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Résumé: On étudie le comportement pour les grands temps des solutions
u(z,t) de I’équation parabolique u; = Au+ F(u) dans le cas “bistable” et dans
tout D’espace, en dimension supérieure. Plus précisément, on s’intéresse a la
stabilité d’ondes progressives a symétrie sphérique pour de petites perturba-
tions. Dans un premier temps, on montre que cette famille d’ondes est stable
pour des perturbations a symétrie sphérique et que cette perturbation décroit
comme (logt)/t? quand ¢ tend vers l'infini. On montre ensuite que cette sta-
bilité est mise en défaut pour des perturbations quelconques. En effet, on met
en évidence des perturbations pour lesquelles la solution ne tend pas vers une
onde & symétrie sphérique: dans chaque direction k € S®~ 1!, la restriction de
u(z,t) au rayon {z = kr,r > 0} converge vers un translaté de ’onde progressive
unidimensionnelle dépendant de k.

Abstract: The asymptotic behaviour as ¢ goes to infinity of solutions u(z, )
of the multidimensional parabolic equation u; = Au + F(u) is studied in the
“bistable” case. More precisely, we consider the stability of spherically sym-
metric travelling waves with respect to small perturbations. First, we show
that such waves are stable against spherically symmetric perturbations, and
that the perturbations decay like (logt)/t? as t goes to infinity. Next, we ob-
serve that this stability result cannot hold for arbitrary (i.e. non-symmetric)
perturbations. Indeed, we prove that there exist small perturbations such that
the solution u(z,t) does not converge to a spherically symmetric profile as ¢
goes to infinity. More precisely, for any direction k& € S"~!, the restriction of
u(z,t) to the ray {# = kr|r > 0} converges to a k-dependent translate of the
one-dimensional travelling wave.
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Introduction

We consider the initial value problem for the semilinear parabolic equation

u(e,t) = Au(z,t)+ Fu(z,t)) =€ R t>0, ,
u(z,0) = uo(x) r € R?, (1)

where u € R and n > 2. Throughout this paper, it is assumed that the nonlin-
earity F' is a continuously differentiable function on R satisfying the following
assumptions:

i) F(0)= F(1) = 0;
ii) F(0) <0, F'(1)<0;

iii) There exists g € (0,1) such that F(u) < 0 if u € (0, ) and F(u) > 0 if
u € (p,1);

iv) [ F(u)du > 0.
A typical example is the cubic nonlinearity
F(u) = 2u(l — u)(u— p) where 0 < pp < 1/2. (2)

Equation (1) is a classical model for spreading and interacting particles,
which has been often used in biology (population dynamics, propagation of
nerves pulses), in physics (shock waves), or in chemistry (chemical reactions,
flame propagation). Fisher [5] first proposed a genetical context in which the
spread of advantageous genetical traits in a population was modeled by equa-
tion (1). At the same time, Kolmogorov, Petrovskii and Piskunov [11] gave
a mathematical treatment of this equation for a slightly different nonlinearity.
Later on, Aronson and Weinberger [1] also discussed the genetical background
in some details. In their terminology, the nonlinearity satisfying i) to iv) is
referred to as the “heterozygote inferior” case. In mathematical terms, this is
called the “bistable” case as, by i) and ii), u = 0 and u = 1 are both stable
steady states.

As far as the initial value problem is concerned, if uq is a continuous function
from R™ to (0, 1) which goes to 0 as |z| goes to infinity, then there exists a unique
solution u(z,t) of equation (1) with the same properties as ug for any ¢ > 0.

One question of interest for this reaction-diffusion equation is the behaviour,
as t goes to infinity, of the solutions u(z,t) of (1). In one space dimension,
a prominent role is played by a family of particular solutions of (1), called
travelling waves. These are uniformly translating solutions of the form

u(z,t) = wo(z — ct),

where ¢ € R is the speed of the wave. The profile wq satisfies the ordinary
differential equation:

w4+ cw) + F(wg) =0, z €R, (3)
together with the boundary conditions at infinity

xlir_noo wo(z) = 1 and xl}I-Poo wo(z) = 0. (4)



These waves are characterized by their time independent profile and usually
represent the transport of information in the above models. They also often
describe the long-time behaviour of many solutions.

Since Fisher and KPP, there has been an extensive literature on the subject.
In the one dimensional bistable case, Kanel [9] proved that there exist a unique
speed ¢ > 0 and a unique (up to translations) monotone profile wy, satisfying
(3,4). Moreover, |wg] (resp. |1 —wg]|) decays exponentially fast as 2 goes to +oo
(resp. —oo). From now on, we fix wg by choosing wo(0) = 1/2. For example, if
F is given by (2), one finds ¢ = 1 — 2u € (0,1) and wo(z) = (14 ¢*)~1.

Afterwards, Sattinger [14] was interested in the local stability of travelling
waves. He proved that the family {wo(. — v),y € R} is normally attracting.
More precisely, for any initial data ug of the form

uo(2) = wo(z) + evo(z),

where € > 0 is sufficiently small and vy bounded in a weighted space, Sattinger
proved that there exist a C! function p(¢) and positive constants K and « such
that the solution u(z,t) of (1) satisfies

l|u(z + ct, t) — wo(z + ple))|| < Ke™*, >0,

in an appropriate weighted norm. This is the local stability of travelling waves
in one dimension. Sattinger’s proof uses the spectral properties of the linearised
operator Lo = 85 + ¢8y + F'(wo) around the travelling wave wg in the c-moving
frame. These properties can be summarized as follows:

Let ¢ = aw) and g = e“®@g where a > 0 is chosen so that

/R b0 ()t (2)da = 1. (5)

Then, ¢¢ is an eigenfunction of Ly (associated with the eigenvalue 0), and g is
the corresponding eigenfunction of the adjoint operator L§:

6/ + C¢>6 + F/('wO)¢0 = 0,
6/ — Clbf) + F/('wo)wo = 0

Moreover, there exists some 4 > 0 such that the spectrum of Ly in L%(R) is
included in ] — oo, —y] U {0}, see [6, 14]. Since the eigenvalue 0 is isolated, there
exists a projection operator P onto the null space of L. This operator is given

by
1
Pu=— | R(X\ Lg)udA

where R(A, Lg) = (A — Lo)~! and T is a simple closed curve in the complex
plane enclosing the eigenvalue 0, see [14, 15]. Define the complementary spectral
projection @ = I— P where [ is the identity operator in L?(R)). These projection
operators P and @ are also given by

Pu = (/R 'u(m)ibo(m)dx) éo, Qu=(I— P)u,

see for instance [10, 14]. The spectral subspace corresponding to the eigenvalue
0 is defined by {u € L?(R) | u = Pu} and its supplementary by

R={uel’R)|u=Qu}={ue *(R)|Pu=0}.



Then R, equipped with the L? norm, is a Banach space and Lg|r generates an
analytic semi-group which satisfies ||etL°||£(R) < coe " for all t > 0.

On the other hand, Fife and McLeod [3] proved the global stability of
travelling waves: they showed, using comparison theorems, that if uo satisfies
0 < up <1 and liminf_o, uo(2) > p, limsup, ., uo(x) < g, then the solution
u(z,t) of (1) approaches exponentially fast in time a translate of the travel-
ling wave in the supremum norm. Fife [4] also highlight other possible types
of asymptotic behaviour: if ug vanishes at infinity in  and if the solution con-
verges uniformly to 1 on compact sets, then u(z,t) behaves as a pair of diverging
fronts where a wave goes off in each direction.

