscow
on May 2013.
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Lecture 1. Eisenstein series

1.1. Eisenstein series and scattering matrix. Cf. [HS (a)]. Let G =

SL2(R) ⊃ Γ = SL2(Z); G = KAN where K = SO(2), N = {

(

1 n
0 1

)

, n ∈ R},

A = {a(t) =

(

et 0
0 e−t

)

, t ∈ R}

For x = kan ∈ G the elements k, a, n are uniquely defined; we set t = H(x) if
a = a(t).

Let P =MAN =

(

∗ ∗
0 ∗

)

, M = {±1}.

The Eisenstein series

E(λ; x) =
∑

γ∈Γ/Γ∩P

e(−λ−1)H(xγ) =
1

2

∑

γ∈Γ/Γ∩N

e(−λ−1)H(xγ) =

1

2

∑

γ∈Γ/Γ∩N

|(xγ)1|
−λ−1 (1.1.1)

where

x =

(

a b
c d

)

∈ G, x1 = (a, c)t, |x1| = (a2 + c2)1/2,

λ ∈ C, Reλ > 1. The series converges absolutely and uniformly for x ∈ D ⊂ G,
D compact and ℜλ ≥ 1 + ǫ.

Note that
|x1| = |kx|1, x ∈ G, k ∈ K.

It follows that E(λ; x) = E(λ; kx), k ∈ K, so we can consider E(λ; x) as a
function of z ∈ X = K\G.

Constant term.
∫

N/Γ∞

E(λ; a(t)n)dn = e(−1−λ)t + c(λ)e(−1+λ)t

where Γ∞ = Γ ∩N . Here

c(λ) = π−λ Γ(λ/2)ζ(λ)

Γ(−λ/2)ζ(−λ)

(a) c(λ) is meromorphic on C;

c(λ)c(−λ) = 1.

If ℜλ = 0, |c(λ)| = 1.
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(b) For all x ∈ G E(λ; x) may be meromorphically continued to C and

E(λ; x) = c(λ)E(−λ; x)

1.2. Some more details: Fourier expansion. Harish-Chandra prefers the
Iwasawa decomposition G = KAN . But in this no. we pass to the ”opposite”
Iwasawa G = NAK.

The group G acts on X = {z ∈ C| ℑz > 0} by gz = (az + b)/(cz + d) which
identifies G/K

∼
−→ X , K being the stabilizer of i.

ℑ

(

az + b

cz + d

)

=
y

|cz + d|2

Rewriting the definition (1.1.1) for the Iwasawa decomposition G = KAN , we
get a function E(g; s) such that E(gk; s) = E(kg; s), k ∈ K, whence

E(z; s) =
1

2

∑

Γ∞\Γ

ℑ(γz)s =
∑

Γ̄∞\Γ̄

ℑ(γz)s =

1

2ζ(2s)

∑

(m,n)∈Z2\{(0,0)}

ys

|mz + n|2s
=

1

2

∑

(m,n)∈Z2,(m,n)=1

ys

|mz + n|2s
, (1.2.1)

z ∈ X where Γ̄ = PSL2(Z) and Γ̄∞ is the image of Γ∞ in Γ̄. Here the previous
λ+ 1 = 2s.

Differential equation. Laplacian: ∆ = y2(∂2x + ∂2y) where z = x + iy; it is a
G-invariant differential operator on X . We have

∆ys = s(s− 1)ys

and ∆ commutes with γ ∈ Γ; hence each term in the sum is an eigenfunction of
∆.

It follows that
∆E(z; s) = s(s− 1)E(z; s)

Fourier expansion, cf. [G], Thm. 3.1.8:

E(z; s) = ys + c(s)y1−s+

2y1/2

ξ(2s)

∑

n∈Z,n 6=0

σ1−2s(n)|n|
s−1/2Ks−1/2(2π|n|y)e

2πinx (1.2.2)

where

ξ(s) = π−s/2Γ(s/2)ζ(s), c(s) =
ξ(2s− 1)

ξ(2s)
,

σs(n) =
∑

d|n

ds,
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and

Ks(y) =
1

2

∫ ∞

0

e−y(u+u
−1)/2us−1du

The last function is the Macdonald’s Bessel function; it is a unique solution of
the Bessel equation

y2f ′′(y) + yf ′(y)− (y2 + s2)f(y) = 0

rapidly decaying as y → ∞.

The following is used for the proof of (1.2.2).

Important integral:
∫

R

(x2 + 1)−se−2πixydx = B(1/2, s− 1/2) if y = 0

=
2πs|y|s−1/2

Γ(s)
Ks−1/2(2π|y|) if y 6= 0, (1.2.3)

cf. [G] (1.3.9), [Bu], Ch. 1, (6.8). Cf. also instructive [Ha] (a) (3.29).

This formula simply means that

The Fourier transform of a spherical vector is a Whittaker vector.

Functional equations: The functional equation for ζ(s) is

ξ(s) = ξ(1− s)

which implies
c(s)c(1− s) = 1

Next, Ks = K−s implies

E(z; s) = c(s)E(z; 1− s)

which in turn is equivalent to

E∗(z; s) = E∗(z; 1 − s)

for E∗(z; s) = ξ(s)E(z; s).

1.3. Where the Bessel function Ks comes from: the Whittaker func-
tion. Cf. [G], 3.4.

Notation: n(u) =

(

1 u
0 1

)

∈ N, u ∈ R.

Let ψ : R −→ S1 = {z ∈ C| |z| = 1} be a character, ν ∈ C. Let us call a
(ν, ψ)-Whittaker function a function W : X −→ C such that

∆W (z) = ν(1− ν)W (z) (w1)

and
W (n(u)z) = ψ(u)W (z) (w2)
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It is easy to construct such functions. As a préparatoire, put Is(z) = ys. Then
Iν satisfies (w1). Then apply averaging (moyennisation), i.e. set

Wν,ψ(z) =

∫

R

Iν(n(u)z)ψ(−u)du.

This function will satisfy (w1) and (w2).

If ψm(u) = e2πimu then

Wν,ψ(z) =
2πν |m|ν−1/2

Γ(ν)
y1/2Kν−1/2(2π|m|y)e2πimx (1.3.1)

Multiplicity one theorem. If Ψ(z) is a (ν, ψ)-Whittaker function of rapid
decay, i.e. for all N > 0 |yNΨ(z)| → 0 as y → ∞ and ν 6= 0, 1 then there exists
a ∈ C such that Ψ(z) = aWν,ψ(z).

