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§1. Quantum group of a hyperplane arrangement

1.1. A quantum group of a hyperplane arrangement. Let
V =C", H = {H;} a finite collection of hyperplanes H; : f,(x) =0
where f; are linear functions with real coefficients.

This arrangement gives rise to a complex stratification S¢ of V and to a
real stratification 8 of Vg = R".

For S,S’ € Swe write S< S"if Sc §.

Let us call two strata S, S’ neighbours if dim S =dim S, L(S) = L(5'),
and there exists S” (a wall between S and §') §” < 5,5§" < 5/,
dimS” =dimS — 1.

A triple of real strata (51, Sz, S3) is called a collinear triple if there exist
x; € S; lying on the same line, and such that x; € [xy, x3].

Let us define a category Hyp(S) whose objects will be called hyperbolic
sheaves over 8, which are the following linear algebra data:



— a collection of complex vector spaces E = {Es, S € 8};

— for each S < S’ we have two linear maps: vss: : Es — Es
(generalization), and ds/s : Ess — Es (boundary), transitive wrt
$§<§ <Y,

They should also sarisfy the following properties:
(i) (idempotence) vssidsrs = Id( Es:).

Let S, S’ be arbitrary strata. Choose a stratum §” < 5,5” < §’, and
define a flopping map

Pss = Ysrsdssr.
Due to (i) this definition does not depend on S”.

(i) (collinearity) If (5,5’,5") is a collinear triple,
¢SS// — ¢S/S//¢SS/,

(iii) (invertibility) If S and S’ are neighbours, ¢ss/ is an isomorphism.

In other words, the category Hyp(8) is a category Rep(A(S)) of
representations in Vect of certain associative algebra A(S8).



1.2. Let M € Perv(V;8¢). Let i : Vg < V. One can show that
Ri'(M) € D°(Vg, 8)

which is a priori a complex of sheaves, is actually a single sheaf. Denote
by
E(M)a = T(A; Ri'(M)) € Vect, Ac§

its fibers, and by
Yag : E(M)a — E(M)g, A< B

the generalization maps.

One can show that
~ *

E(M")a = E(M),

where M* is the Verdier dual sheaf, whence maps

dga(M) := yag(M*)*



1.3. Theorem, [KS]. The association M — E(M) gives rise to a functor
E: Perv(V;8s) — Hyp(S)

which is an equivalence of categories.
1.4. RI(V; M) AND RI'.(V;M) IN TERMS OF E(M).

Suppose our arrangement is central, i.e. {0} is one of its faces. Let
8; € 8 denote the subset of faces of dimension .

If E(M) = (Ea,~,0) then
RI(ViM):0 — Eg — @pes, E0 — - .-,

the differential being +'s with signs. The complex sits in nonnegative
degrees.

Dually,
RF(V,M) .. — @geglEg — Eo — O,

the differential being 's with signs. The complex sits in negative degrees.



1.5. Elementary version: the braid groupoid. Let
U= V\U,‘ H,‘

The fundamental groupoid MN(U) admits the following description:
Objects: chambers, i.e. strata C of maximal dimension.
Morphisms.

Generators: for each two chambers C, C’ we have one generator
(Z)CC/ - C — (.

Relations: for each collinear triple (C, C’, C"),

Gcer = pcrendec-



§2. Fourier - Sato transform

2.1. Fourier - Sato transformation. Cf. [KaScha]. Let V be a
complex finite dimensional vector space, V* its complex dual,

P={(x,0)€Vx V| R(x) >0} C V x V*,

Let pr : P — V, po : P — V™ be the projections.

Let Perv(V) denote the abelian category of monodromic perverse
sheaves over V.

The Fourier - Sato transformation
FS : Perv(V) — Perv(V™)

is defined by
FS(M) = p2upy M = paipiM

see [KaScha], Definition 3.7.8.



2.1.1. Fourier - Sato and vanishing cycles. Let f € V*,
Ve = {f71(0) c V},
i{f} : {f} — V™.

We have the vanishing cycles functor
®r 0 Perv(V) — Perv( V).

