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Filtered Processes

Definition (Filtered Processes)

Class of stochastic processes defined by:{
X K

t =

∫ t

0
K (t , s) dXs : t ∈ [0,T ]

}
where

X is the so-called underlying process
Brownian motion, Poisson process or Lévy process

K is a deterministic kernel
Triangular (K (t , s) = 0 as soon as s > t > 0)

Covers a wide range of classic stochastic processes
(Fractional Brownian motion, Shot noise processes,...)

Integrates correlation in increments in standard settings
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Anticipative Integrals and Malliavin Calculus

Aims: Define an integral with respect to Filtered Processes

Problems: In general not a Martingale nor a Markov process

A solution: Define integrals by means of Malliavin Calculus

The ingredients (for a process X ):
SX a dense subset of L2(Ω) w.r. to an inner product <,>X

DX called stochastic gradient defined on SX its domain D1,2,X

Definition

A process u ∈ Dom(δX ) if there exists a constant C(u) s.t.∣∣E [〈DX F , u〉H
] ∣∣ ≤ C(u)‖F‖L2(Ω) for any F ∈ D1,2,X (1)

F → 〈DX F , u〉H is continuous, there exists δX (u) such that:

E
[
F δX (u)

]
= E

[
〈DX F , u〉H

]
for any F ∈ D1,2,X (2)
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Anticipative Integrals and Malliavin Calculus

Relevant choices of (SX ,DX ) allow to interpret δX as an integral:
Skohorod integral

For deterministic u, δX (u) coincides with X-Wiener integral
For predictable u, δX (u) coincides with Itô integral

This strategy is possible for X a
Brownian motion
filtered Brownian motion
standard Poisson process
marked Poisson process
Lévy process

δX
C construct by means of
SX comes from chaos expansion of a r.v.
DX is the chaos annihilation operator

δX
G construct by means of

(SX ,DX ) are cylindrical variables and ”true” stochastic gradient

No direct approach for filtered Poisson and filtered Lévy processes
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Malliavin Calculus and Anticipative Integrals
For filtered processes

First approach: Directly
Available only for filtered Brownian motion

Second approach: Use of an operator
One can construct an operator K∗ such that

K∗( I[0,t]) = K (t , ·) I[0,t] (3)

One can construct integrals w.r. to X K by means of integrals w.r. to X :

∫ T

0
Ys dX K

s
def
=

∫ T

0
K∗(Y )s dXs∫ T

0
I[0,t] dX K

s =

∫ T

0
K∗( I[0,t])s dXs

X K
t =

∫ t

0
K (t , s) dXs
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Malliavin Calculus and Anticipative Integrals
For filtered processes

Third approach: Use of an integral operator - S-transform

In the Brownian setting X ≡ B
(Bender (2003))

In the (marked) Poisson setting X ≡ N
(Bender, Marquart (2008))

In Lévy setting X ≡ L
(Savy, Vives (2014))

Conclusions:
We can define many integrals for filtered Poisson processes

Are these definitions equivalent ?

How they behave with Lévy-Itô decomposition L = B + J ?

δL(u) = δB(u) + δJ (u)

Are the components δB(u) and δJ (u) still independent ?
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What about integrals defined by ”true” stochastic gradient ?

In the Brownian case δB
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Even in standard Poisson setting δJ
G(u) 6= δJ

C(u)
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LDP and SLDP for O-U processes

Consider a fractional Ornstein Uhlenbeck process:dXt = θXtdt + dBH
t

X0 = 0
(4)

Consider the MLE of θ associated to (4)

θ̂T =
”
∫ T

0 Xt dXt ”∫ T
0 X 2

t dt
(5)

Theorem

Strong Law of Large Number: θ̂T
a.s.−−−−→

T→∞
θ

Central Limit Theorem in the stable case (θ < 0)
√

T (θ̂T − θ)
L−−−−→

T→∞
N (0,−2θ)

Central Limit Theorem in the unstable case (θ > 0)

exp(θT )(θ̂T − θ)
L−−−−→

T→∞
2θC where C is Cauchy
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LDP and SLDP for O-U processes

Asymptotic behaviour of (θ̂T ) in terms of Large Deviation Principle

Definition

A family of random variables (ZT ) satisfies a LDP of good rate
function I if there exists a function I l.s.c. from R to [0,+∞] s.t.

lim
T→∞

1
T

logP [ZT ≥ c] = −I(c), for all c ≥ E [ZT ]

If I is regular and strictly convex then I expresses as the Fenchel-
Legendre dual of the limit L of the log-Laplace transform of ZT :

I(c) := sup
t∈R

[ct − L(t)] .

Setting (θ < 0,H = 1
2 ) (Bercu, Rouault (2002))

Setting (θ > 0,H = 1
2 ) (Bercu, Coutin, Savy (2012))

Setting (θ < 0,H 6= 1
2 ) (Bercu, Coutin, Savy (2011))
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LDP for O-U processes

First, notice that, for any c,

{
θ̂T ≤ c

}
⇐⇒

{
”
∫ T

0 Xt dXt ”∫ T
0 X 2

t dt
≤ c

}
⇐⇒ {ZT (a, c) ≤ 0}

where

ZT (a, c) = a
∫ T

0
Xt dXt − ac

∫ T

0
X 2

t dt .