Maass forms. Passing to the global case, let us call a Maass form a smooth
function f : X −→ C such that

(M1) For all z ∈ X, γ ∈ Γ, f(γz) = f(z).

(M2) ∆f(z) = (ν2 − 1/4)f(z) for some ν ∈ C.

(M3) f(z) decays rapidly as y → 0.

The Eisenstein series is an example. Let f(z) be such a form; then f(z + 1) =
f(z) due to (M1); consider its Fourier expansion

f(z) =
∑

n∈Z

an(y)e
2πinx

Each term of it satisfies (M2).

Then for n 6= 0
an(y) = any

1/2Kν(2π|n|y)

1.4. Digression: Kronecker series, Epstein zeta function, the Chowla
- Selberg formula.

1.5. Scattering matric for several cusps. Cf. [I], 13.3.

For a more general discrete subsgroup Γ ⊂ G (”a Fuchsian group of the first
kind”) Γ has a finite number of ”cusps” ai ∈ ∂X̄ = P1(R), i ∈ I.

The points a ∈ ∂X̄ are in bijection with parabolic (Borel) subgroups Pa ⊂ G;
set Γi = Γ ∩ Pai . For each i there exists σi ∈ G such that σiai = ∞ and
σ−1
i Γiσi = Γ∞. Let

γi = σi

(

1 1
0 1

)

σ−1
i ∈ Γi
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Given a character χ : Γ −→ C∗ trivial on Γi, one defines the Eisenstein series

Ei(z; s, χ) =
∑

γ∈Γi\Γ

χ̄(γ)(ℑ(σ−1
i γz))s

One has

Ei(γz; s, χ) = χ(γ)Ei(z; s, χ)

and

∆Ei(z; s, χ) = s(s− 1)Ei(z; s, χ)

Thus we have a vector Eisenstein series E = (Ei)i∈I . For i, j ∈ I,

Ei(σjz; s, χ) = δijy
s + φij(s, χ)y

1−s +
∑

n∈Z,n 6=0

φij(n; s, χ)Ws(nz)

where

Ws(nz) = 2|y|1/2Ks−1/2(2π|y|)e
2πix

(this is Γ(s)Ws,1 from (1.3.1)), and φij(n; s, χ) are certain Dirichlet series.

The scattering matrix Φ(s, χ) = (φij(s, χ)) satisfies the functional equation

Φ(s, χ) = Φ(1− s, χ)

and is unitary on the critical line:

Φ(s, χ)Φ(s, χ)
t
= 1

The vector Eisenstein series E(z; s, χ) satisfies the functional equation

E(z; s, χ) = Φ(s, χ)E(z; 1 − s, χ)

The series Ei(z; s, χ) has a pole at s = 1 iff χ equals the trivial character χ0. In
that case the pole is simple with the residue

ress=1Ei(z; s, χ) = vol(Γ\X)−1.

1.5.1. Example, cf. [I], 13.5. For example let

Γ = Γ0(N) := {

(

a b
c d

)

∈ G| c ≡ 0 mod N}

An even prilmitive Dirichlet character χ : (Z/NZ)∗ = Gal(Q(ζN)/Q) −→ C∗

induces a character of Γ0(N) as above. To each decomposition N = vw with
(v, w) = 1 corresponds a couple of cusps; the corresponding matrix element of
the scattering matrix has the form

φvw(s, χ) = N−sχv(w)χ̄w(v)π
1/2Γ(s− 1/2)L(2s− 1, χwχ̄v)

Γ(s)L(2s, χwχ̄v)
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1.6. Eisenstein series and scattering matrix for a semisimple group
G (Gelfand; Langlands). Let G = G(R) ⊃ Γ = G(Z) where G is a simply-
connected Chevalley group; G = KAN , a = Lie(A). For x = kA(x)n we set
a(x) = logA(x) ∈ a.

For example if G = SLn, K = SO(n), A = diag(a1, . . . , an), ai > 0, N is the
group of upper triangular matrices with 1’s on the diagonal.

Spherical functions:

φλ(x) =

∫

K

e(λ−ρ)(a(xk))dk, x ∈ G,

λ ∈ a∗C, ρ =
1
2

∑

α>0 α. We have φλ = φwλ, w ∈ W .

Eisenstein series:
E(x;λ ) =

∑

γ∈Γ/Γ∩N

e(λ−ρ)(a(xγ))

is an eigenfunction of Z(Ug) where g = Lie(G).

Constant term:
∫

N/N∩Γ

E(xn;λ) =
∑

w∈W

c(w;λ)e(wλ−ρ)(a(x))

where

c(w;λ) =
∏

α>0,wα<0

ξ(λ(α∨))

ξ(1 + λ(α∨))
,

cf. [L], Appendix 3. One has

c(ww′;λ) = c(w;w′λ)c(w′;λ)

and
E(x;λ) = c(w;λ)E(x;wλ)

1.7. Adelic language.
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Lecture 2. Harish-Chandra theory

Spherical functions (Calogero - Moser model) and their limits: Whittaker func-
tions (Toda chain).

2.0. Rank 1 case: Hypergeometric function and scattering

2.0.1. The Gauss’ hypergeometric function F (a, b, c; x) is the solution of the
differential equation

x(1 − x)f ′′(x) + (c− (a+ b+ 1)x)f ′(x)− abf(x) = 0 (Hyp.1.1)

which for |x| < 1 has the form

F (x) = 1 +
ab

1!c
x+

a(a+ 1)b(b+ 1)

2!c(c+ 1)
x+ . . .

It can be continued to a single-valued analytic function in the domain

D = C \ R≥1

Functional equation (cf. [WW], 14.51 as corrected by Bargmann [B], 10d):

F (a, b, c;−x) = x−a
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
F (a, 1 + a− c, 1 + a− b;−x−1)

+x−b
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
F (b, 1 + b− c, 1 + b− a;−x−1),

x > 1, a− b /∈ Z.

2.0.2. Application to the spherical function. Cf. [HS (b)], no. 13. Let
G = KAN be a real simple Lie group of split rank 1, a = LieA, dimR a = 1,
Σ = {α, 2α} ⊂ a∗ the positive roots, p = dim gα, q = dim g2α, ρ = (p + 2q)α/2,
H ∈ a, H(α) = 1, λ ∈ a∗C.

The spherical function

φλ(x) =

∫

K

e〈−λ−ρ,a(xk)〉dk

is bi-K-invariant; φλ = φ−λ, cf. [HS (b)], Cor. to Lemma 17.