Then the fiber



2.2. Let us return to the framework of §1. Let JH{* denote an arrangement
in V* whose hyperplanes are orthogonals H* = ¢+ where { = NH; C V is
a line. Let 8* denote the corresponding stratification of Vj3.

Warning: H C H**, but H** is much bigger if n =dimV > 2.

The Fourier - Sato transformation acts as

FS : D2(V,8) — DE(V*,8%).



2.2.1. Relation to vanishing cycles. For example, let
V*o — V \ UH*EJ{*H*

A point in V* is nothing else as a linear function f : V — C in general
position to J.

For M € DE(V,8) let
(M) € D(F7(0))

denote the sheaf of vanishing cycles. It is concentrated at 0 € £~1(0),
and the fiber
&r(M)o = FS(M)f

Thus, over V*° the sheaf FS(M) decribes the variation of the space of
vanishing cycles when a function f varies.



2.3. Now let M € Perv(V,8c), E = E(M) € Hyp(S),
MY = FS(M) € Perv(V*; 8*).

Let us describe EY := E(M") in terms of E.
First let AV € 8* be a chamber. Choose f € AV, and denote
Vi = {x € W] f(x) > 0}.

Consider a complex
E(AY)* :
0 — Efoy — EBBcv;,clim -1 EB — @Bcvfﬂdim g EB — ...
(2.3.1)
concentrated in degrees > 0. The boundary maps are 's with
appropriate signs.

Dually, we can consider a complex
Vye .
E(A)5 : 0 — Eqoy <— @pcvy dimp=1 Es ¢— ®pcv; dims=2 EB ¢ - ..

concentrated in degrees < 0, whose boundary maps are d's with
appropriate signs.



2.4. Main Acyclicity Theorem.
(i) The complexes E(AY)* and E(AY)S are acyclic except for degree 0.

(i) Its zeroth cohomology computes the vanishing cycles

E(AY) = HY(E(AY)") = Exv = H(E(AY);)



2.5. Now let AY € S* be an arbitrary face, AV # 0.

As previously, choose f € AY, and consider a complex similar to (2.3.1):
E(AY)* :

0 — Ejoy — @Bcvfr,dim g=1 EB — @Bcvﬁ,dim B—o EB — ...
(2.5.1)
concentrated in degrees > 0.

The boundary maps are ~'s with signs.



2.6. Theorem. (i) The complex E(AY)* is acyclic except for degree 0.

Its zeroth cohomology computes

E(AY) := HY(E(AY)*) = E),

(i)
EV(O) = Eo.

Part (ii) is a version of Braden's theorem.



2.8. EXAMPLE: THREE LINES ON THE PLANE
2.9. EXAMPLE WITH LIE OPERAD



§3. Lusztig symmetries and vanishing cycles

3.1. Braid group actions. Let g be a complex semisimple Lie algebra,
h C g a Cartan subalgebra, R C h* the set of roots with respect to §.
Let us fix a Borel subalgebra h C b C g; let {c;}ic; C b* be the
corresponding set of simple roots.

Let L be a finite dimensional g-module. The Weyl group W of g acts on
the set of weights of L.

This action may be lifted to an action on L of an extended Weyl group
("Tits - Weyl group") defined by Tits, which is an extension

0— (2/22) — W — W — 1

where r = dim b, cf. [Tits].

This action may be g-deformed.



Let g € C*; consider the quantum deformation U,g of Ug. Let us
suppose for simplicity that g is generic (not a root of unity).

Let
ho - h \ UaeR aL
The braid group Br of R (resp. the pure braid group PBr) is defined by

Br = 7T1([]O/W), PBr = Wl(bo)
They fit into an extentsion
1— PBr— Br " W — 1.

According to Lusztig [L], Prop. 41.2.4, a finite dimensional module L
over Ug,g is acted upon by Br.

The generators T;,i € I, of Br act as certain combinations of the
operators E;, F; € Ugg.

For b € Br and a weight subspace L, C L, it € b*,

b(L,) C Ly,



whence the pure braid group PBr respects weight subspaces L, C L.

3.2. Vanishing cycles and weight components. For a dominant
integral weight A, let L(\) be the irreducible U;g-module with highest
weight \.