To establish an LDP, we have to study the Laplace transform

LT (a, c) =
1
T

logE [exp(ZT (a, c))]

especially the description of the domain ∆c of the limit L of LT

I(c) = − inf
a∈∆c

L(a) (6)

and denote ac = argmin
a∈∆c

L(a) (7)
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LDP for O-U processes
Fundamental Lemma I

Lemma

The limit L of LT is

L(a) = −1
2

(a + θ + ϕ(a))

with

ϕ(a) =

{ √
θ2 + 2ac for (θ < 0)

−
√
θ2 + 2ac for (θ > 0)

its domain ∆c is{
a ∈ R s.t . θ2 +2ac > 0 and

√
θ2 + 2ac > max(a+θ;−δH(a+θ))

}
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LDP for O-U processes

Theorem (Stable setting θ < 0)

The sequence (θ̂T ) satisfies an LDP with rate function

I(c) =

 − (c − θ)2

4c
if c < θ/3

2c − θ if c ≥ θ/3

For H = 1
2 (Florens-Landais, Pham (1999))

For H 6= 1
2 (Bercu, Coutin, Savy (2011))
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SLDP for O-U processes
Fundamental Lemmas II

To establish an SLDP we have to study deeper the behaviour of L

An expansion of LT for any a in the interior of ∆c

Lemma

For any a in the interior of ∆c , we have the expansion :

LT (a) = L(a) +
1
T
H(a) +

1
T
RT (a)

where H(a) = − 1
2 log

(
ϕ(a)−(a+θ)

2ϕ(a)

)
and RT (a) is a remainder term

Analysis of the behaviour at ac

Lemma

Easy case: no problem ac ∈ ∆c

Hard case: ac /∈ ∆c but there is a family aT such that aT ∈ ∆c for any T ,
aT −−−−→

T→∞
ac and for T large enough,

aT =

p∑
k=0

ak

T k
+O

( 1
T p+1

)
.
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SLDP for O-U processes

Theorem (Setting (θ < 0,H = 1
2 ) - (Bercu, Rouault (2002)))

The sequence (θ̂T ) satisfies an SLDP.

For all c < θ/3,
it exists a sequence (dc,k ) such that, for any p ≥ 1 and T large enough

P
[
θ̂T ≥ c

]
=

exp(−TI(c) + K (c))

σc tc
√

2π
1√
T

[
1+

p∑
k=1

dc,k

T k +O
(

1
T p+1

)]

tc =
c2 − θ2

2c
, σ2

c = − 1
2c
, K (c) = −1

2
log
(

(c + θ)(3c − θ)

4c2

)

For c > θ/3 with c 6= 0,
similar expansion holds
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SLDP for O-U processes

Theorem (Setting (θ < 0,H = 1
2 ) - (Bercu, Rouault (2002)))

For c = θ/3,
it exists a sequence (dk ) such that, for any p ≥ 1 and T large enough

P
[
θ̂T ≥ c

]
=

exp(−TI(c))

4πτθ
1

T 1/4

[
1+

2p∑
k=1

dk

(
√

T )k
+O

(
1

T p
√

T

)]

where τθ = (−θ/3)1/4/Γ(1/4).

For c = 0, it exists a sequence (bk ) such that, for any p ≥ 1 and T large enough

P
[
θ̂T ≥ 0

]
=

exp(θT )
√
π
√
−θ

1√
T

[
1+

p∑
k=1

bk

T k +O
(

1
T p+1

)]
.
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SLDP for O-U processes

Theorem (Setting (θ < 0,H 6= 1
2 ) - (Bercu, Coutin, Savy (2011)))

The sequence (θ̂T ) satisfies an SLDP.

For all c < θ/3,
it exists a sequence (bH

c,k ) such that, for any p > 0 and T large enough,

P
[
θ̂T ≥c

]
=

exp(−TI(c)+KH(c))

σc tc
√

2π
1√
T

[
1+

p∑
k=1

bH
c,k

T k +O
(

1
T p+1

)]

tc =
c2 − θ2

2c
, σ2

c = − 1
2c

KH(c) = K (c)− 1
2

log
(

1 +
1− sin(πH)

sin(πH)

(c − θ)2

4c2

)
.

For c > θ/3 with c 6= 0,
similar expansion holds.
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For c = θ/3,
it exists a sequence (dH

k ) such that, for any p ≥ 1 and T large enough,

P
[
θ̂T ≥ c

]
=

exp(−TI(c))cH

4πτθ
1

T 1/4

[
1 +

2p∑
k=1

dH
k

(
√

T )k
+O

(
1

T p
√

T

)]

τθ = (−θ/3)1/4/Γ(1/4), cH =
√

sin(πH)

For c = 0,
it exists a sequence (bH

k ) such that, for any p ≥ 1 and T large enough,

P
[
θ̂T ≥ 0

]
=

exp(θT )
√

sin(πH)
√
π
√
−θ

1√
T

[
1+

p∑
k=1

bH
k

T k +O
( 1

T p+1

)]
.
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SLDP for O-U processes

Theorem (Setting (θ > 0,H = 1
2 ) - (Bercu, Coutin, Savy (2012)))

The sequence (θ̂T ) satisfies an SLDP.