Set ψλ(t) = φλ(exp(tH)).

Then ψλ(t) satisfies a differential equation of type (Hyp.1.1) with x = − sinh2 t.
More precisely,

ψλ(t) = F (a, b, c;− sinh2 t)
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with

a =
1

4
(p+ 2q − 2λ(H)), b =

1

4
(p+ 2q + 2λ(H)), c =

1

2
(p+ q + 1)

Asymptotics:

lim
t→∞

(

etρ(H)ψλ(t)− c(λ)eλ(H)t − c(−λ)e−λ(H)t

)

= 0

where

c(λ) =
Γ(λ(H))Γ((p+ q + 1)/2)

Γ((p+ 2q + 2λ(H))/4)Γ((p+ 2 + 2λ(H))/4)

We see here the ”incoming wave” c(−λ)e−λ(H)t and the ”outcoming wave” c(λ)eλ(H)t.

2.1. Real semisimple noncompact Lie groups: structure. Cf. [Hel]
(a), Ch. IX. Let G be a real connected semisimple Lie group with finite center,
K ⊂ G a maximal compact subgroup, g = Lie(G), k = Lie(K). k is the fixed

subspace of the Cartan involution θ : g
∼

−→ g.

Let p = {x ∈ g| θ(x) = −x}, so that g = k⊕ p (the Cartan decomposition).

Let a ⊂ p be a maximal abelian subspace. We have the root space decompo-
sition

g = g0 ⊕ (⊕α∈R gα),

where R ⊂ a∗ is called the set of restricted roots; set mα = dim gα. If G is split
over R then R is reduced and all mα = 1.

If G is complex then all mα = 2 (in this case many formulas below simplify a
lot).

We set

ρ =
1

2

∑

α>0

mαα.

If m is the centralizer of a in k,

g0 = a⊕m.

Let M (resp. M ′) be the centralizer (resp. normalizer) of a in K. The Weyl
group: W =M ′/M .

A Weyl chamber is a connected component of the set

a′ = {H ∈ a| ∀α ∈ R α(H) 6= 0} ⊂ a}

Fix a Weyl chamber a+. A root α is called positive if α(H) > 0 for all H ∈ a+;
a positive root is simple if it is not a sum of two positive roots. If

{α1, . . . , αr} ⊂ a∗
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is the set of all simple roots then

a+ = {H ∈ a| αi > 0, i = 1, . . . , r}

Weyl denominator formula. If R is reduced,
∑

w∈W

detw · ewρ =
∏

α>0

(eα − e−α). (2.1.1)

The root lattice: Q = ZR ⊂ a∗; the positive cone:

Q+ = {µ =
∑

niαi| ni ∈ N}

We set

n = ⊕α>0 gα.

Then

g = k+ a+ n

Let A,N ⊂ G be the connected Lie subgroups with the Lie algebras a, n respec-
tively. Then one has:

Cartan decompostion: G = KAK; G = KĀ+K where A+ = exp a+.

Iwasawa decomposition: G = NAK.

Bruhat decomposition: Let N̄ = θ(N). Then

N̄MAN ⊂ G

is an open submanifold whose complement is of Haar measure 0.

Symmetric space X = G/K. If a′ ⊂ a denotes the subset of regular elements,
A′ = exp a′, then G′ = KA′K is dense open in G and X ′ = G′ · o is dense open
in X , and

K/M × A+ ∼
−→ X ′ (2.1.2)

The space X is a Riemannian manifold with the metric induced from the
Killing form on g.

2.1.1. Example. G = SLn(R), K = SO(n), N — upper triangular matrices
with 1’s on the diagonal, A ⊂ G – diagonal matrices with positive entries,

A+ = {diag(a1, . . . , an)| a1 > . . . > an > 0}.

The maximal torus T =MA where M = {diag(±1, . . . ,±1)}.

Exercice. Show that X = G/K is isomorphic to the space of real n × n
symmetric positively definite matrices with determinant 1.

What is an analogue of all this for G = SLn(C)?
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2.2. Invariant differential operators: Harish-Chandra isomorphism.
Set X = G/K and let DG(X) denote the algebra of G-invariant differential
operators on X .

Recall the Iwasawa decomposition

G = NAK.

It allows to define, given a differential operator D on X , its N-radial part
∆N (D) ∈ D(A).

Let Dc(A) be the algebra of A-invariant differential operators on A, i.e. oper-
ators with constant coefficients (so it is isomorphic to a polynomial algebra in r
generators, at least in the split case).

Let Dc
W (A) ⊂ Dc(A) be the subalgebra of W -invariant operators (so it is also

isomorphic to a polynomial algebra in r variables).

2.2.1. Theorem (Harish-Chandra), cf. [Hel] (b), Ch. II, Corollary 5.19. The
mapping

D 7→ HC(D) := e−ρ∆N(D)eρ

defines an algebra isomorphism

HC : DG(X)
∼

−→ D
c
W (A).

2.3. Examples: radial parts of Laplacians. X is equipped with a Rie-
mannian metrics, so we can speak about the Laplacians.

(a) Horospheric coordinates, cf. [Hel] (b), Ch. II, 3.8. Let N act on X with
the transversal part A · o. Then

∆N(LX) = eρLAe
−ρ − ρ2. (2.3.1)

We see that

HC(LX) = e−ρ∆N(LX)e
ρ = LA − ρ2 (2.3.2)

is an operator with constant coefficients, in accordance with 2.2.1.

(b) Spherical coordiantes, cf. [Hel] (b), Ch. II, 3.9. Let K act on X with the
transversal part A+ · o. Then

∆K(LX) = LA +
∑

α>0

mα(cothα)∂α (2.3.3)

This is basically the Schrödinger operator for the Calogero - Moser model.

If G is complex then

∆K(LX) = δ−1/2(LA − ρ2)δ1/2 (2.3.4)
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(cf. (2.3.1)) where

δ1/2 =
∑

w∈W

detw · ewρ =
∏

α>0

(eα − e−α),

cf. (2.2.1), [Hel] (b), Ch. II, Prop. 3.10.

2.4. Spherical functions: Harish-Chandra theory. A smooth function
φ : G −→ C is called a spherical function (also: ”a zonal s.f.”, ”an elementary
s.f.”) if:

φ(1) = 1; φ(kxk′) = φ(x) for all k, k′ ∈ K; φ is an eigenfunction of all differ-
ential operators D ∈ DG(X).

