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A 7"standard” statement of the Formal Deformation Theory asserts that the ring of functions
on the base of the universal deformation is canonically isomorphic (in characteristic zero) to
the 0-th cohomology of a certain dg (or homotopy) Lie algebra associated with a deformation
problem. The main point is that this Lie algebra has a "local” nature. :

In arbitrary characteristics one should replace dg Lie algebras by cosimplicial formal schemes.

Some statements of this sort has been proven (cf. for example [GM1], [HS2]); but a big part
of them one should rather consider as conjectures. The aim of this note is to formulate certain
conjectures in homological algebra which imply ”Standard statements”. The most important
points are in sections 3 and 5.

1. SUGAWARA LIE ALGEBRAS

For details, see. [ILS1].
Throughout this note we fix a ground field k. Untill Section 4 we will suppose that char k = 0.

1.1. Let A be a commutative k-algebra. Let ILbea Z-graded A-module such that all graded
components I are flat over A.

Let us consider the symmetric algebra S4(L[1]) = 2, 5"(L[1]). It has a canonical structure of
a cocommutative filtered dg A-coalgebra. The increasing filtration is defined by the formula

(1) FiS3(L1]) = =1 S"(L[1])-
Suppose that an A-linear map '
d: S4(LN)) — S3(L0)
of degree 1 is given, such that d? = 0 making S%(L[1]) a dg coalgebra.
The map d is a sum of components

dyq : S4(L[1]) — SA(L1L])
of degree 1. We will suppose that

dpe =0 for g > p.

Given the above data, we will say, following Drinfeld, that a structure of ¢ Sugawara Lie algebra
over A on I is defined.
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The symmetric algebra S4(L[1]) with the differential d will be called the stendard complex of L
and denoted C(L). Thus, C(L) is a cocommutative filtered dg A-coalgebra.

We will use the following notation for cohomology:

(2) Hi* (L) = H™(C(L)),
and

(3) Hi; (L) = Hom(H}**(L), A),
i€ Z.

1.2. Let us draw some consequences from this definition. Let us set
do= Y dyy
g=p=r
We have d = Y - d.. The equation d* = 0 becomes an infinite set of equations

dodo = 0, dOdl + d+ dldg = 0, dodg -+ dldl + dgdg = 0,

etc.
First, each S?(L[1]} becomes a complex with differential d,,. We have

dpp = S%(d11)
for all p.

Next, one can see that d is defined uniquely by its components d;;. More precisely, let T* denote
a functor of tensor algebra (over A). By definition, a functor of p-th symmetric power 57 is a
quotient of 7% over the natural action of the symmetric group ¥,. Let z; -... -2, € 57 denote
the image of z; ® ... @ 2, € T? under the natural projection.

Define maps

gp Lz, e T2, gp

by the formulas
(@ @)= D o(31®... 0 Ty),

c€T,
1
(21 Q... Q2,) = ;!:vl R
We have
(4) A dpg = ¢+ Ty 0 (dpgt1,1 0 Tp—g41 ® 1% ) 0 gy
forall p > ¢g.

All these facts follow from the compatibility of d with the comultiplication.



1.3. Language of brackets. For n > 2, let us consider a map of graded A-modules of degree
1 given by the composition

L®[n] s L[1]®" = §7(L[1)) 25 L[1);
this is the same as a map of degree 2 — n
(5) 6yt L% — L

of degree n. We also introduce a differential d on L, i.e. a map of degree 1 L — L equal to
—dy; (the change of the sign is due to the fact that dy; is a differential on L[1].

These maps enjoy the following properties.

(i) Skew symmetry. 8, 0 0 = (=Dl . 8, for all o € T,.

(i1) Compatibility.

n—1
d(8n) = D (=1)" 15 6; 0 (bnoips ® 1971 ) 0 alty,
i=2
where
d(6,) = dy 08, — (—1)* "8, o dpex,
alt, = ...].'_. Z (_.]_)|~’7| o 19 o [Bn
" ! ' )
cED,
We will use the notation [zy,... ,2,], or simply [21,...,2,] for 6,(2: ® ... ® z,).