In higher dimensions, Aronson and Weinberger [2], Xin and Levermore [17,
12] and Kapitula [10] were interested in planar travelling waves. These are
particular solutions of equation (1) of the form u(z,t) = wo(x - k — ct) where
k € S*—1. Existence of such solutions can be proved as in the one-dimensional
case, but the stability analysis is quite different: unlike in the one-dimensional
case, the gap in the spectrum of the linearised operator around the travelling
wave disappears. Instead, there exists continuous spectrum all the way up to
zero which is due, intuitively, to the effects of the transverse diffusion. To
overcome this difficulty, Kapitula decomposed the solution u(z,t) as

u(z,t) = wo(z -k —ct+ p(z,t)) + v(z,t)

where p(z,t) represents a local shift of the travelling wave and v(z,t) a trans-
verse perturbation in R. The equation for p can be analyzed by the one-
dimensional result and Fourier transform, while the transverse perturbation
v satisfies a semilinear heat equation in R?~!. Therefore, Kapitula proved that

the perturbation decays to zero with a rate of O (t‘nT_l) in H¥(R™), k > [2H].

Apart from this particular planar case, Aronson and Weinberger [2] also
studied the asymptotic behaviour of other solutions in higher dimensions. They
proved that the state u = 0 is stable with respect to perturbations which are
not too large on too large a set, but is unstable with respect to some pertur-
bations with bounded support. Moreover, assuming ug vanishes at infinity in z
and u converges to 1 as ¢ goes to infinity, they showed that the disturbance is
propagated with asymptotic speed c.

Finally, Uchiyama [16] and Jones [7] were interested in spherically symmetric
solutions. If ug is spherically symmetric, if imsup|,|_, 4o, ug(z) < p, and if the
solution u(z,t) of (1) with initial data ug converges to 1 uniformly on compact
sets as ¢t goes to infinity, they proved that there exists a function g(¢) such that

t_l}_r&loo xsEuan |u(z,t) — wo(lz] — ¢t + g(2))| = 0. (6)

Jones proved with dynamical systems considerations that lim;—, o g(¢)/t = 0
and Uchiyama precised, using energy methods and comparison theorems, that
there exists some L € R such that

lim <g(t) _n-l logt> =L (7)

t— 400 C

This important result establishes the existence of a family of asymptotic solu-
tions of (1), which we call spherically symmetric travelling waves: W(z,t) =



wo(|z| —ct + 2=Llogt) and its translates in time. It also shows that this family
is asymptotically stable with respect to spherically symmetric perturbations.

We give in the first section of this paper another method, based on Ka-
pitula’s decomposition, which enables us to get more information on how fast
the solution u(z,t) of (1) converges to a travelling wave and on the asymptotic
behaviour of the function g(t). To do that, we introduce the following Banach
spaces:

Y = HY(RY),
X ={u:R" >R |3i €Y so that u(z) = u(|z|) for z € R"},

HWXIWW=<AMWWF+MWWM>

Note that X is included in H'(R™) N L>°(R") and contains spherically sym-
metric functions. Then, we prove in the first section the following theorem:

1
2

Theorem 1 Assume F is a “bistable” non-linearity. There exist positive con-
stants Rg,dq,c1,ca,v0 such that, if ug : R — R is a spherically symmetric
function satisfying

lluo(z) — wo(lz] - R)||x <4
for some R > Rg and some § < &g, then equation (1) has a unique solution
u € C°([0, +00), X) with initial data ug. Moreover, there exists p € C*([0, +00))
such that

_ log(R + ct
Jua,0) = woflel = sl +14/0] < cbe 4 ey EEEL)
for all t > 0, where
-1 R+et
S(t):R+ct—nC log( ;c>+p(t). (8)

This first theorem shows that the family of spherically symmetric travelling
waves is asymptotically stable for small symmetric perturbations. Indeed, any
small perturbation tends to zero with a rate of O(logt/t?). Moreover, as |p'(t)]
is bounded by an integrable function of time, the function p(t) converges to a
constant pe, as t goes to infinity, which corresponds to L in (7) and, with our
hypothesis on ug, the convergence (6) satisfies:

~1 log?
lu(z, 1) — wol|z| — et + ~——logt + L)| < g Otg .

C

In a second section, we are interested in non spherically symmetric pertur-
bations of travelling waves in higher dimensions. Based on Uchiyama’s work
and a comparison theorem, a corollary on the Lyapunov stability of travelling
waves against general small perturbations is first stated.

The only result so far concerning the long-time behaviour of non spherically
symmetric solutions is due to Jones [8]. He considered solutions u(z,t) whose
initial data ug have compact support, and he also assumed that u(z,t) converges
to 1 uniformly on compact sets as ¢ goes to infinity. He then showed that, if
followed out in a radial direction at the correct speed ¢, the solution approaches



the one-dimensional travelling wave, at least in shape. Moreover, for any [ €
(0,1) and any sufficiently large ¢ > 0, he proved that, for all point P of the
level surface S;(t) = {z € R™|u(z,t) = I}, the normal to S;(t) at P must
intersect the support of ug. Obviously, this result implies that the surface
Si(t) becomes rounder and rounder as t goes to infinity. It is thus natural
to expect spherically symmetric travelling waves to be asymptotically stable
against any small non-symmetric perturbations. However, we prove in section
2 that this is not the case. In the two-dimensional case, we give an example
of non-spherically symmetric function ug close to a spherically symmetric wave
such that the solution u(z,t) of (1) with initial data ug never approaches the
family of spherically symmetric travelling waves. Indeed, the translate of the
wave which is approached depends on the radial direction.

Subsequently, we require some more technical assumptions. For convenience,
we choose to work in R? so that polar coordinates are easier to handle. We
assume that F is in C3(R) and satisfies the condition: F®)(u) < 0 for u € [0, 1].
In this case, we prove in appendix C that ¢ is log-concave, i.e. (¢)/do) < 0.
Finally, we also assume that every solution of the ODE, u; = F'(u), is bounded
uniformly in time. By the maximum principle, this easily means that for any
bounded initial condition, the solution u(z,?) is uniformly bounded in time.
Example (2) for F satisfies both conditions.

Precisely, we prove in the second section the following theorem:

Theorem 2 Assume I is a “bistable” nonlinearity satisfying both above con-
ditions. There erist positive constants Rh,d},m,co such that if ug € H'(R?)
satisfies

lluo(z) — wo(lz| — R)||m(r2) <6

for some & < 8 and some R > R} such that R4 < n, then equation (1) has
a unique solution u € C°(R*, HY(R?)) with initial data ug. Moreover, there
exist p € CO(RY, HY(0,2m)) and po, € L*(0,27) such that

\ Co
u(r,0,t) — wo(r — s(0,t gy < ———,
llu(r, 0,8) = wo(r — s(0,2))l| a1 (x2) (R+ct)h
‘ 1 t ‘ ‘
s(ﬂ,t):R-l—ct—Elog <R;c>+p(9,t), 9)
tim_[16(0,2) = poe (Ol 130201 = 0

t—4o00
where (r,0) € Rt x (0,27) are the polar coordinates in R?.