For x ∈ G let a(x) ∈ a denote logA(x) where x = nA(x)k is the Iwasawa
decomposition; it is correctly defined.

For λ ∈ a∗C define

φλ(x) =

∫

K

e(iλ+ρ)(a(xk))dk

2.4.1. Theorem. φλ is a spherical function.

All spherical functions are of the form φλ.

φλ = φµ iff there exists w ∈ W such that µ = wλ.

Finally, the eigenvalues of operators D ∈ DG(X) are given by

Dφλ = HC(D)(iλ)φλ. (2.4.1)

The following ”noncompact” expression of φλ is crucial for the calculation of
the Harish - Chandra function.

Recall the opposite nilpotent subgroup N̄ := θN ; normalize the Haar measure
on it by

∫

N̄

e−2ρ(a(z))dz = 1.

2.4.2. Theorem. For y ∈ A, λ ∈ a∗C,

φλ(y) = e(iλ−ρ)(y)
∫

N̄

e(iλ−ρ)(ya(z)y
−1)−(iλ+ρ)(a(z))dz.

Cf. [Hel] (b), Ch. IV, Prop. 6.3.

2.5. Harish-Chandra decomposition. Cf. [Hel] (b), Ch. IV, §5. Thus,
the spherical functions form a space

A/W
∼
= Ā+
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Our next aim will be to construct a family {φw}w∈W of W linearly independent
solutions of (2.4.1) in the domain A+ · o.

Rewrite (2.3.2) as

∆K(LX) = LA + 2∂ρ +
∑

α>0

mα(cothα− 1)∂α (2.5.1)

Denote by R the ring of functions on A+ of the form

f(y) =
∑

µ∈Q+

aµe
−µ(log y),

and by R+ ⊂ R the ideal of f ’s with a0 = 0.

Note that

cothα− 1 = 2

∞
∑

n=1

e−2nα ∈ R+

We can consider (2.5.1) as a perturbation of the operator

∆K(LX)0 = LA + 2∂ρ

The function φλ is a solution of the differential equation

∆K(LX)φλ = −(λ2 + ρ2)φλ (2.5.2)

Let look for a solution of (2.5.2) by perturbation theory. A solution of a nonper-
turbed equation:

∆K(LX)0e
iλ−ρ = −(λ2 + ρ2)eiλ−ρ

Let us look for a solution of (2.5.2) in the form

ψλ(exp a · o) = e(iλ−ρ)(a)
∑

µ∈Q+

γλ(µ)e
−µ(a), a ∈ a+ (2.5.3)

where we set γλ(0) = 0. We get a recurrence relation for the coefficients γλ(µ):

(µ, µ− 2iλ)γλ(µ) =
∑

α>0

mα

∑

n≥1

(α,−iλ− 2nα + µ+ ρ)γλ(µ− 2nα) (2.5.4)

The resulting series (2.5.3) converges absolutely and uniformly in each domain

{a ∈ a+| αi(a) ≥ ǫ > 0} ⊂ a+.

It follows from the commutativity of DG(X) that ψλ satisfies the differential
equations

∆K(D)ψλ = HC(D)(iλ)ψλ (2.5.5)

for all D ∈ DG(X).

Suppose that
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(w − w′)λ /∈ iQ for all w 6= w′ ∈ W .

Then the functions ψwλ, w ∈ W , form a basis of |W | linearly independent
solutions of (2.5.2) (or equivalently of (2.5.5)).

It wollows:

2.6. Theorem. Suppose that a weight λ ∈ a∗C is such that

for all w 6= w′ ∈ W (w − w′)λ /∈ iQ.

Then

φλ(a) =
∑

w∈W

c(wλ)ψwλ(a)e
(iwλ−ρ)(a), a ∈ a+.

Thus for a ∈ a+

lim
t→∞

(φλ(ta)−
∑

w∈W

c(wλ)e(iwλ−ρ)(ta)) = 0.

2.7. Gindikin - Karpelevich formula. Cf. [Hel] (b), Ch. IV, §6; [HO],
[Karp]. It remains to compute the function c(λ).

The starting point is a noncompact Harish-Chandra formula:

c(λ) =

∫

N̄

e−(iλ+ρ)(a(y))dy

if ℜ(iλ) ∈ a∗+, cf. [Hel] (b), Ch. IV, §6, (7).

2.7.1. Rank 1 case. Cf. [Hel], Ch. IV, §6, no. 2. In this case n̄ = gα+ g−2α.
Let mi = dim giα, i = 1, 2, Then

cα(λ) = c

∫

gα

∫

g−2α

((1 + b|x|2)2 + 4b|y|2)−(iλ+1)b′dxdy

where b = (4(m1 +4m2))
−1, b′ = (m1 +2m2)/4, c - a constant independent of λ.

The integral is a product of two Beta-functions. Using the duplication formula,
one gets

cα(λ) = 2m1/2+m2−iλ·α′ Γ((m1 +m2 + 1)/2)Γ(iλ · α′)

Γ((m1/2 + 1 + iλ · α′)/2)Γ((m1/2 +m2 + iλ · α′)/2)

where α′ = α/α2.

A simpler formula for the split case:

cα(λ) = B(1/2, iλ · α/2) =
π1/2Γ(iλ · α/2)

Γ(1/2 + iλ · α/2)
,

cf. [L] (b), p. 16.
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2.7.2. Gindikin - Karpelevich product formula. Let w ∈ W ; define

n̄w = ⊕α∈R+∩wR−
g−α, N̄w = exp n̄w.

Theorem.

cw(λ) :=

∫

N̄w

e−(iλ+ρ)a(y)dy =
∏

α∈R+∩wR−

cα(λα).

As a corollary one gets

2.7.3. Theorem. (i) General case.

c(λ) = c
∏

α>0

2−iλ·αΓ(iλ · α)

Γ((mα/2 + 1 + iλ · α′)/2)Γ((mα/2 +m2α + iλ · α′)/2)

where the constant c is defined by c(−iρ) = 1.

(ii) If G is split over R, all mα = 1, all m2α = 0:

c(λ) =
∏

α>0

π1/2Γ(iλ(α∨)/2)

Γ(1/2 + iλ(α∨)/2)

(iii) If G is complex, all mα = 2, all m2α = 0:

c(λ) =

∏

α>0 ρ · α
∏

α>0 iλ · α
.