Conversely, a complex L equipped with "brackets” é,, n > 2 satisfying properties (i) and (ii)
above defines a structure of Sugawara Lie algebra on .. More precisely, 6, define maps d,1, and
all other components are reconstructed from them by (4).

1.3.1. Framples. (1)[,]: L ® L — L is a skew symmetric map commuting with differentials.
(if) We have
(6) d([z,9,2]) + [de,y, 2] + (~1)"[e, dy, 2] + (= 1)1 W[z, y, d2] =
= [z,4], 2] + (—1)HD [z, 0, o] + (— 1)+ Ty, 2], 2]
for z € Lol y € LW, 2 € LI,
This justifies

1.3.2: Definition. A Sugawara Lie A-algebra I such that all "higher brackets” é,, n > 3, are
identically zero, is called @ dg Lie algebra over A.

Of course, this coincides with the usual definition.
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2. DELIGNE FUNCTOR AND ITS GENERALIZATION

2.1. Let A be as in the previous Section, and L a dg Lie algebra over A.
Suppose that
(N) the adjoint action of L° on all L}, i > 0, is nilpotent.

In particlular, the Lie algebra L° itself is nilpotent. Let G(L°) denote the corresponding nilpotent
Lie group. Its elements will be denoted ¥ = exp(}), A € L?, the multiplication being defined by
the Campbell-lTausdorfl formula. '

Following Deligne (see [GM2]), define a groupoid G(L) as follows. We define Ob G(L) as the set
of all z € L! satisfying Maurer-Cartan equation

1
) | do +3z,5] = 0
The group G(L®) acts on this set by the rule
(8) exp(A) o z = exp(ad A)(z) + 1‘—2‘??1—’\—)(@\)

By definition, a map z — y in G(L) is an element v € G(L°) such that yoz = y. Composition
is defined in an obvious way.

2.2. We want to generalize this definition. Let L be a Sugawara Lie algebra over A. Suppose
that .

(N1) all higher brackets [z,,...,z;], ¢ > 3, are identically zero provided all z; except possibly
one, belong to L°.

Then the bracket [ , ] makes L° a Lie algebra and all ' — L'-modules. Let us suppose that
(N2) the action of L? on all L, i > 0 is nilpotent.

Finally, suppose that

(N3) brackets [ ,..., J;: (I*)® — L? are zero for sufficiently large 4.

As before, denote by G(L°) the nilpotent Lie group corresponding to L°.

Following Drinfeld, (cf. [Dr]), let us introduce the set M(L) consisting of all z € L' satisfying
generalized Maurer-Cartan equation

{9 d:c-l—Z[m,...,w]i:O
i=1
As before, consider an action of G(L°) on L' defined by the formula (8). We conjecture that

2.2.1. this action preserves the subset M(L).

In the sequel, we suppose that this holds true. Then we can define a groupoid G(L) with the set
of objects being M(L), and morphisms & — y being elements v € G(L°) such that yoz = .



Let us call a map of Sugawamai Lie algebras I — L' a quasi-isomorphism if the induced map
C(L) — C(L') is a quasi-isomorphism. We expect that

2.2.2. funclor G takes a quasi-isomorphism of Sugawara Lie algebras to an equivalence of
groupoids.

2.3. Deligne functor. Let Artin; denote the category of artinian k-algebras with the residue
field k. Let L be a non-negatively graded Sugawara Lie algebra over k satisfying the assumption
(N1) from the previous subsection (for A = k).

Given A € Arting, set m = rad(A). Consider a complex Ly := L ®,m. One introduces brackets
on Ly by a formula

(€1 ® @1,... .2 @ a;] = [Z1,... ,T:] @1 ... 0, T € L,a; €m.
This way we get a structure of a Sugawara Lie algebra on L. Obviously, it satisfies conditions
(N1)-(N3); consequently, a groupoid G(Ln) is defined. Let us denote it G(L; A).

If L is fixed, we get a functor
(10) G(L) : Arting, — Groupoids

to the category of groupoids. We can compose it with the functor of the set of connected
components 7, : Groupoids — Sets and get a functor

(11) mo(G(L)) : Artimy — Sels

Let us denote Artin<' a full subcategory of Artin;, whose objects are algebras A with rad(A)t! =
0.