This second theorem first illustrates Jones’ theorem. Indeed, there exists a
class of initial data for which solutions converge to a creased profile as ¢ goes
to infinity. And, if followed out in a radial direction (i.e. for # =constant),
the solutions behave asymptotically as a one-dimensional travelling wave whose
position s(6,t) depends on the radial direction. Precisely, we show that s(0,1) is
given by (9), that p(0,t) converges in the L%(0, 27) norm to a function p, (f) and
we give an example of initial data for which the solution does not converge to a
spherically symmetric travelling wave, i.e. the corresponding function pe (6) is
not constant. Moreover, we show that the set of all functions po, that can be
constructed in that way, is dense in a ball of H'(0,27r). Therefore, there exist
a lot of asymptotic behaviours which look like a creased travelling front which
never becomes round.



Finally, this theorem shows that the family of spherically symmetric travel-
ling waves is not asymptotically stable for arbitrary perturbations: this means
that the higher dimensional case n > 2 is very different from the one-dimensional
case n = 1 where the asymptotical stability of travelling waves has been widely
proved.

Let us now make a few technical remarks on the statement of theorem 2. We
assume that the initial condition ug is close to a travelling wave (§ < & small)
whose interface {wo = 3} is large enough (R > R} large). The relation Rid <7
should be a technical assumption and we do believe that it can be relaxed by
changing the function spaces we use. Actually, we prove in this paper a stronger
theorem (theorem 2.5) where this constraint only appears on one part of the
perturbation. We also show in this theorem that the perturbation decreases like
1/(R+ ct)%. This rate may not be optimal but shows the convergence of the
solutions towards travelling fronts. Once more, we prove in theorem 2.5 a more
precise result where the dependance of the initial condition on the convergence
rate is emphasized.

Notations: Throughout the paper, we use the following notations: ||.||z is
a norm in the Banach space Z, |.| is the usual norm in R and z is a vector of
R"™ while (r, 0) are the polar coordinates in R? where r > 0,60 € [0, 27). We also
denote by ¢; generic positive constants which may differ from place to place,
even in the same chain of inequalities.

Acknowledgments: I would like to thank Professor Thierry Gallay for all
his help and suggestions regarding this work.

1 Radial Solutions

The aim of this section is to prove theorem 1, i.e. the stability of travelling waves
against radial perturbations. Hence, we only work with spherically symmetric
functions and we always use, for convenience, the notation u(r,t) instead of
@(r,t) defined in the introduction.

For spherically symmetric solutions, equation (1) reduces to the following
Cauchy problem:

ur(r,t) = upe(r,t) + ”r;lu,«(r,t) + F(u(r,t)) »>0,t>0,
u(r,0) = ug(r) r >0,
ur|r:0 =0 t>0.

The Neumann boundary condition at zero is due to the regularity of the function
u(z,t), x € R"™. In this section, we first write a decomposition of the solution
u(r,t) as Kapitula [10] did. Then, we study the new evolution equations in a
moving frame to take advantage of spectral properties of the operator L defined
in the introduction.

1.1 A coordinate system

We first need to define more precisely a spherically symmetric travelling wave
in higher dimension. Since the function z € R™ — W (z,t) = wo(|z| — R— ct +
”C;l log (%)) is not smooth at # = 0, we have to modify wy in a function w
called also travelling wave or “modified wave”.



Let x € C*(R7*) so that x(r) = 0if r < 1 and x(r) = 1if r > 2, and define
w(y,r) = 1+ x(r)(wo(y) — 1), (y,7) € R x RY.

Then, w(y, r) is identically equal to 1 if » < 1 and w(y,r) = we(y) if r > 2.
Note that r is a positive parameter which flattens the wave around the origin.
Then, for any s € R, r € RT — w(r — s, 7) is a function of Y = H!(RT), equal
to 1 near the origin and decreasing like the wave wg at infinity. In a similar
way, ¢ € R” — w(|z| — s, |z|) is a spherically symmetric function of X, equal
to 1 near the origin and decreasing like the wave wg at infinity in all directions.
We also define ¢(y,r) = ax(r)¥o(y) where a has been chosen in (5).

In a neighborhood of the wave w, it will be convenient to use a coordinate
system given by (v,s) € Y x R with perturbations of the wave being given at
any time by

u(r) =w(r—s,r)+v(r) r>0,

where s is chosen so that fooo v(r)Y(r — s,r)dr = 0. We have decomposed the
solution u as a translate of the wave w and a transversal perturbation v. The
following lemma shows that this decomposition is always possible:

Lemma 1.1 There exist positive constants Ry,d1, K such that for any R > R,
and any & €'Y with ||€|ly < &1, threre exists a unique pair (v,p) €Y X R such
that

D olly + el < K

Elly,
ii) w(r— R,r)+&(r) =w(r— R —p,7) + v(r) for all v > 0,
iii) fooo v(r)Y(r— R—p,r)dr = 0.

Proof: Define the operator A: R xY — R by
A(p, &) :/ E(r)Y(r— R— p,r)dr
0
0 1
+ p/ Y(r— R — p, r)/ wy(r — R — ph,r)dhdr.
0 0

Since A(0,0) = 0 and the derivative 4,(0,0) = a? j;o dovo(y)x2(y+R)dy # 0
for R > R;, by the implicit function theorem on Banach spaces, there exist a
small neighborhood V = V; x V5 of (0,0) in RxY a function p(€) : Vo — V; such
that A(p(€),€) = 0 and |p| < K||¢||y for some K > 0. This yields the spatial
translational component p. Let v(.) = £(.) + w(. — R,.) — w(. — R — p(£),.) a
function of Y. Then, ||v||y +|p| < K||€|]y for another K > 0. As A(p(£),€&) =0,
and by Taylor’s theorem, fooo v(r)Y(r—R—p,r)dr = 0. Then, (v, p) satisfies the
lemma if ||€]|y < d1 where §; > 0 is sufficiently small so that By (0,d1) C V2. R

Using the result of lemma 1.1, we can write for any £ > 0 and some R > Ry,

u(r,t) = w(r —s(t),r) +v(rt), r >0, (10)

. -1 t .
s(t)y=R+ct— z . log<R;C ) + p(t),

]OO v(r, t)(r — s(t), r)dr = 0. (11)
0



By lemma 1.1, such a decomposition exists if, for all # > 0, the solution u(r,t)
is close to the wave, i.e. if ||u(r,t) — w(r—s(t),r)|ly < d1. This assumption will
be validated later by the proof of theorem 1. We are now going to work with
these new variables v and p which are more convenient than u. We first give
the equations they satisfy:

Substitute the decomposition (10) of the solution into equation (1) and use
equation (3) satisfied by wg to get the evolution equation satisfied by v:

vr + F'(wo(r — s(t)))v (12)

Vg = VUpp +

-1 -1
+<n ° +p’(t)> wy(r—s(t),r)+ N+S, r>0, t>0,

r R+ ct
v(r, 0) = vo(r), r>0,
Ur|r:0 = 0, t> 0,
where

N = F(w+v) — F(wo)x(r) — F'(wo)v is the nonlinear term,
n—1

S = wpp + 2wpy + T'wr~
The functions w, wo, ¢ and their derivatives are taken at (r—s(t),r) or (r—s(t)),
depending if the wave is modified or not. Note the Neumann condition at zero
Vp|r=0 = 0. Indeed, if u(z) = a(|z]), u € C}(R?) is equivalent to @ € C'(R¥)
and 4'(0) = 0. As u = w+ v and w is identically zero near the origin, the
regularity of u is forwarded to v and v,|,—¢ = 0.