2.8. Example: The case of SL2(R): spherical functions on the Lobachevsky
half-plane. Cf. [He] (b), Introduction, §4; (c), §4.

For G = SL2(R) ⊃ K = SO(2)

G/K = H := {z| ℑz > 0}

Another realization: the Poincaré disc

D = {z ∈ C| |z| < 1} = SU(1, 1)/SO(2),

where

SU(1, 1) = {

(

a b
b̄ ā

)

, |a|2 − |b|2 = 1}
∼
= SL2(R)

acts on D by

g · z =
az + b

b̄z + ā
.

The Cayley transformation

z 7→ w = −i
z + i

z − i
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is a G-equivariant isomorphism of D onto H = {w ∈ C| ℑw > 0}, cf. [He] (a),
Ch. I, Exercice G.

The spherical (geodesic polar) coordiantes on D are (r, θ) where

z = tanh reiθ ∈ D, r = d(o, z).

The Laplacian is

∆ = ∂2r + 2 coth 2r∂r + 4
1

sinh2 2r
∂2θ .

A spherical function φ(r) is radial (depends only on r) and satisfies the equation

φ′′ + 2 coth 2rφ′ = (−λ2 + 1)φ

The Harish-Chandra spherical function (compact form):

φλ(r) =
1

2π

∫ π

−π

(cosh 2r − sinh 2r cos θ)−(iλ+1)/2dθ

This is a Legendre function.

2.8.1. Exercice. Write down the Whittaker equation and the Whittaker
function. Cf. [Ha] (a), §3.

The standard functions:

ψλ(r) = e(iλ−1)r
∞
∑

n=0

γn(λ)e
−nr

where γ0(λ) = 1 and

γn(λ) =
1

n(n− iλ)

[n/2]
∑

ℓ=1

(2n− 2ℓ− iλ+ 1)γn−2ℓ(λ)

The Harish-Chandra decomposition:

φλ(r) = c(λ)ψλ(r) + c(−λ)ψ−λ(r)

where
c(λ) = B(1/2, iλ/2),

cf. [Hel] (c), Thm. 4.6.
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Lecture 3. Toda quantum field theory

Dual symmetric spaces: SU(2) = (SU(2)×SU(2))/SU(2) and SL2(C)/SU(2).
The correponsing σ-models: the WZW -models of central charge k ∈ Z≥1 and
the H3

+-WZW-model. The correlation functions satisfy the KZ equations.

Their corresponding reductions: the minimal models and the Liouville model.
The correlation functions satisfy the BPZ equations.

Similarly for arbitrary compact Lie groups.

3.1. Toda field theory. Cf. [F]. Let R ⊂ a∗ ∼= Rr be a simply laced root
system of rang r; αi, i = 1, . . . , r simple roots. We equip a∗ with a W -invariant
scalar product, ρ = (1/2)

∑

α>0 α.

It is a two-dimensional field theory with:

Classical fields: maps φ(z)

φ : C −→ a∗,

Lagrangian

Sb,µ(φ) =

∫
(

1

8π2
((∂xφ)

2 + (∂yφ)
2) + µ

r
∑

i=1

ebαi·φ

)

dxdy

where z = x+ iy, µ, b ∈ R. Set

ς = (b+ b−1)ρ

After quantization the theory is conformally invariant, with

〈φi(z), φj(w)〉 = − log |z − w|2δij ,

the holomorphic stress energy tensor

T (z) = −
1

2
(∂zφ)

2 + ς · ∂2zφ

and central charge

c = r + 12ς2

The theory possesses a W (R)-symmetry. The chiral algebra W (R) contains r
holomorphic fields Wj(z), with W2(z) = T (z). The field Wj(z) has the spin
equal to the corresponding exponent of the Lie algebra g = g(R).

The exponential fields Vλ(z) = eλ·φ(z), λ ∈ a∗ are primary fields; this means
that

Wj,0Vλ = cj(λ)Vλ, Wj,nVλ = 0, n > 0.
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The conformal dimension of Vλ is

∆(λ) = c2(λ) =
1

2
(ς2 − (λ− ς)2) =

λ · (2ς − λ)

2

3.2. Weyl reflections. Let us introduce a shifted Weyl group action on a∗

by setting
wb(λ) = ς + w(λ− ς).

Then cj(λ) = cj(wb(λ)).

Reflection amplitudes:

Vλ(z) = Rw(λ)Vwb(λ)(z)

Computation of these numbers (”Gindikin - Karpelevich formula”).

One introduces normalized fields

V n
λ (z) = N(λ)Vλ(z)

in such a way that

〈V n
λ (z), V

n
λ (w)〉 =

1

|z − w|4∆
,

cf. [KT], 6.14.

For these normalized fields

V n
λ (z) = V n

wb(λ)
(z)

It follows that

Rw(λ) =
N(λ)

N(wb(λ))
.

The numbers N(λ) are calculated as follows, [F].

Suppose that

2λ+

r
∑

i=1

ℓiαi = 0.

Then

N(λ)2 = |z|4∆〈Vλ(z)Vλ(0)
r
∏

i=1

Q̂ℓi
i /ℓi!〉

where

Q̂i =

∫

C

ebαi(z)dxdy

are the ”screening operators”. This is a ”Coulomb gas” complex Selberg integral
and the answer is given by
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3.3. Theorem.

N(λ)2 = (πµγ(b2))−2λ·ρ/b
∏

α>0

Γ(1 + ς · α/b)Γ(1 + ς · α · b)

Γ(1− ς · α/b)Γ(1− ς · α · b)
×

∏

α>0

Γ(1 + (λ− ς) · α/b)Γ(1 + (λ− ς) · α · b)

Γ(1− (λ− ς) · α/b)Γ(1− (λ− ς) · α · b)

It follows:

Rw(λ) =
N(λ)

N(wbλ)
=
A(wbλ)

A(λ)
(3.3.1)

where

A(λ) = (πµγ(b2))λ·ρ/b
∏

α>0

Γ(1− (λ− ς) · α/b)Γ(1− (λ− ς) · α · b)

The functional equation for operators Vλ(z) takes the form

A(λ)Vλ(z) = A(wbλ)Vwbλ(z)

3.4. Quasiclassical (”mini-superspace”) limit. The Whittaker function
Ψλ(x), λ ∈ a∗, x ∈ a is certain solution of the Schrödinger equation for the Toda
system

(

−∆x + 2πµ

r
∑

i=1

ebαi(x)

)

Ψλ(x) = λ2Ψλ(x).