Let us consider the standard complex C(L). Recall that it is a filtered cocommutative dg
coalgebra over k.

Before we go on, let us make a small digression.

9.3.1. Unital coalgebras. Let B be a dg k-coalgebra with a counit € : B — k. Let us call
an element 1z € B @ unit if dlg = 0, A(lp) = 15 ® 15, and €(1p) = 1x (A denotes the
comultiplication in B). We call a (dg) coalgebra with a unit a unilal (dg) coalgebra.

A unit defines an evident decomposition B = Bt @ k-1p, B¥ := Ker ¢. Following [HS2], 2.1.2,
we remark that it defines also a canonical increasing filtration {F; B} by the rule

(12) F;B = Ker(B R Boit (B+)®i+1)’

the last map being the projection. We call B cocomplete if this filiration is exhaustive.

We denote by Coalg; a category of cocomplete unital dg coalgebras over k. (We consider a
coalgebra as a dg coalgebra concentrated in degree 0.)
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2.3.2. Ezample. If A is a complete local k-algebra with the residue field &, the dual %-vector
space A is a cocomplete unital k-coalgebra. Canonical filtration (12) is dual to the filtration
by the powers of the maximal ideal.

Let us return to our Sugawara Lie algebra L. The standard complex C(L) is a cocomplete unital
cocommutative dg coalgebra over k; the canonical filtration (12) coincides with (1).

2.4, Lemma. For every A € Artin, one has a natural isomorphism
(13) M(Ly) = Homegay, (A%, C(L))
where A* = Homy(A, k).

This lemma is due essentially to Drinfeld, see [Dr}, Remark 1, p. 2, and was (we believe) the
source of the definition of generalized Maurer-Cartan elements. For dg Lie algebras it is a
standard fact going back to Quillen.

Let us describe (13) explicitely. For a k-algebra A and a k-coalgebra B, let us denote by
M(A® B) the set of elements 2 € A® B such that

(1o ® Ap)(2) = (na ® lpen)(2@2) € AR BR B
where 14 : A® A — A is the multiplication in A, Ap — comultiplication in B.
One sees immediately that M (A ® B) coincides with the set of all coalgebra maps A* — B.
In view of this remark, to define a map (13), we have to define a map
M(En) — M(A® C(L)).
Tt is given by the formula
o exp(—a) € A® S*(LY) C A® C(L).

2.5. Now let us suppose that Hi(L) = 0 for i < 0. In this case H{**(L) = 0 for 1 < 0.
Taking the composition of (13) with a natural projection, we get a map

(14) 0= M(Ln) < Homeouy (A%, C(L)) —
- HOmcngk(A*,Tzo C(L)) = HomCOGIQk(A*aﬂg’ie(L))

2.5.1. Conjecture. The map q factors through the quotient M(Ly)/G(L3,) = mo(G(L; A)).

We have checked this for dg Lie algebras. Suppose this is true. Then we get a map (denoted by
the same letter) '

(15) g : 7o(G(L; A)) — Homeoay, (A", Hy"*(L))
Let us introduce the notation H®Z¥(L) for the k-dual space to H(**(L). It is naturally a
complete local k-algebra with the residue field k.

Let us denote by Alg; a category of complete local k-algebras with residue field k. We have
naturally
Home,alg, (A*, Hy**(L)) = Homyy, (HZ: (L), A).



Thus, we have a map

(16) r 1 wo(G(L; A)) —> Homayg, (Hy;,(L), A)

2.6. Conjecture. The map 7 is an isomorphism. In other words, a functor mo(G(L)) is prorep-
resentable by a complete local k-algebra H), (L).

(Recall that our running assumption is H*(L) = 0 for ¢ < 0).

Sketch of the proof for dg Lie algebras. First, check the statement for dg Lie algebras I such
that L? = 0. This can be done directly.