Derivating equation (11) with respect to ¢ and using equations (8) and (12)

satisfied by s and v, we get the evolution equation satisfied by p:

o () /000 (Ywy — vipy) dr = /000 [vA — (N + S)¢] dr, t>0, (13)

p(0) = po,

n—1 n—1 n—1
WhereA:<R+Ct—T>¢y—|— 3 ¥

(e + 20— ) 4 (et + P ().

The functions ¢, w, wy and their derivatives are taken at (r—s(t), ) or (r—s(t)).
We first consider the initial value problem for equations (12, 13):

Lemma 1.2 Fiz R > 0. There exist 64 > 0,T > 0 such that for any initial
data (vg,po) €Y x R with ||vglly <6 < s and |po| < %, the integral equations
corresponding to (12, 13) have a unique solution (v,p) € C°([0,T],Y x R). In
addition, (v,p) € C1((0,T],Y x R), and equations (12, 13) are satisfied for
0<t<T.

Proof: 1If ||ug|ly < & and § < &4 is sufficiently small, then fooo Ywy — vihydr #0
and p/(t) can be expressed easily as a function of v and p. Then, equations (12,



13) can be written as follow:

O(v,p) = L(v,p) + f(v, p, 1),

'07-|7-:0 = 0) (U,p)(O) = (UO;pO);
L(v, p) = (Lv,0) = (8%v + n—_l&»v, 0).
r

As L generates a semigroup on Y X R (see lemma 1.5 for a detailed proof)
and f € C1(Y x R x R1), the integral equations corresponding to (12, 13) have
a unique solution (v,p) € C°([0,7],Y x R), see for instance [13]. In addition,
this mild solution is classical and (v,p) € C}((0,7],Y x R). m

We now work on the two evolution equations (12, 13) to get information on
the asymptotic behaviours of v and p. Before stating our result, let us explain
its content in a heuristic way. Consider first equation (12) for v. The leading
term in the right-hand side is

<”; - fg;clt +pl(t)) wy(r = s(t), 7),

log(R+ct)
(R+ct)?
for r = s(¢). On the other hand, as we shall show in section 1.2.3, the evolution
operator generated by the time-dependent operator 92 + ";13,. + F'(wo(r —
s(t))) is exponentially contracting in the space of functions v satisfying (11).
Therefore, we expect the solution v of (12) to decay like logt/t? as t goes to

infinity. As for p, we observe that equation (13) is close for large times to

o0 1 1 1
/() :/0 [<;+ c HT> vt nr—2w] v(r.t)dr,

since fooo Ywydr is close to [g Yododz = 1. Thus, we also expect p/(t) to decrease
at least like logt/t? as t goes to infinity. The following result shows that these
heuristic considerations are indeed correct:

which decays exponentially in time for any fixed » > 0, but only like

Theorem 1.3 There exist positive constants Ry, 09, c¢1,¢2,70 such that, if R >
Rs and (vo,po) € Y X R satisfy ||volly < 02, |po] < %, then equations (12, 13)
have a unique solution (v, p) € C°([0,+00),Y x R) with initial data (vo, po). In
addition, p € C1([0,4+oc), R) and

log(R + ct)

, / ; —Yot
(0l +16/0)] < exllly e + e TETLL)

t>0.

Theorem 1.3 is a new version of theorem 1 in the variables v and p. We
give right now the proof of theorem 1 under the assumption that theorem 1.3 is
proved.

Proof of theorem 1: Let Ry, d2,¢1, ¢a, 7o be as in theorem 1.3 and Ry, dy, K
be as in lemma 1.1. Choose Ry and dg so that:

1
2(50 S (51, 2[\’(50 S min((fg, 5), RO 2 maX(RQ, Rl): Coe_leO § (50,

where ¢y > 0 and v, > 0 are chosen so that for any R > 0,

[|wo(r — R) — w(r — R, 7)||ly < coe ME, (14)

10



Let up : R” — R be a spherically symmetric function satisfying
l[uo(r) —wo(r — R)[ly <&

for some R > Ry and § < &y. Let &(r) = uo(r) — w(r — R,r), r > 0. Then,
£€Y and ||¢]|ly <6+ coe” T < 255 < d;. Then, by lemma 1.1, there exists a
unique pair (vg, po) € Y x R such that:

Elly
ii) ue(r) = w(r— R,7) +&(r) = w(r — R — po,r) + vo(r) for all r > 0,
iii) [57 vo(r)¢(r — R — po,r)dr = 0.

As R > R, and (vo,po) € Y x R satisfy [Jvo|ly < &2 and |po] < 3, it
follows from theorem 1.3 that equations (12, 13) have a unique solution (v, p) €
C°([0, +0),Y x R) with initial data (vo, po). In addition, p € C([0, +o0), R)
and

i) [jvolly + |po| < K

log(R + ct)

(R+ct)?’
Let u(z,t) = w(|z| — s(t), |z|) + v(|z],t), x € R™ where s(t) is given by (8).
Then, u € C°([0,+00), X) is the unique solution of equation (1) with initial
data ug and

lv@)lly + 16" ()] < ellvollye™" + ¢z t2>0.

[[u(z,) = wo(la| = s(t))llx + 1¢'(2)]

< llu(z,t) — w(lz| = (), [2])]1x + [[w(r = s(t),r) = wo(r = s(t))lly + 1¢'(2)]
log(R + ct)
(R ct)?
log(R + ct)
(R+ ct)?

Define ¢ = K¢y and ¢} so that for any ¢ > 0, any R > 0,

< C1||'U0||y6_%t + ¢o + 606—713(7:)

< e Kdem Mt 4 ¢ + ¢y Kege™ Y=ot 4 oo e=m1s(t),

e—V1R—70t e—T1s(t)

!
log(R+ect) + <o log(R+ect) < ¢
(R+-ct)? (R+ct)?

co + C]_C()I{

Then,

, log(R + ct)

I 1) = wo(lo] = (E))lx + 19/ (0] < chde™ ™ + e Em

This ends the proof of theorem 1. B

1.2 Estimates on the solutions v and p

Let us now prove theorem 1.3. We begin with a proposition close to this theorem
but local in time. We then show how theorem 1.3 follows from this proposition.

Proposition 1.4 There exist positive constants Rs,ds,c1,c2,v0 such that, if
R > R3, T > 0, and if (v,p) € C°([0,T],Y x R) is any solution of (12, 13)

satisfying
lv@lly <ds, [p(t)l <1, 0<t<T,

11



then

log(R + ct)

/ —Yot
o)l + 1601 < exljvlly ™™ + e

0<t<T.