Let
Λ = {x| αi(x) > 0, 1 ≤ i ≤ r} ⊂ a

denote the fundamental Weyl chamber. The function Ψλ(x) possesses in the
opposite chamber −Λ the asymptotics

Ψλ(x) ∼
∑

w∈W

cw(λ)e
iλ(x)

where

cw(λ) =
∏

α>0

(πµ/b2)i(wλ−λ)·α/2b
Γ(−iwλ · α/b)

Γ(−iλ · α/b)
, (3.4.1)

cf. [F] (b) (5.2), [OP] §12, [Ha] (b) Thm (7.8). This is the Whittaker limit of
Harish-Chandra - Gindikin - Karpelevich formula.

A remarkable fact is that

the functions (3.4.1) are the b → 0 limit of reflections amplitudes (3.3.1).
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§4. Matsuo equations

4.1. Heckman - Opdam hypergeometric functions. Cf. [HO]. Let a be
a Euclidean space of dimension r with inner product x · y, R ⊂ a∗ a possibly
non-reduced root system of rank r.

For example the type BC1 = {±α, ±2α} correponds to the case (2.7.1).

Let P ⊂ a∗ denote the weight lattice and Q ⊂ P the root lattice. We fix a
base of simple roots {α1, . . . , αr} ⊂ R and define the positive cone

Q+ = ⊕r
i=1 Nαi ⊂ Q.

let W be the Weyl group; the scalar product is W -invariant. We identify a

with a∗ using the scalar product.

Let

k : R −→ C

be a function such that k(α) = k(wα) for all w ∈ W . We set

̺ =
1

2

∑

α>0

k(α)α

Set h := aC. For α ∈ R set α⊥ = {x ∈ h| α(x) = 0,

hreg = {x ∈ h| ∀α ∈ R eα(x) 6= 1}

For β ∈ h we shall denote ∂β the derivation in the direction β.

Let O denote the algebra of functions f : hreg −→ C generated by the functions
(1− eα)−1 and R the algebra of differential operators on h with coefficients in O

(one checks easily that the product of two elements from R belongs to R).

The subalgebra R0 ⊂ R of operators with constant coefficients will be identified
with the polynomial algebra Sh = the algebra of polynomial functions on h∗, and
R = O⊗C Sh.

Fix an orthonormal base {xi} of a and set ∂i := ∂xi .

4.1.1. Laplace operator:

L =

r
∑

i=1

∂2i +
∑

α>0

k(α) coth(α/2)∂α ∈ R

since

coth(α/2) = −1 +
2

1− eα
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Using the expansion
1

1− eα
= 1 + eα + e2α + . . .

we have for each D ∈ R an expansion

D =
∑

µ∈Q+

eµqµ, qµ ∈ R0

which converges in the negative Weyl chamber

h− = {x ∈ h|∀α > 0 α(x) < 0}.

For example

L =
r

∑

i=1

∂2i − 2∂̺ − 2
∑

α>0

k(α)
∞
∑

j=1

ejα∂α

4.1.2. Harish-Chandra homomorphism.

Argument shift and conjugation by δ

Define

δ =
∏

α>0

|2 sinh(α/2)|k(α)

If

D =
∑

µ∈Q+

eµqµ, qµ ∈ R0

and

D′ := δDδ−1 =
∑

µ∈Q+

eµq′µ, q
′
µ ∈ R0

then

q′0(λ) = q0(λ+ ̺), λ ∈ h∗

Let us denote by HC(D) ∈ Sh the element

λ ∈ h∗ 7→ q0(λ+ ρ).

4.1.3. Theorem (Harish-Chandra isomorphism). Consider the subspace:

ZR(L) = {D ∈ R| [D,L] = 0, ∀w ∈ W w(D) = D } ⊂ R;

it is clear that this is a subalgebra. The map D 7→ HC(D) defines an isomorphism
of algebras

HC : ZR(L)
∼

−→ ShW .

Cf. [HO], 2.10: it is formulated as a conjecture there but must be proven since
then. For the symmetric spaces it is due to Harish-Chandra.
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In particular the algebra ZR(L) is commutative; we shall denote this algebra
by D.

We will be interested in the system of differential equations

Dφλ = HC(D)(λ)φλ, D ∈ D (HO)λ

where λ ∈ h∗reg is a parameter. Its solutions are called the hypergeometric func-
tions connected with the root system R and the weight function k.

There are |W | linearly independent solutions for λ generic.

4.2. Matsuo equations. Cf. [M]. Define a homomorphism ν : W −→
GL(C[W ]) by

ν(s)(w) = sw.

For α ∈ R set
σα = ν(sα)

Define a diagonal matrix ǫα ∈ End(C[W ]) by

ǫα(w) = ±w for w−1α ∈ R±

For λ ∈ h∗, ξ ∈ h define a diagonal matrix eξ(λ) ∈ End(C[W ]) by

eξ(λ)(w) = 〈wλ, ξ〉w

Consider functions ψ(u) =
∑

w∈W ψw(u)w : h −→ C[W ]. The system of Matsuo
equations:

∂ξψ(u) = Aξ,λ(u)ψ(u) (M)λ

where

Aξ,λ(u) =
1

2

∑

α∈R+

k(α)α(ξ)(coth(α(u)/2)(σα − 1) + σαǫα) + eξ(λ)

This is a system of r = dim a differential equations of the first order.

4.2.1. Proposition. The operators Aξ,λ commute:

[Aξ,λ, Aη,λ] = 0 (4.2.1)

and the system is integrable:

[∂ξ − Aξ,λ, ∂η −Aη,λ] = 0

for all ξ, η ∈ h.

W -invariance:

4.2.2. Proposition.

ν(w)Aξ(u),λν(w)
−1 = Awξ,λ(wu)

4.2.3. Corollary. If ψ(u) is a solution of (M) then ν(w)ψ(w−1u) is a solution
as well.
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4.2.4. Proposition. The dimension of space of local solutions of (M) is |W |.

4.3. The map (M)λ −→ (HO)λ. Define the map

M : C[W ] −→ C, M(
∑

w∈W

aww) =
∑

w∈W

aw.

Theorem. Fix λ ∈ h∗. If φ(u) =
∑

w φw(u)w is a solution of the equations
(M)λ then M(φ) is a solution of (HO)λ.

4.4. A base of |W | local solutions of (M)λ. Let us introduce exponential
local coordinates on h

yi(u) = eαi(u), u ∈ h, i = 1, . . . , r.