For an arbitrary L, choose a k-subspace ‘L' C L' which is a direct complement to dL°. Let
(17) 'L — L
be a dg Lie subalgebra with 'L* = 0, for ¢ < 0, 'L' =’ L' and ‘L' = L* for i > 2. The
embedding (17) is a quasi-isomorphism. Consequently, by [GM2], Thm 2.4, the induced map
G('L;A) — G(L;A) is an equivalence. On the other hand, it is clear that the induced map
C('L)y — C(L) is a gquasi-isomorphism. O
2.7. Remark. It is clear that if A € Artins' then the maps

Homeoarg, (A*, H(F;C(L))) — Homeoary, (4, Hy*(L))
are isomorphisms for 7 > 4. .

This means that the above conjecture implies that the restriction of ToG(L) to Artins® is pro-
representable by HO(F;C(L))* for every j > i.

3. DESCENT
3.1. Let A be a commutative k-algebra. Let L = {L#?} be a cosimplicial dg Lie algebra over
A. We agree that p > 0 will be a cosimplicial index, and ¢ - 7dg” index.

Consider the corresponding non-normalized double complex (with components L*?); let I'(L)
denote the associated simple complex.

According to [HS1], there exists certain ”almost canonical” structure of a Sugawara Lie algebra
on I'(L). " Almost canonical” means that it is unique up to a homotopy.

Omne can show that one can choose a Sugawara Lie structure on I'(L) in such a way that the
condition (N1) from 2.2 is fulfilled. Let choose such a structure.

3.2, Let G* = {G’} be a cosimplicial groupoid. Let us define a groupoid I'(G*) as follows. By
_ definition, an object of I'(G*) is an object z € Ob G° together with an isomorphism

(18) v d(z) = d*(z)
satisfying the cocycle condition
(19) d*(y) o d’(y) = d'(7)

(both maps from d°d’(z) to d*d'(z)).
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A map from (z,7,) to (y,7,) is a map ¢ : 2 — y in G° such that
(20) Yy O d°(¢) = d'(¢) 07,

This groupoid is nothing but Grothendieck’s ”category of descent data” (see [FGAJ).

3.3. Descent conjecture. Let us return to the situation 3.1. Let us suppose that all dg Lie
algebras IP*, p > 0, satisfy the nilpotency condition (N) from 2.1. Then a cosimplicial groupoid
G(L) = {G(L**} is defined.

On the other hand, consider "the” Sugawara Lie algebra I'(£). We have already chosen a
Sugawara Lie structure on I'(L) in such a way that (N1) from 2.2 is satisfied. It follows from our
assumptions that (N2) is also satisfied. Suppose that (N3) is also satisfied (it is probable that
one can always choose such a Sugawara Lie structure). Then a groupoid G(T'(L)) is defined.

We conjecture that

there exists ¢ natural equivalence

(21) I'G(L) = GI(L)

3.4. Let us verify the above conjecture "up to the second order”. In the situtation 3.1, suppose
that L?? = 0 for g # 0; let us denote L simply L*.

By assumption, each L? is a nilpotent Lie algebra. The associated groupoid G(L?) is essentially
the corresponding Lie group G(L?). More precisely, Ob G(LP) consists of one element, and
Mor G(L?) = G(LP).

Objects of I'G(L) are elements exp(A), A € L' such that
(22) exp(d®)) - exp(d°)) = exp(d'A)
A morphism in I'G(L) has a form

exp(@) : exp(A) — exp(p)
where ¢ € LY is such that

exp(t) - exp(d°¢) = exp(d*¢) - exp(A),

(23) exp(ps) = exp(d’$) - exp(A) - exp(—d°¢)

In the sequel, let us drop in all formulas all brackets of order > 3. We have Campbell-Hausdorff
formula:

(24) . exp(e) - exp(b) = exp(a + b + %[a, b))



Consequently, (23) becomes
(25)  exp(p) = exp(d'p+ A~ d+ 3[06, N — [d'S,d%] — 1\, d]) =
= oxp(dlg — 6+ X+ &+ 9, N + 1%, 9]
A part of a Sugawara Lie structure on I'(L) we are interested in is the second bracket

6, : T(L) ® (L) —> T(L).

