Examen partiel 2

Ce sujet comporte 4 exercices. Les documents et appareils électroniques de toutes sortes ne sont pas acceptés. Une attention toute particulière sera accordée à la qualité de la rédaction, toute affirmation devra être argumentée.

Durée de l'épreuve : 1h.

Exercice 1

Soient E et F deux ensembles, considérons une application $f: E \to F$. Donner les définitions suivantes :

- 1. *f* est injective.
- 2. *f* est surjective.
- 3. $f^{-1}(B)$, pour $B \subset F$.
- 4. f(A), pour $A \subset E$.

Exercice 2

Considérons les applications suivantes :

$$f: \{0,1,2,3,4\} \rightarrow \mathbb{Z}$$
 et $g: \mathbb{R} \rightarrow \mathbb{R}$ $x \mapsto 2x+1$

- 1. *f* et *g* sont-elles injectives?
- 2. f et g sont-elles surjectives? Calculer Im(f) et Im(g).
- 3. f et g sont-elles bijectives? Si oui, calculer f^{-1} ou g^{-1} .
- 4. On note $h = g_{|\{-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2}\}}$ et $h' = g_{|\mathbb{Z}}$. Calculer $f \circ h$ et $h' \circ f$. Pourquoi ne peut-on pas calculer $g \circ f$ et $f \circ g$? Justifiez votre réponse.
- 5. Montrer que card(Im(f)) = 5. Combien y-a-t-il :
 - (a) d'applications de $\{0,1,2,3,4\}$ dans Im(f)?
 - (b) d'injections de $\{0, 1, 2, 3, 4\}$ dans Im(f)?
 - (c) de bijections de de $\{0,1,2,3,4\}$ dans Im(f)?

Exercice 3

Soit *E* un ensemble à *n* éléments. Pour $0 \le k \le n$, considérons l'ensemble :

$$E_k = \{A \in \mathcal{P}(E) \mid card(A) = k\}.$$

- 1. Pour $0 \le k \le n$, quel est le cardinal de E_k ?
- 2. Montrer que $\mathcal{P}(E) = E_0 \cup E_1 \cup ... \cup E_n$.
- 3. Soient $i, j \in \{0, ..., n\}$ tels que $i \neq j$. Montrer que $E_i \cap E_j = \emptyset$.
- 4. En utilisant la formule du binôme de Newton, montrer que $card(\mathcal{P}(E)) = 2^n$.

Exercice 4

Soient E et F deux ensembles, considérons une application $f: E \to F$. Montrer que :

- 1. $\forall B \subset F, f^{-1}(F \setminus B) = E \setminus f^{-1}(B)$.
- 2. f injective $\Leftrightarrow \forall A \subset E, f^{-1}(f(A)) = A$.
- 3. f surjective $\Leftrightarrow \forall B \subset F, f(f^{-1}(B)) = B$.