Then

∂yi =
∂α∨

i

yi
.

Consider the constant parts of the operators Aξ,λ(u):

Aξ,λ(u) = A0
ξ,λ +

∑

µ∈Q++

Aµξ,λe
µ(u)

where

A0
ξ,λ =

1

2

∑

α∈R+

k(α)α(ξ)σα(σα − 1) + eξ(λ) + ̺(ξ)

The |W |×|W |-matrices A0
ξ,λ are triangular (with respect to the (partial) ordering

by length in W ), with the diagonal elements

(A0
ξ,λ)ww = (wλ+ ̺)(ξ)

The matrices A0
ξ,λ commute with each other for different ξ, due to (4.2.1).

Let
ψ0
λ,w =

∑

w′∈W

aλ;ww′w′, aλ;ww = 1, (4.4.1)

denote the common eigenvector

A0
ξ,λψ

0
λ,w = (wλ+ ̺)(ξ)ψ0

λ,w

Since the matrices A0
ξ,λ are triangular, the matrix

(ψ0
λ,w)w∈W

is triangular as well (cf. Moebius inversion).

In the new coordinates the equations (M) have the form

∂φ

∂yi
=

(A0
α∨

i

yi
+O(1)

)

φ
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4.5. Theorem. Suppose that for all w ∈ W wλ−λ /∈ Q(R). Then the Matsuo
system (M)λ admits a unique base of solutions {ψλ,w}w∈W of the form

ψλ,w(u) = e〈wλ+̺,u〉
(

ψ0
λ,w +

∑

µ∈Q+

ψµλ,we
〈µ,u〉

)

.

4.6. Theorem (the first Matsuo product formula).

M(ψ0
λ,w) =

∏

α∈R+∩w−1R−

k(α) + 2k(2α) + 〈λ, α∨〉

〈λ, α∨〉
.

4.7. Harmonic polynomials. Cf. [Hel] (b), Ch. III; [Chev]. Consider the
symmetric algebra Sh = C[h∗]. The subalgebra of invariants ShW ⊂ Sh is a
polynomial algebra on generators f1, . . . , fr of degrees d1, . . . , dr (Chevalley).

Let Di denote the Fourier transform of fi: it is a differential operator with con-
stant coefficients acting on Sh∗. We identify h∗ with h using the scalar product,
so the operators Di act on Sh.

The space of harmonic polynomials

H = {f ∈ Sh| Dif = 0, 1 ≤ i ≤ r} ⊂ Sh

It is graded by the degree
H = ⊕∞

i=0H
i

and the Poincaré polynomial is equal

PH(t) :=

∞
∑

i=0

dimH
iti =

r
∏

j=1

tdi − 1

t− 1

It coincides with

PH(t) = PW (t) =

∞
∑

i=0

|Wi|t
i

where
Wi = {w ∈ W | ℓ(w) = i}

It has dimension |W | and

H
∼

−→ Sh/I, Sh
∼
= H ⊗ I

where I = (Sh)W · Sh.

4.8. Since the matrices A0
ξ,λ ∈ EndC(C[W ]), ξ ∈ h, commute and the map

ξ 7→ A0
ξ,λ

is C-linear, this map extends to a map

A0
λ : Sh −→ EndC(C[W ]), f 7→ A0

f,λ.
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Define a map
J0
λ : Sh −→ C[W ], f 7→ J0

f,λ

by the symmetrization of A:

(J0
f,λ)w =

∑

w′∈W

(A0
f,λ)ww′

4.9. Theorem (the second Matsuo product formula). Let {hw}w∈W be
a homogeneous base of H. Then the determinant of the W ×W matrix

det((J0
hw,λ)w′) = c

∏

α>0

(k(α) + 2k(2α) + 〈λ, α∨〉)|W |/2

4.10. Main theorem. If φ =
∑

w∈W φw · w is a solution of Matsuo equa-
tions (M)λ then M(φ) =

∑

w∈W φw is a solution of Heckman - Opdam equations
(HO)λ.

If for all α > 0 k(α) + 2k(2α) + 〈λ, α∨〉 6= 0, the Matsuo averaging map

M : Sol((M)λ) −→ Sol((HO)λ)

is an isomorphism.

4.11. Rational limit: Calogero system. Many-body gauge. Cf. [FV].
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Lecture 5. Confluent KZ equations and integral formulas

5.1. From Gauss hypergeometric function to Whittaker function. Cf.
[R].

Hypergeometric equation:
{

δ(δ + c− 1)− z(δ + a)(δ + b)

}

f(z) = 0 (5.1.1)

where δ = zd/dz.

It has 3 regular singular points: 0, 1,∞.

Bases of solutions:

near 0:
f 0
1 (z) = F (a, b, c; z),

f 0
2 (z) = z1−cF (1 + a− c, 1 + b− c, 2− c; z)

near 1:
f 1
1 (z) = z−aF (a, a+ 1, a+ b− c+ 1; 1− 1/z),

f 1
2 (z) = za−c(1− z)c−a−bF (c− a,−a+ 1,−a− b+ c+ 1; 1− 1/z)

near ∞:
f∞
0 = eiπaz−aF (a, a− c+ 1, a− b+ 1; 1/z),

f∞
1 = eiπ(−a+c)za−c(1− z)−a−b+cF (−a+ 1,−a+ c,−a + b+ 1; 1/z).

Here

F (a, b, c; z) =
∞
∑

n=0

(a)n(b)n
(c)nn!

,

(a)n =

n−1
∏

i=0

(a+ i).

Confluent hypergeometric equation:
{

δ(δ + c− 1)− z(δ + a)

}

f(z) = 0 (5.1.2)

It has two singular points: 0 which is regular and ∞ which is irregular.

Bases of solutions:

near 0:

f 0
1 (z) = 1F1(a, c; z) :=

∞
∑

n=0

(a)n
(c)nn!

,

f 0
2 (z) = z−c+1

1F1(a− c+ 1,−c+ 2; z);
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near ∞:

f∞
1 (z) = z−a 2F0(a, a− c+ 1;−1/z),

f∞
2 (z) = za−cez 2F0(−a+ 1,−a + c; 1/z).

Confluence: from (5.1.1) to (5.1.2).

One has to make a change of variable z 7→ z/b and set b −→ ∞.