It may be defined by a skew-symmetrization of the Alexander-Whitney multiplication: for 2 €
L we may define

(26)

§a(a?,29) = %([dpﬂ o P o, 0d] — (~1)[d+ 0., d" a7 d ... 0 d°2?])

In particular,

(27) bafa”,2") = 1% + d'a®, 2]
and
(28) (a0 = L (@, ] + [Py, o)

Now we can compare groupoids GT'(L) and TG(L). By definition, Ob GT'(L) is the set of A ¢ L*
such that dX + £8,(X,A) = 0, i.e.

d°N—d' A+ &)+ %[dzz\,du)\] =0.
On the other hand, Ob TG(L) is the set of all exp(A), A € L' such that
EA+ d°A — %[dz)\,du)\] — d'
(see (22)). Consequently, the rule A — exp(A) establishes ésomorpf'zism
(29) Ob GI(L) = Ob TG(L)
Similarly, a morphism in I'G(ZL) is an element exp(é), ¢ € L° such that
b= At die—d+ %[duqﬁ -, N + %[d“qﬁ, &g

(cf. (25)), and a map
exp(¢) : A — 4
in GT'(L) is defined by an element ¢ € L° such that

p= A+ 6, 2) — d — S8u(,d9)
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— here we have used the formula (8) up to the second order. In other words, we rewrite this as

p= At S+ N = P+ B P+ B, — d'] =

1 1
=A-do+d'¢+ §[d°¢ +d'¢, A + §[d°¢,d1¢]
Consequently, the rule ¢ » exp(¢) establishes an isomorphism
Mor GT(L) — Mor T'G(L)

compatible with (29).
Thus, we have checked the Descent conjecture up to the order 2. Note that the groupoids turned
out to be isomorphic, not merely eguivalent.
3.4.1. Question. Is i possible to introduce a Sugaware Lie structure on I'(L)} in such a way

that the groupoids GT'(L) and I'G(L) are isomorphic?

As we can guess from the above, an isomorphism could be essentally identity map!

4. APPLICATIONS
In this Section we indicate how to deduce from the Descent conjecture the description of the
universal formal deformation spaces for two natural deformation problems.

(a) Deformations of schemes.

4.1, Local problem. Let B be a commutative k-algebra, smooth over k. It defines a defor-
mation functor

(30) Defp : Arting — Groupoids

as follows. For A € Arting, Ob Defp(A) is the set of all liftings of B to a flat A-algebra;
morphisms are isomorphisms of liftings inducing indentity on B.

Now let us consider a free dg Lie coalgebra spanned by B|[1], and let us denote by Lp the graded
Lie algebra of its derivations. The multiplication on B, 5%(B) —— B defines a derivation of
degree 1, i.e. an element of y € L} such that the bracket [y, ] has square 0 and defines a
structure of a dg Lie algebra on Lpg.

4.1.1. Claim. The deformation functor Defg is naturally isomorphic to the Deligne functor
G(Lg) associated to Lg.

This is more or less tautology.

We can expect that

4.1.2. H"(Lg)= Dery(B,B) and H(Lg) =0 for i # 0.
We suppose that this is true in the sequel.



1

4.2. Glueing. Now suppose we have a smooth proper scheme X over k. Let Tx denote the
tangent sheaf. Suppose that H°(X; 7x) = 0. Similarly to the affine case, X defines a deformation
functor

Defx : Artiny, — Groupoids,
Let us denote Defx = moDefx. In our assumptions Defy is prorepresentable by a complete
local k-algebra Ry.
We can sheafify the construction of the previous subsection, and get a sheaf of dg Lie algebras
Lx on X such that H%Lx) = Tx and H'(Lx) = 0for ¢ # 0.

Choose an affine open covering U = {U;} of X. Let £y denote the Cech cosimplicial dg Lie
algebra:

ﬁ{, = H T(Uin N e n U,;P;Ex).
Consider the corresponding Sugawara Lie algebra I'(Ly). Its quasi-isomorphism class does not
depend on a choice of I (cf. [HS1], §6). We will denote it RT'(X; Tx).

This Sugawara Lie algebra should be isomorphic to "the” dg Lie algebra denoted by the same
symbol in [HS2].
We will use the notation _ .