Proof of theorem 1.3: Let R3,d3,c¢1,c¢2,70 be as in Proposition 1.4 and
choose positive constants Rs,d2 so that Rs > Rs and

(53 Yo . (53 \ log Rz 53 Co 1 + log RQ 1
o 02 < —,0 - < -,
c1 2<m1n(2 4), 2_H111’1(2, 4), €2 R 5 s <4
Take R > Ry and (vg, po) € Y x R so that [|vg||ly < da, |po] £ 5. By lemma 1.2,

1

5.

let (v,p) € C°([0,7*),Y x R) be the maximal solution of (12, 13) with initial
data (vo, po). Define

T =sup{T € [0, T*) | ||v(t)|ly <35 and |p(t)| < 1 for any ¢ € [0,77]}.

Since d2 < d3, it is clear that 7' > 0. We claim that 7' = 7™, which also implies
T =T = 400. Indeed, if T < T, it follows from proposition 1.4 that for
t€10,7],

- log(R + ct’ log R
le(®)lly < erllvollye™" + é(Tﬂ < et t % s
o |<|P0|+/ P (5)]ds < & +@+c_21+1ﬂ<1,
(i) Cc Rz

which contradicts the definition of 7. Thus T' = T* = +oco. Since 5 < d3,
the inequality satisfied by [|v(t)||y + |p'(¢)] is true for all ¢ > 0 and theorem 1.3
follows immediately from proposition 1.4. B

Let us now prove proposition 1.4. We are first interested in the behaviour of
v which satisfies equation (12). The main idea is to work, as in one dimension,
in the moving frame at speed s(t) to get, in equation (12), a time independent-
operator instead of 9%+ "r;la, + F'(wo(r—s(t))). Therefore, we need to work on
the whole real line which is invariant by translation. That is why we first extend
v to R by a function z which is convenient, i.e. which decreases exponentially
fast in time in the H! norm. Precisely, we already explained in a heuristic way
that v decreases exponentially fast as ¢ goes to infinity near r = 0. Therefore,
we first define a function z equal to v near the origin and then extend v to R
by z. We can then use theorems on spectral perturbations of operators, energy
estimates and spectral decomposition to highlight the behaviour of v in X. As
equations (12) and (13), satisfied by v and p, are coupled, we need at the end
to study the behaviour of p as we explained before.

From now on, we fix R > 0 (large), 0 < § < d4 (small), and we assume that
(v,p) € C°([0,T],Y x R) is a solution of (12, 13) satisfying

le@lly <6, [p(O] <1, 0<t<T,

for some T > 0. We call these assumptions (H).

1.2.1 Localisation near r = (

Let ¢ € C®°(R*), Ry > 2 and 8 > 0so that £ = 1 on [0, Ry] and £(r) ~ e=P"
as 7 goes to infinity. Let

z(r, t) = &(r)u(r, 1)

12



for all € RT and ¢ > 0. Then, z is equal to v near » =  and satisfies

ze(r,t) = Lyz(r,t) + G1(r, 1), r>0,t>0,
Z,-|7«:0 = 0, t> 0,

where
Li=0% + <”T_1 + a(r)) By + b(r),
Gi(r,t) = (F'(wo(r — s(t))) — h-)E(r)u(r, 1) + (S + N)&(r)
n—1 n—1 o o .
(B - B 0wl s, 1E0),
a(r) = —2¢'(r) /&(r),
b(r) = 2(¢'(r)/&(r))* = (" (r) /&(r)) — —

h_ :inf[ lim F'(wo(y)), lim F'('wo(y))]

y——+00 Yy——00

_n—l

(&'(r)/&(r) + A,

= inf(F'(0), F'(1)).

Note that h_ < 0, that b = h_ near r = 0 and, by choice of appropriate 8, a(r)
can be small and b(r) < —by < 0 for all »r € R*.

Lemma 1.5 Under assumptions (H) for any R > R4, L1 generates an analytic
semigroup on'Y and there exist positive constants cg,c1,ca,y2 such that for any
te(0,7),

||6tL1||£(Y) < coe™ Pt

1G1(#)lly < (L4 6)e™ 2T+ 4 eagffu(t)ly .

Proof: We first study the behaviour of ||G1(#)||y: it is a standard result that
wo, ¢o and g decrease exponentially fast at infinity. Then, it comes that

(P (wo(r = s(2))) = h-)e(r)o(r, D)y < code (1),

I1S]ly < 606—72(R+Ct).

In addition, N = [F(w+ v) — F(wg + v)] + [F(we + v) — F(wo) — F'(wg)v] +
F(wo)(1 = x(r)) and

INlly < coe™2 U 4 cof|uf|§ < coe™2 D 4 codlu]ly .

Finally, we want to bound || (":1 - g;clt +p’(t)) wh(r — s(t))x(r)&(r)|ly -
As R > Ry, s(t) > R4 and the particular case for r = s(t) explained in a heuristic
way does not occur as £(r) decays exponentially fast as » goes to infinity. To
conclude, we have to explain the bound of |p/(#)]. Indeed, by equation (13),

1(E§ijt)c2t) * (Rfct)2 ””””Y) (1)

0] < o ((1+8)e700 1§

(" = g+ 0) bl = sONIE < a1+ 8)e v

13



This ends the proof for ||G1||y.
On the other hand, the semi-group generated by L; on Y is studied by
energy estimates. Let u be a solution of

ut:Llu T’>0, t>0,
Urlr:() =0 t> 01
u(r,0) = ug(r) »r>0.

Let I1(t) = 3 fo u?dr and I(t) = %fooo u2dr. Then, the derivatives with
respect to t of I; and I5 satisfy

fl(t):—212+(n—1)/ ““"dr+/ (b—%) u2dr,
0 0

r

[ee] [ee] [ee] ! oo 1t
) =— [ udr— "t ury? Cyzar— [ e
I(t) = /(; u,.dr 5 /(; <r> dr—}—/o b+ 5 Yuzdr /0 5 udr.
Let introduce e > 0,¢ > 0, I(t) = I1(t) + ela(t), then
. 60 ! bl/ -1
](t)g/ - L —e—+ (n— De u?dr
; 2 2 2
o a' n—l 1 © rup\2 ;
-1 b+ — 2a’ - — =) dr.
+/0 ( +e(+2)) + (6 e>/0 (%) dr. (10)

Choosing first ¢ << 1, then e >> 1 depending on ¢ and § << 1 depending on
€, we obtain

a’, ' (n—1 _ —v

=gy tmy =5 <0
a’ 72
-1 b < —
—|—e(—|—2) 2e<0
1
——e<—1

where v5 = |bo|. Tt follows that ](t) < —y2I(t) and ||Ju(t)|ly < coe™ 2 |Juol|y -
This proves the lemma. B

We shall use these calculations to get some further information on the be-
haviour of the semigroup generated by Li which are useful in the following
sections. Let a(t fo 4=)2dr. Then, according to (16),

d
dt
Integrating the latter inequality between ¢ and ¢ and using Holder’s inequality,

we obtain the following result for 4 defined in the introduction and any (o,t) €
(0,T) such that o < ¢:

n—1

— (72 I(t)) + eta(t) < 0.

t P 2
/ e—v<t—s>||%<s)||Lz(R+>dsscs||u(a)||ye o), (17)

In the same way, using convolution inequality || £+ g[|L1(r) < [|fllv(r) 9]z (R)
we obtain for 7/ < 72,

te y(t—s) » | I
/ \/— || ( )||L2(R+)ds < CSHU(O')Hye_'Y (t=o)

14



The next lemma is a corollary of these calculations and will be used in the
following:

Lemma 1.6 Under assumptions (H) for any R > Ra, there exist positive con-
stants cqg, ¢1, ca, ys such that for any t € (0,7T),

t
/ e |2 (8)] oy ds <eollvolly €™ + e (1 + §)e e (FHen)
0
+cQ5/ =2y (s) |y ds,
¢ A -3t —va(R+ct)
/ N i ||—( s)||L2(r+yds <collvo|lye™ " + 1 (1 + 8)e™
0

t
+C25/ =" =) ||y (s) |y ds.
0

Proof: The proofs of these two inequalities are very similar Therefore, we only
prove the first one. We recall that z(r,s) = e*F1z + f (s—0 LlGl(r U')dO' for
any r > 0, s > 0. Then,

t 2 t . ar .
[N G mnds < [ % ol ds
0 0
t s 9
+/ 6—v(t—s)/ | Z =1 Gy (1, 0)|| 2 (et derds.
0 o T
The first term of the right hand side is bounded by (17):
t Oy I Y2
/ e || e P 2| Loy ds < eae™ lz0]ly -
0 r
The second term is bounded by Fubini’s theorem, (17) and lemma 1.5:
f / y(t— s)H U)L1G1(T.’ U)||L2(R+)dad8
S/ cae™ TG (r, o) |y do
0
t
< er(1+8)e Bt 4o / e~ 7= |o(0) |y do
0
This ends the proof of lemma 1.6. B

Corollary 1.7 Under assumptions (H) for any R > Ry, the behaviour of z is
a result of lemma 1.5. Indeed, there exist positive constants ¢y, cs,c3 such that
forany t € (0,7T),

t
I2()lly < eillvolly ™" + ea(1 4 §)e 2kt 635/ 720 [u(s) ly ds.
0

15



1.2.2 Extension to the real line
As we said before, we need to work on the whole real line and therefore to extend
v for r < 0. Let
2(—r,t) i 0
sy = A AT <0
v(r,t) iof r>0.
Then, z is smooth in R and satisfies for any r € R,

Zo(ryt) + F'(wo(r — s(t)))Z(r,t) (18)

Zi(r,t) =Zp (7, 1)

+<n_1‘n_;+ﬂ@0qu—d»<)+N+Gﬂrﬂ
where

N:{N if 20,
NE(r|) if r<0,

S if r>0,
azy + (b—h_)z+ SE&(|r|
Ga(r,t) = ¢ +(F'(wo(|r| = s(t))) — F'(wo(r — s(1))))2(I7], 1)
+O = g A @)wi(lr] = s@)x(r)&(Ir])
—(”;1 - ;;clt + o' () wh(r — s(t))x(r)é(r) if r<ao.

Using lemma 1.5 and corollary 1.7, we have the following lemma:

Lemma 1.8 Under assumptions (H) with R > R4, there exist positive con-
stants ¢, cq, cg such that for any t € (0,7,

t
G2 (t)||z2(r) < cl||-uo||ye—w+c2(1+5)e—%<3+ct>+c35/ e~ 729y (s) ||y ds.
0

1.2.3 Moving Frame

In order to take advantage of spectral properties of the time independent oper-
ator Lo, it is convenient to work in the moving frame with speed s(¢). So let
z(r—s(t),t) = Z(r,1) and Gs(r— 3( ) ) Ga(r,t). Then, z satisfies an equation
similar to (18). As n(t) = [ 2( y)dy = [g Z(r,t)¢o(r — s(t))dr is non
zero in general, z does not belong to 7?, We recall that R has been defined in
the introduction as the supplementary of the spectral subspace corresponding
to the eigenvalue 0 of the operator Lo in L%(R). As Ly = 85 + ¢y + F'(wy)
has interesting spectral properties in R, it is convenient to use the following
spectral decomposition:

z(y,t) = n(t)do(y) + r(y,t), where r € R. (19)

Note that this » € R is different from the r € RT used so far. Before going
on, notice that 7(t) decreases exponentially fast in time: |p(t)| < ege=72(Ftet)
for 44 > 0, and let introduce a few notations. Let ¢ € C§°(R), positive, even,
which satisfies ( = 1 on [-R4, Rg] and ( =0 on [-R4 — 1, Ry + 1]°.

We decompose the nonlinear terms as follows: N = Ny + Ny where

Ny = F(w+7r) — F(wo)x(y + s(t)) — F'(wo)r and Ny = N — Ny.

16



Then,

IN1 |2 < collr]|§ + coe~ 2 (FFet)
(| N2z < coln(t)]- 20)

Substitute the decomposition (19) into equation (18) to get:
re(y,t) = Lar(y, 1) + Q(Ga)(y, 1) t>0, yeR,
Ar(y,t)wo(y)dy =0 t>0,

where
Ly = 8. + ¢y + F'(wo) + Q(N1 + (1 — ¢)G5)
Go= (Lo - 2+ 0

y+s(t)  Ract
G4 = Gs(y,t) + N+ (Gs(y, 1)

n—1 n—1 s s ‘
+ <y+s(t) - R+ ct tp (t)> (n(t)o(y) + &y + 5(t))Po(y)). (21)

We recall that @) is a projector onto R defined in the introduction.

Lemma 1.9 There exist positive constants Ry, s such that under assumptions
(H) with R > Rs and § < J5, Lo generates a family of evolution operators
A(t,s) on R which satisfies

IA(t, s)llcr)y < coe~(t=2), 0<s<t.

Proof: Let Ly = 65 + cdy + I’ (wg) defined on R. Then o(Lgr) C] — co; —4],

v > 0 and Ly generates an analytic semi-group on R which satisfies ||e‘Lo

coe™ " and RY? = D(L(l)/Q) = H'(R), see for instance [13]. Let

lle(r) <

B: Rt — L(H'(R),L%(R))
t— B(t): H'(R) — L’(R)
TP—)Q(1V1+(1—C)G5)

We want to prove that B is a small perturbation of the operator Ly which does
not affect its exponential decrease. As ||B(t)||z(m1,12) < co("n%l—ké), Appendix
A ends the proof| i.e. there exist some Ry >> 1 and some 5 > 0 so that for all
R > Rs and § < J5, Lo generates a family of evolution operators A(¢,s) on R

which satisfies lemma 1.9 for a slightly different . ®

Lemma 1.10 Under hypothesis (H) with R > Ry, there exist positive constants
¢, 1 =0,..,5 and v5 such that for anyt € (0,T),

log(R + ct)
(R+ ct)?

t
Zr
+ 025/ =2 u(s) ||y ds + cal o' (£)| + csl| =~ @OllL2(r+)-
0

1Q(Ga) () llLa(ry < collvolly €™ + e1 (1 +8)e™ ¥ 4 cq
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Proof: As G4 is given by (21), the first two terms have already been studied in
lemma 1.8 and (20):

1R(G3)D)lL2wr) < [|G2(B)]|L2m+)
t N
< erl|volly €™t + eq(1 + §)e~v2(Fet) 4 035/ e~ =3 |y (s) ||y ds,
0
IQ(N2)(#)]|12 < caln(t)] < coe=+Het),

The last terms will be cut into four parts with the cut-off (. As

(ﬂ;é) - p’<t>) £y + () do()C(y + (1)) = 0

by definition of & and ({, we obtain

log(R + ct)
(R+ct)?