5.2. Integral formulas.

A hypergeometric integral:
∫

tb−1(1− t)c−b−1(1− zt)−adt

A confluent hypergeometric integral:
∫

tb−1e−t(1− zt)−adt

5.3. FMTV equations. Cf. [FMTV].

Let

g = h⊕

(

⊕α>0(gα ⊕ g−α)

)

be a simple Lie algebra; we fix an invariant scalar product (., .) on g and root
vectors eα ∈ gα in such a way that (eα, e−α) = 1.

The Casimir element

Ω =
r

∑

i=1

hi ⊗ hi +
∑

α>0

eα ⊗ e−α

where {hi} is an orthonormal basis in h.

We consider two compatible systems of differential equations on a function

v(z;µ) ∈M =M1 ⊗ . . .Mn

where (z;µ) = (z1, . . . , zn;µ1, . . . , µr) ∈ Cn+r, Mi being g-modules.

The first one is

κ
∂v

∂zi
= µ(i)v +

∑

j 6=i

Ω(ij)v

zi − zj
, 1 ≤ i ≤ n (5.3.1)

where κ ∈ C∗, µ =
∑

µihi ∈ h and µ(i) denotes the action on the i-th tensor
factor. This is a deformed KZ system.
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The second one is

κ
∂v

∂µs
=

n
∑

i=1

ziµ
(i)v +

∑

α>0

(α, hs)

(α, µ)
eαe−αv, 1 ≤ s ≤ r (5.3.2)

This system is sometimes called the Casimir connection.

All these n+ r differential operators commute with each other.

5.4. Integral solutions. Cf. [SV], [FMTV]. Suppose that for each i Mi

is a highest weight module generated by a vacuum vector xi of weight Λi. Let
{αs, s = 1, . . . , r} be a base of simple roots and fs := e−αs

.

We set Λ =
∑

Λi. We have the weight decomposition

M = ⊕λ∈Q+MΛ−λ

where Q+ = {
∑

nsαs| (n1, . . . , nr) ∈ Nr}.

We shall describe solutions of (5.3.1), (5.3.2) with values in a fixed weight
subspace MΛ−λ, λ =

∑

msαs. They will have the form
∫

γ(z)

ω(z, t)φ(µ, z; t)1/κdt

Set m =
∑

ms. Let

u : [m] := {1, . . . , m} −→ [r] (5.4.1)

be the non-decreasing map such that |u−1(s)| = ms for 1 ≤ s ≤ r (an unfolding).
Define a function of n +m variables z1, . . . , zn; t1, . . . , tm:

φ(z; t) =
∏

p<q

(tp − tq)
(αu(p),αu(q))

∏

p,i

(tp − zi)
(αu(p),Λi)

∏

i<j

(zi − zj)
(Λi,Λj)

Next, set
φµ(z; t) = e

∑
(µ,Λj)zj−

∑
(µ,αu(p))tpφ(z; t)

Now let us describe a logarithmic m-form ω(z; t) with values in MΛ−λ. This
weight space is generated by monomials of the form

fĪv = fI1v1 ⊗ . . . fInvn

Here we denote

fIj = fij1 . . . fijqj , Ij = (ij1, . . . , ijqj) ∈ [r]q, 1 ≤ j ≤ n.

Here Ī runs through the set P(λ, n) of all n-tuples

Ī = (I1, . . . , In)

such that in the sequence
i11, . . . inqn
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there are exactly ms indices iab = s for all 1 ≤ s ≤ r.

Let us pick a map u′ : [r] −→ [m] such that uu′ = Id[r] and denote for brevity
ti := tu′(i), 1 ≤ i ≤ r.

Define the differential forms

ωI(z; t) = d log(ti1 − ti2) ∧ . . . ∧ d log(tiq−1 − tiq) ∧ d log(tiq − z),

ωĪ(z; t) = ωI1(z1; t) ∧ . . . ∧ ωIn(zn; t)

Now comes the main definition:

ω(z; t) =
∑

Ī∈P(λ,n)

∑

σ∈ΣĪ

(−1)σσ(ωĪ(z; t))fĪv ∈MΛ−λ

Here ΣĪ ⊂ Σm denotes certain subgroup associated with Ī acting on variables ti.

5.5. Theorem, [FMTV].

d logφµ ∧ ω = (
∑

i

µ(i)dzi + L) ∧ ω (5.5.1)

where
L =

∑

i<j

Ω(ij)d log(zi − zj).

This is a purely combinatorial identity proved by using the Gelfand identity.
For µ = 0 it is proven in [SV], Thm. 7.2.5”.

5.6. Theorem, [FMTV]. Let γ(z) be a z-horizontal family of cycles in the
fibres of the projection

Cm × Cn −→ Cn, (t, z) 7→ z.

Then

v(µ, z) =

∫

γ(z)

ω(z, t)φ(µ, z; t)1/κdt

is a solution of both systems (5.3.1) and (5.3.2).

For µ = 0 this is the main result of [SV].

Proof of the first half. The identity (5.5.1) implies (since d log(φ
1/κ
µ )):

dφ1/κ
µ ω = (

∑

i

µ(i)dzi + L)φµω. (5.6.1)

Now apply to both sides the operator

I(?) =

∫

γ

(i∂/∂zi .?)dt (5.6.2)

The result of applying to the RHS will be the RHS of (5.3.1) applied to v.
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On the other hand, dω = 0, whence

dφ1/κ
µ ∧ ω = d(φ1/κ

µ ∧ ω);

decomposing d = dz + dt and using
∫

γ

(dt?)dt = 0

we deduce that I applied to the LHS of (5.6.1) will result in the LHS of (5.3.1).
�

5.7. Example and questions. Recall the Matsuo equations (M)λ, cf. 4.2
and its rational limit.

Take g = sln, thus W = Sn, and M = V ⊗n where V is the vector representa-
tion. Then take the KZ equation with values in the weight space M0; this space
is n! = |W |-dimensional. This equation may be identified with the rational limit
of the Matsuo equation for the root system An−1, cf. [M], 6.3.

Thus we have for them the integral formulas for the solutions. Applying the
(rational limit of) Matsuo theorem 4.10 we get the integral formulas for the zonal
spherical functions.

Applying the limit near the walls of a Weyl chamber we get integral formulas (in
the form of Selberg integrals) for the Harish-Chandra c-function in this case. It
would be interesting to compare them with the original Harish-Chandra integrals
and the GK formula.

What does the Matsuo transformation with the a solution of the full FMTV
equation?

5.7. The FMTV equations are a particular case of more general KZ equations
with irregular singularities, cf. [GL], [NS].
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