H.Ea'e(X; TX) = H}.w(RP(Xv TX))'

From the previous remarks follows that the functor Defx is isomorphic to I'G(Ly). Conse-
quently, from the Descent conjecture and 2.6 follows

4.3. Corollary. One has a canonical isomorphism of local k-algebras

Ry = Hp (X;Tx)

(b) Deformations of group representations.

4.4. Let G be a group, V a finite dimensional k-vector space,
p: G — GL(V)
a representation.

Let
Def, : Arting, — Groupoids

denote a functor which assigns to an algebra A a groupoid Pef,(A) whose objects are liftings

of p to a representation
Pa - G — GL(VA)

where V4 = V @, A; for technical reasons, let us suppose that the determinant det p is not
deformed. Morphisms are isomorphisms of liftings inducing identity on p.

We denote by
Def, : Artin, — Sets

the composition of Def, with the functor m.
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Under mild assumptions on p, Def, is prorepresentable by a complete local k-algebra R,.

Let
Ad, : G — GL(sl{(V))

denote the adjoint representation Ad,(¢)(f)(z) = gf(g~'z). So gl(V) is a G-module. Suppose
that HY(G;sl(V)) = 0.

Consider a cosimplicial Lie algebra C(G;s{(V')) whose associated complex is a complex of

cochaing of G with coefficients on sl(V') with the action of ¢ defined by Ad,. Let RT(G;Ad,)
denotes "the” Sugawara Lie algebra F(C(G;sl{(V))) and denote the cohomology

Hp,, (G5 Ad,) := Hp,(RT(G5 Ad,))
Now, from Descent conjecture and 2.6 follows

4.5. Corollary. One has a canonical isomorphism of local k-algebras

(31) R, = Hi,(G;Ad,)

5. MULTIPLICATIVE PICTURE

5.1. Multiplicative version of Deligne construction. Let G = {G*} be a cosimplicial
group. Let us assign to it a groupoid G(G) as follows. We define Ob G(G) as the set of all
v € G! such that

d*y - d%y = d'y.
The group G° acts on this set by the rule
Boy=d'f-y-d'87".
By definition, a map ¥ — 7' is an element 8 € G° such that v/ = f o v. The composition is

defined in the evident way. (It is a particular case of the descent construction used in 3.2).

5.2. Compatibility of the above construction with the ”Lie algebraic” construction in charac-
teristic 0 is equivalent to Descent conjecture.

5.3. Let us fix a ground field k£ of arbitrary characteristic. Let G = {G'} be a cosimplicial
formal group. Applying the previous construction, we get a functor

(32) G(G) : Arting, — Groupoids
which sends A to G(G(A)).

Similarly to 2.6, we expect that my(G(G)) is prorepresentable. The followmg answer was proposed
(in different terms) by Beilinson and Mazur.
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5.4. Let us consider a simplicial cosimplicial formal scheme BG = {BG?} whose component
at a fixed cosimplicial index p is the simplicial formal scheme BG? — the standard model of the
classifying space of G?, ‘

Let G? = Spf(W,) where W, is a complete k-algebra. Then BGY = Spf(W#1). The k-algebras
W2 form a cosimplicial simplicial &-algebra — ring of functions on BG”.

Let W¢ denote the simple complex associated with the corresponding bicomplex. The cohomol-
ogy H*(Wg) form a commutative dg algebra.

5.5. Conjecture. Suppose that
Ker(d’,d"): G* = ¢
is trivial. Then my(G(G)) is prorepresentable by the complete local k-algebra H (We).

5.6. Suppose that k has caracteristic 0, and L = {L*} a cosimplicial Lie algebra over k. For
each ¢ consider the standard complex C(L?). Taken together, these complexes form a cosimplicial
complex; let us denote C'(L) the corresponding simple complex.

On the other hand, consider the standard complex C(I'(L)) of "the” Sugawara Lie algebra I'(L)
associated to L.

It is very reasonable to expect that

5.6.1.  There exists a unique up to a homotopy natural quasiisomorphism C(L) with C(I(L)).

If this is true, the "multiplicative” picture of this section is consistent with the "additive” one
of previuos sections.
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