For all c < −θ,
there exists a sequence (ec,k ) such that, for any p > 0 and T large enough,

P
[
θ̂T ≤ c

]
=

exp(−TI(c) + K (c))

−acσc
√

2π
1√
T

[
1 +

p∑
k=1

ec,k

T k +O
( 1

T p+1

)]

where ac = c2−θ2

2c , σ2
c = − 1

2c and K (c) a constant

For all c > θ,
there exists a sequence (fc,k ) such that, for any p > 0 and T large enough,

P
[
θ̂T ≥ c

]
=

exp(−TI(c) + K (c))

acσc
√

2π
1√
T

[
1 +

p∑
k=1

fc,k
T k +O

( 1
T p+1

)]
where ac = 2(c − θ), σ2

c = c2

2(2c−θ)3 and K (c) a constant
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SLDP for O-U processes

Theorem (Setting (θ > 0,H = 1
2 ) - (Bercu, Coutin, Savy (2012)))

For all |c| < θ and c 6= 0,
there exists a sequence (gc,k ) such that, for any p > 0 and T large enough,

P
[
θ̂T ≤ c

]
=

exp(−TI(c) + K (c))

acσc
√

2π

√
T

[
1 +

p∑
k=1

gc,k

T k +O
( 1

T p+1

)]
where ac = θ

c+θ
, σ2

c = c2

2θ3 and K (c) a constant.

For c = −θ,
it exists a sequence (dk ) such that, for any p ≥ 1 and T large enough,

P
[
θ̂T ≤ −θ

]
=

exp(−TI(c))Γ
( 1

4

)
2
√

2πa
1
2
θ σθ

T
1
4

[
1 +

2p∑
k=1

hk

(
√

T )k
+O

( 1
T p
√

T

)]

where aθ =
√
θ and σ2

θ = 1
2θ .
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What is recruitment period ?

Clinical trials is one of the main elements of the marketing
authorization of a new drug
Such a request has to follow a protocol specifying

Patients inclusion and exclusion criteria
Statistic analysis plan especially:

which test is used
what are the type I and type II risks
necessary sample size N

In order to recruit these N patients, several investigators centres
are involved

Definition

The recruitment period is the duration between the initiation of the first
of the C investigator centres and the instant T (N) when the N patients
are included.

N is fixed but T (N) is a random variable

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 26 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

What is recruitment period ?

Clinical trials is one of the main elements of the marketing
authorization of a new drug
Such a request has to follow a protocol specifying

Patients inclusion and exclusion criteria
Statistic analysis plan especially:

which test is used
what are the type I and type II risks
necessary sample size N

In order to recruit these N patients, several investigators centres
are involved

Definition

The recruitment period is the duration between the initiation of the first
of the C investigator centres and the instant T (N) when the N patients
are included.

N is fixed but T (N) is a random variable

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 26 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

What is recruitment period ?

Clinical trials is one of the main elements of the marketing
authorization of a new drug
Such a request has to follow a protocol specifying

Patients inclusion and exclusion criteria
Statistic analysis plan especially:

which test is used
what are the type I and type II risks
necessary sample size N

In order to recruit these N patients, several investigators centres
are involved

Definition

The recruitment period is the duration between the initiation of the first
of the C investigator centres and the instant T (N) when the N patients
are included.

N is fixed but T (N) is a random variable

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 26 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

What is recruitment period ?

Clinical trials is one of the main elements of the marketing
authorization of a new drug
Such a request has to follow a protocol specifying

Patients inclusion and exclusion criteria
Statistic analysis plan especially:

which test is used
what are the type I and type II risks
necessary sample size N

In order to recruit these N patients, several investigators centres
are involved

Definition

The recruitment period is the duration between the initiation of the first
of the C investigator centres and the instant T (N) when the N patients
are included.

N is fixed but T (N) is a random variable

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 26 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

What is recruitment period ?

Clinical trials is one of the main elements of the marketing
authorization of a new drug
Such a request has to follow a protocol specifying

Patients inclusion and exclusion criteria
Statistic analysis plan especially:

which test is used
what are the type I and type II risks
necessary sample size N

In order to recruit these N patients, several investigators centres
are involved

Definition

The recruitment period is the duration between the initiation of the first
of the C investigator centres and the instant T (N) when the N patients
are included.

N is fixed but T (N) is a random variable

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 26 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Motivation of those investigations

Why a model of recruitment period ?
The duration of the recruitment period is very hard to control
A clinical trial is expensive

$ 150.000.000: Average out-of-pocket clinical cost for each new drug

Pharma-Companies need tools to be able to decide:
to overpass the targeted duration of the trial TR

stop the trial if it is too long

What a model of recruitment for ?
To develop tools for the study the feasibility of a clinical trial

based on the estimation of T (N) (punctually and by means of CI)

To Detect critical point in the recruitment
To define decision rules on the recruitment process to reach TR

based on the estimation of the recruitment rate
based on the estimation of the number of centre to open
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Motivation of those investigations

How to model the recruitment period ?
Analogy with queueing theory

Queueing theory Clinical research

Storage capacity ←→ target population or cohort
Server ←→ None

Exit process ←→ Drop-out patients
Entry process ←→ Recruitment

It is thus natural to model the recruitment period by means of
Poisson processes.
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The recruitment process model

Consider a multicentric trial involving C investigator centres

N: number of patients to be recruited

TR : expected duration of the trial

Ni : the recruitment process for centre i

=⇒ modelled by a PP of rate λi

N : the global recruitment process

=⇒ modelled by a PP of rate Λ =
∑
λi

T (N): the recruitment duration

=⇒ is the stopping time inf {t ∈ R | N (t) ≥ N}

T1 an interim time

FT1 denote the history of the process up to T1
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The recruitment process model
Feasibility of the trial - Estimation of duration trial

Theorem

If λ is known (given by the investigator) then

The feasibility of the trial expresses by:

P [N (TR) ≥ N | FT1 ]

= 1 −
N−N1−1∑

k=0

1

k!