(o~ 2+ 0) el s(O)0(i)lae < o + el ),

y+s(t)  R+ct

In the same way, we obtain

n—1 n—1 , N , | —~4(Rct
(s — s 0) 10 =Clus(O)1e < exl1+)e (5

Finally, we join the last two terms:

n—1 _ n—1
y+s(t) R+ct

n—1 n—1 .
<l (B - 2 ) 3 Oy

r 1t -1
) e+

1G5 + ( ; p'<t>) D)8 (w)C + (1)) lxcmy

< ¢l

+cod +er)|lz(r By

as Z =z = v on [0, R4]. By corollary 1.7, we conclude that:

1665+ (S = e + 70 106+ s(laotmy
zr (7, 1)

< collvolly €72 + ey (1 + 8)e ™R ¢ ll2(r+)

t
+635/ e~ 2=y (s) ||y ds.
0

Define 5 = inf{~s,~4}. This ends the proof. B

Corollary 1.11 Under assumptions (H) with R > max(R4, R5) and § < ds,
there exist positive constants ¢;, i = 1,..,4 and vy7,%' such that for anyt € (0,7,

[l (@)llar (ry <evllrollms (rye™ " + ea(1 4 8)e™7 I+ 4 63%
t 6—wl(t—s)| /( )|d
tec —|p'(5)|ds.
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Proof: We first want to bound the L? norm of r. As a consequence of lemmas
1.9, 1.10 and 1.6, we get for any ¢ € (0,7,

log(R + ct)
(R+ ct)?

¢ t
+C4/ e“"’(t_s)|p'(s)|ds+cs(5] e“'ye(t_s)||r(s)||H1(R)ds. (22)
0 0

()| 2(ry <erllrolla rye ™"t + ca(1 + 8)e ™o FHD 4 g

In order to bound the H' norm of r, we recall that 7, = Lar + Q(G4) and
Ly = Lo+B(t). According to lemma 1.9, operator B(t) is a small perturbation of

Lo. Then, the Banach space R'/2 can be defined by D(A/?) as well as D(L(l)/2),
and the graph norms are equivalent Thus, ||d Aty s)lery < co e_\;:t_—_:). In
addition, r(y,t) = A(t,0)ro(y) + fo G4)(y, s)ds. Derivating this last

expression with respect to y and boundmg the L? norm, we get:

te=(t-s)
N=T]

Finally, by (22) and lemmas 1.10 and 1.6, we get

10yr(D)lL2(r) < collrollzrr rye ™" +/O 1Q(G4)(5)l|L2ds.

log(R + ct)
(R+ ct)?

vo [ Sl +es [ S o)l
Ca S Cy H148S.
0

Indeed, by Fubini’s theorem and one integration by parts,

¢ 6_7(7:_5) § R ¢ (¢
/ / e=720=9) |y (o) ||y dods < CO] e~V E=3)|u(s)|y ds.
o Vt—=s Jo 0

Gronwall’s lemma ends the proof. B

IOl ) Sclllrollm(me‘”“ ea(1 4+ B)e o BHeD 4 oo

Corollary 1.12 Under the same assumptions (H) with R > max(R4, Rs) and
d < Js, there exist positive constants ¢;, i = 1,..,3 such that for any t € (0,T),

lo(®)lly < exllvolly e + ex(1 + )1+

log(R + ct) toem(t=s)
Rt

s 16/ (5)]ds.

1.2.4 Conclusion

Proof of proposition 1.4: Take Rz = max{R4, R5} and d3 = inf{d4,d5}. Let
T > 0,8 <d3 and R > Rs. Consider (v, p) € C°([0,T],Y x R) any solution of
(12, 13) satisfying

lolly <6, lp@)| <1, 0<t<T.

Then, assumptions (H) are valid and by inequality (15), corollary 1.12 and
Gronwall’s lemma, there exist positive constants ¢y, s, 4o such that

log(R + ct)

(Rie)? 0<t<T.

lv@lly + 16’ ()] < ellvollye™" + ez

This ends the proof of proposition 1.4. R
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2 Nonradial Solutions

In this section, we deal with non radial solutions of equation (1). We prove, in
this case, that travelling waves are Lyapunov stable but not necessarily asymp-
totically stable for general (i.e. non necessarily spherically symmetric) pertur-
bations. In the first part of this section, we explain how the Lyapunov stability
follows from Uchiyama’s proposition and the maximum principle. In the second
part, we prove theorem 2. To this end, we introduce some energy functionals
which enable us to rule out the asymptotic stability of travelling waves against
arbitrary small perturbations. In particular, we give an example in R? of an
initial data ug close to a travelling wave which converges to a non-radial profile
as t goes to infinity.

2.1 Lyapunov Stability

In the first section, we proved in theorem 1.3 the local stability of travelling
waves in X, i.e. among radial perturbations. Note that Uchiyama [16] proved a
similar result in the L® norm in her lemma 4.5 without any information on the
decay rate of the perturbation. Using comparison theorem, we show easily the
Lyapunov stability of travelling waves against arbitrary small perturbations.

Proposition 2.1 For any ¢ > 0, there exist positive constants Ry, d such that
if ug : R” — R s a spherically symmetric function satisfying

lluo(z) — wo(|z| — R)||Le(rn) < &

for some R > Rq, then equation (1) has a unique solution u € C°(R*, L>°(R"))
with initial data ug and for allt € R,

llu(e, t) — wo (|| — 5(t))|| Lo (rn) < €
where s(t) = R+ ct — 2=t log (Z£L) .
Proof: See Uchiyama [16], lemma 4.5. m

Corollary 2.2 For any ¢ > 0, there exist positive constants Rg,d such that if
ug : R* — R satisfies
lluo(2) — wo(lz] = R)||Leo(rn) < &

for some R > Ry, then equation (1) has a unique solution u € C°(R*, L>°(R"))
with initial data ug and for allt € R,

lu(z, ) —wo(lz| = 5(t))|oe(rn) < €
where 5(t) = R+ ct — 2=Llog (%) .
Proof: Let u(z,t), u1(x,t), us(z,t) be the solutions of equation (1) with initial
data wug, wo(|z| — R) — &, wo(|z| — R) + & respectively. Then, combining the

maximum principle and proposition 2.1, we have u; (z,t) < u(z,t) < uaz(z,t) on
R” x R* and ||u(z,t) — wo(|z| — 5())[| Lo (r») < €. This ends the proof. m
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2.2 Energy Estimates

In order to prove theorem 2 about non radial profiles, we need to control the
perturbation of the wave and in particular the shape of the interface. We proceed
as in the first section: we decompose the solution u(z,?) as a translate of the
wave and a transversal perturbation. We use the same notations as in section
1. As is explained in the introduction, we restrict ourselves for convenience in
the two-dimensional case, and we use polar coordinates (r,6) € Rt x [0,27) in
R2. Define the open set Q = R*™* x (0,27) and the measure dv = rdrdf. We
need to introduce some Banach spaces adapted to these new variables:

W = {v(r,0) € H-,(Q) | v, v, % € L(Q, dv)
and v(r,0) = v(r, 27) in L} (RY,dr)}
Z =A{p(0) € H'(0,27) | p(0) = p(2m)}.