Let J C I; BJ:ZieJai'

We are going to describe geometrically the weight subspace
L()\)J = L(/\))\J, /\J = )\ — BJ.

Let us consider the space A7 = C’ with coordinates t;, j € J. Inside it,
let us consider hypersurfaces

Hy={t; =0}, Hy = {t; = tu} C A7,
and the open complement
A% = AT\ (UH) \ (UHK).

We have a one-dimensional local system £ over A% with- monodromies



g~ ™) around H; ,
and
q(af’ai’) around Hjj.

Let M, denote a perverse sheaf over A7, the intermediate extension of
L.

Consider a function

fr AY— A =C, (1)) =)t

J

The sheaf of vanishing cycles
(M) € Perv(f1(0))

is supported at the origin 0 € f~1(0)

One of the main results of [BFS] establishes an isomorphism of vector

spaces
d(My)o = L(N)J.



More generally, for any J' C J, the component L()) is realized as an
appropriate space of vanishing cycles living on a subspace A’V c A7,

The operators
var = £ L(\)x — LN k\giy : Fi = can

of the quantum group are being identified with the operators var and can
acting on vanishing cycles.

A similar description holds true for any weight component (one has to use
the spaces of divisors on A'), and for any finite dimensional U,g-module.



3.3. Geometric braid group action. Now let us vary the function f.
Let

by = ®jcsCo;
(recall that we have identified h with h*).

For each

c= E ¢y € by,
J
consider a function

f-c : AB — Al, f(tj) = chtj'

jed

For generic ¢ again the sheaf ®¢ (Mj5) will be concentrated at
0 € £71(0), and when c varies, we get a local system of vector spaces
over some open part of b, whose fiber at c is ®r (Mz)o.

One can show that for g sufficiently close to 1, this local system is well
defined over b9 (a priori it has singularities at a bigger set of hyperpanes).



3.3.1. Theorem. Let q be formal at the infinitesimal neighbourhood of

1. The resulting representation of m1(h9) C PBr(g) on ®¢(Mz)o = L(N),
is equivalent to the Lusztig representation.

3.3.2. Conjecture. The same holds true for any q.



3.4. Comments. Relation to the theory from §1.

Operators
0 +—— E;

v F



84. Combinatorics of Young tableaux

and duality for representations of S, and GL,(F,)

4.1. Representations of symmetric groups. Let A = C[S,;1].
Denote by:
[n] ={1,...,n}; Sub, the set of subsets of [n];

Pni1 the set of partitions of [n+ 1] = the set of Young diagrams with
n+ 1 boxes;

T the set of standard Young tableaux of shape \, for A € P, 1;

Tn-i—l - U)\ETPn+1 fOI’ TA-

For each T € T,,1 we have the corresponding Young symmetrizer
yT € A,

yi=yr, yryr =0T #T.



The left ideal
Lt =A-yrCA (4.1.1)

is an irreducible representation of S,,1; L+ = L iff T and T’ have the
same shape.

We have
A= EBTETn+1LT7 (412)

cf. [W], Theorem 4.3.J.



4.2. A.Postnikov’s descent map and projectors. Let T be a
standard Young tableau of shape \. We say that an index i in {1,...,n}
is a descent of T if the number i + 1 is located in T below the number /
(that is, the row containing i + 1 is below the row containing /).

Let Des(T) denote the set of all descents of T.

1/2]4]8]9]
For example, for T =[3][5][7 we have Des(T) = {2,4,5}.
6
This way we get a map
Des : T,.1 — Sub,. (4.2.1)

For each | € P,, we denote
T) := Des™ (1),

and we define Postnikov projectors

pi=)Y yreA (4.2.2)

TET,



and

=35, (4.2.3)

Jcli

4.3. Kostka numbers and multiplicities.

To each \ € P, 1 there corresponds a subgroup S, C S,.1 on the one
hand, and (an isomorphism class of) an irreducible representation L, of
Sn1+1 on the other, such that

My = Ind (1s,) = Bpsalp ™, (43.1)

with Ky, = 1, cf. [Ko], [F], [FH], Corollary 4.39.
4.4. Numbers k) ;.