∫
RC

(∫ TR
T1

(x1 + . . . + xC )dt

)k
e
−
∫ T
T1

(x1+...+xC )dt C∏
i=1

p
T1
λ

(xi ) dxi (8)

The expected duration E [Tn] of the trial expresses by:

E
[

inf
t∈R
{N (t) ≥ N} | FT1

]
= N

∫
RC

pT1
λ (x1, . . . , xC )

x1 + . . . + xC
dx1 . . . dxC (9)

Involving pT1
λ the forward density of λ.

If λ is unknown then
λ̂ an estimation of λ from the data collected on [0,T1]

Replace λ by λ̂ in (8) and (9)
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The recruitment process model
On-going studies

Figure: On going study at 1 year (on the left) and at 1.5 year (on the right)

Dots: Real data used to calibrate the model

Solid line: estimated number of recruited patients

Dotted line: Confidence Intervals
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The recruitment process model
Introduction of a empirical Bayesian model

Limit of this approach
Problem 1: If p estimations are needed to describe Ni , C · p
estimation are needed to describe N

When C large, this is not relevant

Problem 2 : If centre i has not recruited before T1, then λ̂i = 0 and
the model does not authorize centre i to recruit later

Empirical Bayesian model

Ones considers
(λ1, . . . , λC)

is a sample of size C distributed by a certain distribution L(θ)

Instead of estimate C values of λ, one estimates θ
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The recruitment process model
Introduction of a empirical Bayesian model

Γ-Poisson model (Anisimov, Fedorov (2007))

Rates are Γ(α, β) distributed.
Distribution of T is explicit.

Π-Poisson model (Mijoule, Savy and Savy (2012))

Rates are Pareto-(xm, kp) distributed.
20% of centres recruit 80% of patients.
Distribution of T is no more explicit (Monte Carlo Simulation).

UΓ-Poisson model (Mijoule, Savy and Savy (2012))

Centre opening date are unknown and uniformly distributed
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Comparison of models on a real data
An application to real data

Objectives:
N = 610 patients
TR = 3 years
CR = 77 investigators centres

On-going studies: after 1 year, after 1.5 year and after 2 years

The estimated duration of the trial

The model Time 1 Time 1.5 Time 2
Constant intensity 3.30 2.63 2.44
Γ-Poisson model 3.31 2.63 2.44
Π-Poisson model 2.63 2.39 2.36
UΓ-Poisson model 2.60 2.34 2.36

Effective duration of the trial : 2.31 years
The end of the trial was predicted with an error of 15 days, 10 mouths
before the expected date
56 centres would be enough for ending in 3 years.
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Improvement of patient recruitment’ models
Models with screening failures

Models investigated in (Anisimov, Mijoule, Savy (in progress))

Drop-out at the inclusion

modelled by a probability pi in centre i

(p1, . . . , pC) sample having a beta distribution

Drop-out during the screening period

modelled si,j modelled by an exponential distribution of intensity θi

(θ1, . . . , θC) sample having a gamma distribution
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Improvement of patient recruitment’ models
Models with screening failures - Estimation

The recruitment dynamic is Γ(α, β)-Poisson.

Drop-out process is directed by p a constant or B(ψ1, ψ2).
T1 is an interim time.

τi the duration of activity of centre i up to T1 (assume τi ≥ R)
ni number of recruited patients for centre i up to T1

ri number of randomized patients for centre i up to T1

Theorem ((Anisimov, Mijoule, Savy (in progress)))

Given data {(ni , ri , τi ), 1 ≤ i ≤ C}, the log-likelihood function writes:

L1(α, β, p) = L1,1(α, β) + L1,2(p)

Notice the separation of the log-likelihood function (processes
independent)

L1,1 and L2,2 are explicit functions allowing optimisation.
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Improvement of patient recruitment’ models
Models with screening failures - Prediction

The recruitment dynamic is Γ(α, β)-Poisson. T1 is an interim time.

τi the duration of activity of centre i up to T1 (assume τi ≥ R)

ni number of recruited patients for centre i up to T1

ri number of randomized patients for centre i up to T1

νi number of patients entered in screening period for centre i in
the interval [T1 − R,T1]

Theorem ((Anisimov, Mijoule, Savy (in progress)))

Given data {(ni , ri , τi , νi ), 1 ≤ i ≤ C}, the predicted process of the
number of randomized patients in centre i, {R̂i (t), t ≥ T1 + R},
expenses as

R̂i (t) = ri + Bin(νi , p̂) + Πp̂ λ̂i
(t − T1 − R).

p̂ =
( C∑

i=1

ni

)−1 C∑
i=1

ri and λ̂i = Ga(α̂ + ni , β̂ + τi )
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p̂i = Beta(ψ̂1 + ki , ψ̂2 + ni − ki ), and λ̂i = Ga(α̂ + ni , β̂ + τi )
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Improvement of patient recruitment’ models
An additive model for cost

Consider a clinical trial such that for centre i ,

The inclusion process Ni is modelled by a PP(λi )

The probability for a patient to be screening failure is pi

Fi (t): the number of screening failure at time t for center i
⇒ modelled by a PP(piλi )
⇒ cost proportional to Fi (t) : JiFi (t)

Ri (t) the number of randomized patients at time t for center i
⇒ modelled by a PP((1− pi )λi )
⇒ cost proportional to Ri (t): KiRi (t)
⇒ cost depend of the duration of the follow-up:

∑
0≤T i

j ≤t gi (t ,T i
j )

gi is a triangular function gi (t, s) = 0 when t ≤ s
T i

j are randomization time of the patient j by centre i
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Fi (t): the number of screening failure at time t for center i
⇒ modelled by a PP(piλi )
⇒ cost proportional to Fi (t) : JiFi (t)

Ri (t) the number of randomized patients at time t for center i
⇒ modelled by a PP((1− pi )λi )
⇒ cost proportional to Ri (t): KiRi (t)
⇒ cost depend of the duration of the follow-up:

∑
0≤T i

j ≤t gi (t ,T i
j )

gi is a triangular function gi (t, s) = 0 when t ≤ s
T i

j are randomization time of the patient j by centre i
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Improvement of patient recruitment’ models
An additive model for cost

In (Mijoule, Minois, Anisimov, Savy (forthcoming 2014)) ones considers the additive
model for the cost generated by centre i :

Ci (t) = JiFi (t) + KiRi (t) +
∑

0≤T i
j ≤t

gi (t ,T i
j ) + Fi + Gi t︸ ︷︷ ︸

independent of patients

The duration of the trial is the stopping time

T (N) = inf
t≥0
{R(t) ≥ N}

The total cost of the trial is thus C(T (N)) =
∑C

i=1 Ci (T (N))

In order to compute C = E [C(T (N))] we have to compute

E

[∫ T (N)

0
gi (T (N), s)dRi (s)

]
.

It is not possible to use martingale arguments to compute
such an expression
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Improvement of patient recruitment’ models
An additive model for cost

Theorem ((Mijoule, Minois, Anisimov, Savy (2014)))

Assume (λi )1≤i≤C and (pi )1≤i≤C are known

=⇒ we have an explicit expression of C

Assume λi ∼ Γ(α, β) and pi ∼ B(ψ1, ψ2)

Consider an interim time T1, and consider that the i-th centre has
screened ni patients
randomized ri patients

Given (ni , ri ) the posterior distribution of
the rate is λi ∼ Γ(α+ ni , β + T1)

the probability of screening failure is pi ∼ B(ψ1 + ri , ψ2 + ni − ri )

=⇒ we can compute C by means of Monte Carlo simulation
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Improvement of patient recruitment’ models
An additive model for cost

Assume the closure of centre j , denote
T j (N) the duration of the trial without centre j
C j (t) the cost of the trial at time t without centre j

By means of Monte Carlo simulation we are able to evaluate the
variation of cost due to centre j closure:

∆Cj = E
[
C(T (N))− C j (T j (N))

]
Consider (∆Cj ,T j (N)) to decide on the closure of centre j .
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Table of contents of the talk

A- Stochastic Calculus and Statistics of Processes

1. Anticipative Integrals for filtered Processes and Malliavin Calculus and

2. Sharp Large Deviations Principles for fractional O-U processes

B- Applied statistics for Biology and Medical Research

3. Models for patients’ recruitment in clinical trials

4. Survival data analysis for prevention Randomized Controlled Trials
V. Garès’s Ph.D. thesis defended in April 2014

C- Perspectives
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The context of this investigation: GuidAge Study

The GuidAge Trial
Double blind controlled randomized trial
240 mg per day of de Ginkgo Biloba versus placebo
G.B. appears to delay the conversion to dementia of Alzheimer type
Primary endpoint: conversion to Alzheimer disease (time to event)

Statistical Analysis Plan: Logrank test

Conclusion: P-value 0.3044

No Significant effect of the treatment

Re-analysis: Fleming-Harrington’s test (q = 3)

Conclusion: P-value 0.0041

Significant effect of the treatment

Is logrank test relevant for such a prevention study ?
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Weighted logrank’s tests
Notations related to survival data analysis

D: the time to event random variable
F : the distribution function associated to D
S = 1− F : the survival function associated to D
λ: the risk function associated to D

Subjects may be right-censored by C independent of D.
Xi = Di ∧ Ci : observed data
δi = I{Di≤Ci}: censoring indicator

Nn(t): Number of events observed at time t :

Nn(t) =
n∑

i=1

I{Xi≤t,δi =1}

Yn(t): Number of at risk subjects at time t :

Yn(t) =
n∑

i=1

I{Xi≥t}
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Weighted logrank’s tests
Notations related to survival data analysis

We aim to test:

H0 : SP(t) = ST (t), ∀t

H1 : SP(t) 6= ST (t)

SP and ST are the survival functions associated respectively to the
Placebo arm and Treatment arm.

Weighted

Logrank test defined as:

LRWn (t) =

∫ t

0

Wn(s)

√
nP + nT

nPnT

Y P
nP

(s)Y T
nT

(s)

Y P
nP

(s) + Y T
nT

(s)

[
dNP

nP
(s)

Y P
nP

(s)
−

dNT
nT

(s)

Y T
nT

(s)

]

Wn is an adapted, positive, predictable process

The H1 assumption detected by the test depends on the weight
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Weights of paramount interest

Constant piecewise weight

W (t) =

{
0 if t < t∗

1 if t > t∗

Easy to interpret: t∗ beginning of effect

Fleming Harrington weight for late effect detection

Wn(t) = (1− Ŝn(t))q

where Ŝn is the Kaplan-Meier estimator of S under the H0

Classical test but hard to interpret: what is the role of q ?
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Problems investigated

Application of Fleming-Harrington’s test in a Clinical trial setting
Wa have to choose a value for parameter q
We have to compute the necessary sample size
(Garès, Andrieu, Dupuy, Savy (submitted to JRSS-C 2014))

Comparison of CPWL test and Fleming Harrington’s test
Comparison of performances
Bridge between the parameters of each test
(Garès, Andrieu, Dupuy, Savy (Forthcoming EJS 2014))