We define a map
i Sub, — Ppiq (4.4.1)

as follows. Given a subset J = {j1 < p <...<j.} C{1,2,...,n}, we
consider a decomposition (ji,j> — j1,- -, Jr — jr—1,n+1—j;) of n+1,
and we denote the corresponding partition by p(J).



For example, if n =4, then u(13) = (221).

4.4.1. Remark. Let G = GL(n+ 1). The set Sub, may be identified
with the set of G-conjugacy classes of parabolics P C G, whereas P, 1
may be identified with the set of G-conjugacy classes of nilpotent
elements x € Lie(G).

The map (4.4.1) assigns to P the class of a generic nilpotent
x € Lie(U(P)).

Dually, we could assign to P the class of a generic nilpotent
y € Lie(L(P)); this would give the conjugate partition.

4.4.2. Definition. We define small Kostka numbers: for
A€ Poi1, | € Sub,

BVED Y G Ly (W

Jcli



4.4.3. Proposition. We have

K)\7M(/) = Z /i)\7J. (4431)
Jcli

This formula defines the numbers ky ; uniquely.

4.5. Theorem (A.Postnikov) The number k,  equals the number of
SYT's of shape A with descent set Des(T) = /.



4.6. A hyperbolic sheaf over R".

4.6.1. Consider V = C" D Vg = R" equipped with the coordinate
arrangement
j‘f:{H;ZXi:(), ].SISN}

Let 8 be the corresponding stratification of V. For each S € § its linear
span
L(S) = H/ = ﬂ,‘e/ H,'

for some | C [n].

In this manner we get a surjective map

v: 8 — Sub,

von= (1)

In fact, Sub, is in bijection with the set of complex strata Sc, and v is
the complexification map.

We have |§| = 3", and



4.6.2. Recall that for each T € T,,1 we have an irreducible constituent
Ly ¢ A=C[S,11],
cf. (4.1.1), and for any / € Sub, the submodules
Ly =&rer Lt

and
M; = @ il

We define S, ;-modules

Es = MV(S)? Ses.

For S’ > S we have obvious inclusions
55/5 : Esl — Es

and projections
’}/55/ . ES — ES’



4.6.3. Theorem - definition. The collection

E = (Es,vss: 0s's)
is a Rep(Sni1)-valued hyperbolic sheaf over § We call it the Postnikov
sheaf.
HYPERBOLIC FIBERS OF E: INDUCED MODULES

4.6.4. Proposition. Recall the map p : Sub, — P,.1, (4.4.1). We
have isomorphisms of representations

4.6.5. Let M € Perv(V;8c) be the perverse sheaf corresponding to E.

Recall that the poset 8¢ may be identified with Sub,, in such a way that
[n] corresponds to {0}, and () corresponds to the unique open stratum.

We denote this bijection [ — S;.



For A € P,.1, | € Sub, denote an irreducible perverse sheaf
L= inLy

where ij := 5/ < V, and L, is the (shifted) constant sheaf with fiber L,.

Then
~ LoWi
M — @’ESUan)\,I

is the decomposition of M into irreducible constituents in
Perv(V,8c¢; Rep(Sn+1)), and the small Kostka numbers &, ; are the
multiplicities.

4.7. DUAL SHEAF AND Alt.

The arrangement 8 is self-dual. The dual hyperbolic sheaf EV has a
general fiber isomorphic to the alternating representation Alt of S, 1.

More spevifically, its fiber at the main octant is the complex of vanishing

cycles
Ve
E@

is a resolution of Alt by the induced modules.



4.8. More generally, let L € Rep(S,+1).

For every A € P,,1 we have
M(L) = Indom* (L) = My ® L

We define a Rep(S,1)-valued hyperbolic sheaf over 8

E(Ly=E®L
with fibers

E(L)/ = E[ X L
We have

E(L)" = E(LY)
where

LY=L Alt

("transposition of a Young diagram").