Introduction of a versatile test with ”expert prior”
Maximum between logrank and Fleming Harrington tests
A computation procedure for sample size
(Garès, Andrieu, Dupuy, Savy (in review for Stat. in Med. 2014))
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Strategy of these investigations

Objectives:
To evaluate the performance of a test
To compare tests

Strategy:
Make use of the Asymptotic (Relative) Efficiency
(Van der Vaardt (1998))
There exists several notions of ARE
Asymptotic normality
=⇒ Pitman’s ARE more convenient

Consequences:
Identification of the assumptions under which the test is optimal
Allow us to perform simulations studies
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Asymptotic normality of WLT

One tests the following assumptionsH0 : λT = λP = λθ0 ,

H1 : λT = λθT and λP = λθP

Theorem

Under H0:
LRWn

L(D)−−−−→
n→+∞

G0

G0 centred Gaussian process of covariance function Σ0(w , λθ0 )

Under H1 :
LRWn −

√
n µ(θP ,θT )

L(D)−−−−→
n→+∞

G1

G1 centred Gaussian process of covariance function Σ1(w , λθP , λθT )

µ(θP ,θT ) is function of w, λθP and λθT
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Asymptotic Relative Efficiency and Shift assumption

The idea is to consider the assumptionsH0 : F T = F P = Fθ0 ,

H1 : F T = FθT
nT

and F P = FθP
nP

in such a way that

The class of assumptions is sufficiently wide

Fθ(t) = Ψ(g(t) + θ), θ ∈ Θ

Ψ a distribution function with continuous second derivative
g an increasing differentiable function
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Asymptotic Relative Efficiency and Shift assumption

Choosing

θP
nP

= θ0 + c
√

nT

nP(nP + nT )
and θT

nT
= θ0 − c

√
nP

nT (nP + nT )

the singularity vanishes:

√
n µ(θP

nP
,θT

nT
)

a.s.−−−→
n→∞

µθ0

The efficiency of the test can be measure by means of Pitman’s
Asymptotic Efficiency

AE =
(µθ0 (τ))2

Σ0(τ, τ)

Asymptotic Efficiency depends on
the weight
the pattern of the assumptions

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 51 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Asymptotic Relative Efficiency and Shift assumption

Choosing

θP
nP

= θ0 + c
√

nT

nP(nP + nT )
and θT

nT
= θ0 − c

√
nP

nT (nP + nT )

the singularity vanishes:

√
n µ(θP

nP
,θT

nT
)

a.s.−−−→
n→∞

µθ0

The efficiency of the test can be measure by means of Pitman’s
Asymptotic Efficiency

AE =
(µθ0 (τ))2

Σ0(τ, τ)

Asymptotic Efficiency depends on
the weight
the pattern of the assumptions

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 51 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Asymptotic Relative Efficiency and Shift assumption

Choosing

θP
nP

= θ0 + c
√

nT

nP(nP + nT )
and θT

nT
= θ0 − c

√
nP

nT (nP + nT )

the singularity vanishes:

√
n µ(θP

nP
,θT

nT
)

a.s.−−−→
n→∞

µθ0

The efficiency of the test can be measure by means of Pitman’s
Asymptotic Efficiency

AE =
(µθ0 (τ))2

Σ0(τ, τ)

Asymptotic Efficiency depends on
the weight
the pattern of the assumptions

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 51 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Asymptotic Relative Efficiency and Shift assumption

Choosing

θP
nP

= θ0 + c
√

nT

nP(nP + nT )
and θT

nT
= θ0 − c

√
nP

nT (nP + nT )

the singularity vanishes:

√
n µ(θP

nP
,θT

nT
)

a.s.−−−→
n→∞

µθ0

The efficiency of the test can be measure by means of Pitman’s
Asymptotic Efficiency

AE =
(µθ0 (τ))2

Σ0(τ, τ)

Asymptotic Efficiency depends on
the weight
the pattern of the assumptions

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 51 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Asymptotic Relative Efficiency and Shift assumption

Choosing

θP
nP

= θ0 + c
√

nT

nP(nP + nT )
and θT

nT
= θ0 − c

√
nP

nT (nP + nT )

the singularity vanishes:

√
n µ(θP

nP
,θT

nT
)

a.s.−−−→
n→∞

µθ0 (w , λθ0 )

The efficiency of the test can be measure by means of Pitman’s
Asymptotic Efficiency

AE =
(µθ0 (τ))2

Σ0(τ, τ)

Asymptotic Efficiency depends on
the weight
the pattern of the assumptions

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 51 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Asymptotic Relative Efficiency and Shift assumption

Choosing

θP
nP

= θ0 + c
√

nT

nP(nP + nT )
and θT

nT
= θ0 − c

√
nP

nT (nP + nT )

the singularity vanishes:

√
n µ(θP

nP
,θT

nT
)

a.s.−−−→
n→∞

µθ0 (w , λθ0 )

The efficiency of the test can be measure by means of Pitman’s
Asymptotic Efficiency

AE =
(µθ0 (τ))2

Σ0(τ, τ)

Asymptotic Efficiency depends on
the weight
the pattern of the assumptions

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 51 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Optiomal assumptions for Fleming-Harrington test

Theorem ((Garès, Dupuy, Andrieu, Savy (JRSS-C 2014)))

Given a

a shift ∆

a constant λ0 > 0

a parameter q > 0

there exists a function Γq(·, λ0,∆) such that the Fleming-Harrington test
FH(q) has maximum Asymptotic Efficiency to testH0 : λP = λ0,