DEFORMATION: GL,41(F4) STORY

4.9. Let G = GL,41(FFy); fix a Borel subgroup B C G. The ordered set
Sub, is in bijection with the set of parabolics P D B (standard
parabolics). For | € Sub, we denote P; the corresponding parabolic, so
that Py = B, and P[n] =G.

If (1) = pu(l') € Ppiq, the parabolics P, an Py are called associated
(Langlands); they are isomorphic.

Let us denote
My = My 4 = Ind§ 15 = Fun(G/B, C);

it is a g-analog of the regular representation of S,.1. Its G-submodules
are called wunitary. Let

Unirep(G) C Rep(G)

denote the full subcategory of unitary representations.



Hecke algebra

Let
Ay = Hyy14 = Hecke(G, B)

be the algebra of B-biinvariant functions f : G — C, with the
convolution as a multiplication.

Alternatively,
Hn+1,q = EndG(Indg 15)

This algebra admits as a C-base, the set {T,,, w € S,,1}, with
multiplication defined by

(Tsi + 1)(T5i - q) = 07
where s;,1 < i < n, are the standard generators of S, 1, and
TW : 7-W’ - 7-WW’

if {(ww') = 0(w) + 6(w'), cf.[lw], [L]; it is a g-deformation of C[S;4].



Steinberg - lwasawa isomorphism

According to Steinberg, [St], one has an algebra isomorphism
St Aq = HMpy1 = C[5n+1] = A, (4111)

cf. also [L] and references therein.

Morita equivalence

Mp 4 is an Ay — G-bimodule, and it defines a Morita equivalence between
two categories. Namely, two functors

HU : Rep(Aq) — Unirep(G), HU(N) = My q @4, N

and
UH : Unirep(G) — Rep(A;), UH(L) = My, ®¢ L



are mutually inverse equivalences of categories.
We have

M@,q = EBNGIrrrep(Aq) N® HU(N) = 69LEIrrrep(G) UH(L) ® L.

4.12. Parabolic induction

For | € Sub, let U, C P, denote the unipotent radical, L, C P; a Levi
subgroup.

The subspace LY C L is an L;-module since U; normalizes L;; using the
canonical projection P, — P;/U; = L;, we consider it as a Pi-module.

Parabolic induction functors
Par; : Rep(G) — Rep(G)

are defined by
Par;(M) = Indg (MY").

Under the equivalences UH, HU the parabolic induction goes to the
parabolic induction.



4.13. Curtis - Alvis duality. Let
L € Unirep(G), N = HU(L) € Rep(Sp+1).

The image under the equivalence st
My(N) = st.(M(N)) € Hyp(S; Rep(A,))

is a hyperbolic sheaf with values in Rep(A,).
Applying the functor UH we get a Unirep(G)-valued hyperbolic sheaf

Mqy(L) := UH(My(N)) € Hyp(S; Unirep(G)),

a "hyperbolic localization"of L.

Its (hyperbolic) fibers are induced G-modules, the general fiber being L
itself.

Consider the generic fiber of the dual sheaf M,(L)" in the main octant,
aka its complex of vanishing cycles for the function f(x) = > x;:

Mqy(L)g®.



Let us denote by
LY = HO(My(L);"
its only nonzero cohomology.

The operation L — LY is the known Curtis - Alvis duality on Rep(G).

For example
1% = St¢
(the Steinberg module).
We have
Mq(Lv) = Mq(L)V

In other words, the hyperbolic localization takes CA duality to Fourier -
Sato duality.



References

[BFS] R.Bezrukavnikov, M.Finkelberg, V.Schechtman, Factorizable
sheaves and quantum groups.

[FKS] M.Finkelberg, M.Kapranov, V.Schechtman, Fourier transform on
hyperplane arrangements, in preparation.

[FS] M.Finkelberg, VV.Schechtman, Microlocal approach to Lusztig
symmetries.

[KS] M.Kapranov, V.Schechtman, Perverse sheaves over real hyperplane
arrangements.

[KaScha] M.Kashiwara, P.Schapira, Sheaves on manifolds.
[L] G.Lusztig, Introduction to quantum groups
[Tits] J.Tits, Normalisateurs de tores |. Groupes de Coxeter étendus

[W] H.Weyl, Classical groups