H1 : λT = λ0 Γq(·, λ0,∆)
(10)

Study the performance of FH(q) thanks to simulation study
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Performances of Fleming-Harrington test
Data generation procedure

Parameters (usually given by investigator)
the sample size n
c = SP(τ)

ST (τ) or discrepancy rate r = ST (τ)−SP (τ)

1−SP (τ)

The data in the placebo group
Simulated from an exponential distribution with parameter λ0 > 0
λ0 is given by the desired proportion of censored data:

λ0 = −
ln(SP(τ))

τ

The data in the treatment group
Fix qS > 0
Compute ∆(qS)

Simulate data from the hazard function

λT (t) = λ0 Γq(·, λ0,∆(qS))

Such a data set denoted S1(qS , n, r , c) is optimal for FH(qS)
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Performances of Fleming-Harrington test
Evaluation of performance

Generate 2000 data sets S1(qS , n, r , c)

Analyse this data set by means of Fleming-Harrington qT

Compute the empirical power of the test

qS Logrank qT = 1 qT = 2 qT = 3 qT = 4
0 0.640 0.534 0.420 0.349 0.294
1 0.620 0.743 0.713 0.670 0.632
2 0.609 0.845 0.877 0.871 0.853
3 0.593 0.873 0.912 0.914 0.914
4 0.587 0.887 0.940 0.957 0.961
5 0.588 0.910 0.962 0.974 0.980

Table: Empirical power of FH(qT ) under scenarios S1(qS , 2000, 0.2, 0.8)

Main result (Garès, Dupuy, Andrieu, Savy (JRSS-C 2014))

No solution for choosing q

Fleming Harrington’s test exhibits little sensitivity to the value of q

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 54 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Performances of Fleming-Harrington test
Evaluation of performance

Generate 2000 data sets S1(qS , n, r , c)

Analyse this data set by means of Fleming-Harrington qT

Compute the empirical power of the test

qS Logrank qT = 1 qT = 2 qT = 3 qT = 4
0 0.640 0.534 0.420 0.349 0.294
1 0.620 0.743 0.713 0.670 0.632
2 0.609 0.845 0.877 0.871 0.853
3 0.593 0.873 0.912 0.914 0.914
4 0.587 0.887 0.940 0.957 0.961
5 0.588 0.910 0.962 0.974 0.980

Table: Empirical power of FH(qT ) under scenarios S1(qS , 2000, 0.2, 0.8)

Main result (Garès, Dupuy, Andrieu, Savy (JRSS-C 2014))

No solution for choosing q

Fleming Harrington’s test exhibits little sensitivity to the value of q

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 54 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Performances of Fleming-Harrington test
Evaluation of performance

Generate 2000 data sets S1(qS , n, r , c)

Analyse this data set by means of Fleming-Harrington qT

Compute the empirical power of the test

qS Logrank qT = 1 qT = 2 qT = 3 qT = 4
0 0.640 0.534 0.420 0.349 0.294
1 0.620 0.743 0.713 0.670 0.632
2 0.609 0.845 0.877 0.871 0.853
3 0.593 0.873 0.912 0.914 0.914
4 0.587 0.887 0.940 0.957 0.961
5 0.588 0.910 0.962 0.974 0.980

Table: Empirical power of FH(qT ) under scenarios S1(qS , 2000, 0.2, 0.8)

Main result (Garès, Dupuy, Andrieu, Savy (JRSS-C 2014))

No solution for choosing q

Fleming Harrington’s test exhibits little sensitivity to the value of q

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 54 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Performances of Fleming-Harrington test
Evaluation of performance

Generate 2000 data sets S1(qS , n, r , c)

Analyse this data set by means of Fleming-Harrington qT

Compute the empirical power of the test

qS Logrank qT = 1 qT = 2 qT = 3 qT = 4
0 0.640 0.534 0.420 0.349 0.294
1 0.620 0.743 0.713 0.670 0.632
2 0.609 0.845 0.877 0.871 0.853
3 0.593 0.873 0.912 0.914 0.914
4 0.587 0.887 0.940 0.957 0.961
5 0.588 0.910 0.962 0.974 0.980

Table: Empirical power of FH(qT ) under scenarios S1(qS , 2000, 0.2, 0.8)

Main result (Garès, Dupuy, Andrieu, Savy (JRSS-C 2014))

No solution for choosing q

Fleming Harrington’s test exhibits little sensitivity to the value of q

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 54 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Comparison Fleming Harrington and CPW logrank tests

CPWL depends on a parameter t∗

This parameter has a concrete reality (beginning of the effect)

The strategy:

Find the assumptions under which CPWL(t∗) is optimal

Fix a value for t∗S
Generate 2000 data sets S2(t∗S , n, r , c)

Analyse this data set by means of Fleming-Harrington qT

Compute the empirical power of the test

Fix a value for qS

Generate 2000 data sets S1(qS , n, r , c)

Analyse this data set by means of CPWL(t∗)

Compute the empirical power of the test
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Fix a value for qS

Generate 2000 data sets S1(qS , n, r , c)

Analyse this data set by means of CPWL(t∗)

Compute the empirical power of the test
Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 55 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Comparison Fleming Harrington and CPW logrank tests

CPWL depends on a parameter t∗

This parameter has a concrete reality (beginning of the effect)

The strategy:

Find the assumptions under which CPWL(t∗) is optimal

Fix a value for t∗S
Generate 2000 data sets S2(t∗S , n, r , c)

Analyse this data set by means of Fleming-Harrington qT

Compute the empirical power of the test

Fix a value for qS

Generate 2000 data sets S1(qS , n, r , c)

Analyse this data set by means of CPWL(t∗)

Compute the empirical power of the test
Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 55 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Comparison Fleming Harrington and CPW logrank tests

CPWL depends on a parameter t∗

This parameter has a concrete reality (beginning of the effect)

The strategy:

Find the assumptions under which CPWL(t∗) is optimal

Fix a value for t∗S
Generate 2000 data sets S2(t∗S , n, r , c)

Analyse this data set by means of Fleming-Harrington qT

Compute the empirical power of the test

Fix a value for qS

Generate 2000 data sets S1(qS , n, r , c)

Analyse this data set by means of CPWL(t∗)

Compute the empirical power of the test
Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 55 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Comparison Fleming Harrington and CPW logrank tests

Main result (Garès, Dupuy, Andrieu, Savy (EJS 2014))

CPWL(t∗) test exhibits little sensitivity to the value of t∗

FH(q) is less sensitive to q than the CPWL(t∗) is to t∗

Given t∗, it is possible to find the value of q(t∗) which maximizes

ARE(FH(q(t∗),CPWL(t∗))

CPWL(t∗) t∗ = 0.2 0.4 0.6 0.8
FH(q(t∗)) q(t∗) = 0.5 1.2 2.4 5.9

FH(q) q = 1 2 3 4
CPWL(t∗(q)) t∗(q) = 0.3 0.5 0.6 0.7

Table: Correspondence between q and t∗.
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A versatile test

Fleming-Harrington’s test is a good test when late effects exist

Logrank’s test is a good test when effects are constant in time

Investigators do not want to bet on a situation rather than another

In (Garès, Dupuy, Andrieu, Savy (SIM 2014)), we introduce MWL statistics

MWL~q(t) = max
i=1,...,m

(∣∣∣∣FHqi (t)
σ̂qi (t)

∣∣∣∣)
For i = 1, . . . ,m, assume given pi the probability that late effect of
”type qi ” occurs (expert a priori)

We investigate its performances for testingH0 : F T = F P = F ,

H1 : ∪m
i=1 {F T = Ψqi (g + θT (i)) and F P = Ψqi (g + θP(i))}
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An ”omnibus” test

Main result (Garès, Dupuy, Andrieu, Savy (SIM 2014))

Computation of asymptotic distributions under H0 and H1

Procedure for NSS computing

Good power even when far from the optimal assumption

qS LR FH1 FH2 FH3 FH4 FH5

0 0.629 0.526 0.416 0.334 0.289 0.256
1 0.625 0.756 0.744 0.702 0.655 0.611
2 0.609 0.839 0.864 0.863 0.850 0.835
3 0.623 0.869 0.919 0.925 0.922 0.910
4 0.626 0.891 0.943 0.959 0.961 0.963
5 0.608 0.911 0.963 0.976 0.978 0.982

qs MWL1 MWL2 MWL3 MWL4 MWL5

0 0.620 0.606 0.589 0.584 0.582
1 0.729 0.731 0.720 0.692 0.679
2 0.797 0.828 0.826 0.816 0.801
3 0.833 0.881 0.897 0.896 0.888
4 0.864 0.923 0.936 0.946 0.945
5 0.880 0.947 0.959 0.967 0.968

where MWLq = MWL(0,q) with p(q) = 1
2
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A- Stochastic Calculus and Statistics of Processes

1. Anticipative Integrals for filtered Processes and Malliavin Calculus

2. Sharp Large Deviations Principles for fractional O-U processes

B- Applied statistics for Biology and Medical Research

3. Models for patients’ recruitment in clinical trials
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Works in progress and perspectives

Works in progress and perspectives are directed by

The funded projects and by projects tenders
SMPR - Principal Investigator - IRESP (plan cancer) 2013-2015
IBISS - Investigator workpackage ”statistics” - ANR 2013 - 2016
IMPACTISS - Partner - IRESP 2014-2017 (submitted)
SCT - Project in maturation

The Ph-D students’ works
Nathan Minois (2013-2016)
Patients recruitment modelling
Fabrice Billy (2013-2016)
Survival data analysis

The will to continue to share my time between projects on Applied
Statistics for Medical Research and problems in Stochastic
Calculus
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What is a filtered Brownian motion in local time scale ?

Perspectives in survival data analysis
Extend the idea of expert prior
Explore the non-proportional hazard situation in competing risk setting

Fabrice Billy Webe (Ph.D. student (2013-2016))
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How to measure a mediated effects ?
How to manage missing data in databases ?
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Chloé Dimeglio (INSERM 1027 - Team 5)

Nicolas SAVY Habilitation thesis defence Wednesday June, 18th 62 / 64



Habilitation thesis
defence

Stochastic Calculus

Anticipative Integrals
and Malliavin Calculus

LDP and SLDP for
Ornstein-Uhlenbeck
processes

Applied Statistics
for Medical
Research

Recruitment modelling

Survival data analysis

Conclusions and
Perspectives

Works in progress and perspectives
The on-going Projects

Statistical Models for Patients Recruitment
Principal investigator (IRESP - 2013-2015)

Mixing Recruitment dynamic and longitudinal studies
Develop technique to include covariates in estimations procedure

Nathan Minois (Ph.D. student (2013-2016))
Sandrine Andrieu (INSERM 1027 - Team 1 - co-advisor)
Vladimir Anisimov (Quintiles)
Valérie Lauwers (INSERM 1027)
Guillaume Mijoule
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