We also define the associated norms:

2 3
lo|lw = (/ ('02 +v2 + v—§> dv)
Q r

27 %
lollz = ( [ de) = [l 020

The space W does not seem to be very suitable to our problem as the dv
measure induces a linear grow in time of the norm due to the expansion of the
front. However, they are convenient for energy estimates as we shall see below.
In those spaces, the coordinate system developed in the first section is still valid.
More precisely, we have the following lemma:

Lemma 2.3 There exist positive constants R, 8}, K' such that for any R > R}
and any & € W with ||€||w < &), there exists a unique pair (v, p) € W x 7 such
that

D) [[ollw + llellz < K'[[€]lw,
ii) w(r — R,7) 4+ £(r,0) = w(r — R— p(0),r) + v(r,0) for all (r,0) € Q,
iii) fooo v(r,0)Y(r — R— p(0),7)dr =0 for any 0 € [0, 27).

Proof: The proof is very similar to the one of lemma 1.1 and we may omit it. ®
Using lemma 2.3, assuming the solution u(z,t) is close to a travelling wave,
we have for any ¢ > 0,0 € [0,27), and some R > 0,

u(r,0,t) = w(r —s(0,t),r) + v(r,0,1), r >0, (23)
s(0,t) = R+ ct — llog <R+ Ct> +p(0,1),
c

/000 v(r,0,t)¢(r — s(0,t),r)dr = 0. (24)

Note that according to Jones [8], the solution u(r,8,1) is close to a travelling
wave in every radial direction of R?. Therefore, in (24), v is transversal to

Y(r —s(6,t),r) for all @ € [0, 2m).
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Then, we get two new evolution equations. The one satisfied by v is obtained
by equations (1) and (23):

ve(r, 0,t) = Av(r,0,t) + F'(w(r — s(0,t),7))v(r,0,t) + N + S (25)
1
+ wy(r —s(6,t),7)p(0,1) — r—289(wy(r —s(0,1),7)pg(0,1)),
v(r,0,0) = vo(r, 0),
where
A=02+ 18r+ %83,
r r
N = F(w+v) — F(w) — F'(w)w,

1 1 1
S = (— - m) wy + <w,,n + 2w,y + ;w,«) + wyy + cwy + F(w).

r

Differentiating equation (24) with respect to ¢ and integrating by parts, we get
as in the first section, the equation satisfied by p:

pe(0,)A(00, 0, ) = — /OOO o(r, 0, 1)dr, (26)
p(g’o) = PO(H)a
where
A(r,0,1) = /0 (W(z = (0, 1), 2wy — o) d,

g(Z,g,t) = gl(ziaat) +g2(2165t)5
g91(z,0,t) = vA + (2 —s(0,1),2) (N +9),

1 1
!]2(2; aat) = _2_21/)89 ('wyPG) + 2_21/)'099:

1 1 1
NG00 = (g =) o

+ <¢m« + 2y — %w’) + (Yyy — ctby + F'(w)) .

As in the first section, we consider the initial value problem for equations
(25, 26).

Lemma 2.4 There exist Ry > 0, ¢¢ > 0 and T > 0 such that, for any
R > Rg and for all initial data (vo,po) € W x Z with ||vo|lw < € and
[lpollz < €o, the integral equations corresponding to (25, 26) have a unique solu-
tion (v, p) € C°([0,T),Wx Z). In addition, p € C1((0,T], Z),v € C*((0,T], W),
and equations (25, 26) are satisfied for 0 <t < T.

Proof:  Define ¢ = §7 and let d be as in corollary 2.2. Choose 0 < ¢; <
§(1 + cope~"1fe)=1 for some fixed Ry > 0 large enough. Let (vo,po) € W x Z
such that ||vo|lw < €0 and ||po||lz < €o. Finally, define ug(r, ) = w(r — R —
po(0),7) + vo(r,0). Then, ug € H'(R?) and it is a standard result that there
exists a unique solution u(z,t) € C°([0,T], H}{(R?)) n C*((0,T], H}(R?)) to
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equation (1) with initial data ug. According to corollary 2.2, u(z,t) stay close
to a travelling wave in the L®-norm for all £ > 0. By energy estimates, we
show in sections 2.2.1 and 2.2.2 that this is also the case in the ' norm. Thus,
lemma 2.3 is still valid and there exists a unique pair (v, p) € W x Z such that
(23, 9, 24) hold and (v, p) satisfy equations (25,26). ®

These two equations are very similar to those found in the first section. We
choose here to deal with energy estimates. We study the behaviour of [|v(t)||w
and ||p(t)||z under the assumption that the initial data are small. We have the
following theorem:

Theorem 2.5 There exist positive constants Ri,e1,n such that if (vo, po) €
W x Z satisfy

1
R7||vo|lfy + [lpollz < €

for some R > Ry and some ¢ < €1, then equations (25, 26) have a unique
solution (v, p) € C°([0, +00), W x Z) with initial data (vo, po), and

1 1
(R4 olfy + oo < (e+ )
forallt > 0.

These estimates will be useful to prove theorem 2. We now give the proof
of the first part of theorem 2:

Proof of theorem 2: Let R,d], K’ be as in lemma 2.4, Ry, ¢y, n as in
theorem 2.5 and ¢q, 11 as in (14). Choose Ry, ¢} and 7 such that:

R} > max(R1; R = Ve
0= (R; Ry) n NI

3y + coe” o < min (81;2n) (Rf))%c()e_“]% <.

Let now ug € H*(R?) such that ||uo(z) — wo(|z| — R)|| g1 (r2) < d for some
d <6y, R> Rf and Ri§ < n. Let &(r,0) = uo(r,0) — w(r — R, 7). Then, by
(14), ||l€llw < & + coe™ B < ) and R > R}. Thus, by lemma 2.3, there exists
a unique pair (vg, po) € W x 7 such that

) [lvollw + llpollz < K'lEllw

i1) w(r— R, 7)+&(r,0) = w(r — R— po(6),7) + vo(r, 0) for all (r,0) € Q,

iii) fooo vo(r, 0)Y(r — R — po(0),r)dr = 0 for any 6 € [0, 2).

Then, with the above conditions on R and e,
RE|Juolfiy +llpoly < e1; R 2 Fa.

Then, by theorem 2.5, equations (25, 26) have a unique solution (v,p) in
C°([0, +00), W x Z) and

1 1
(et 3O + 1001 < n e+ ) forall ¢ 0
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), )+ v(r,0,t) where s(0,t) is given by (9). Then, by

Let u(r,0,t) = w(r—s(0,¢
(1) satisfying

(14), u is a solution of
Co

(R +cl)

This ends the proof of the first part of theorem 2. ®

We now prove theorem 2.5. Therefore, we introduce a few functionals linked
with the norms of v and p in W and Z respectively.

l[u(r, 0,t) — wo(r — s(60,1))[|w <

T

2.2.1 Definition of primitive and functionals

If 7> 0 and (v,p) € C{((0,T],W x Z) is any solution of (25, 26), we first

introduce functionals for the functions v and p:

! IR . 1
Eq(t) = §||U||%2(R2) = 5/0 /0 v (r, 0,t)rdrdd = §/ﬂvzd1/
_ ! 2 1 2, Vs
EQ(t) = §||V’U||L2(R2) == §A <’U,. + 1"_2 dv
. 1 9 . 1 Up Voo 2
Eg(t) = §||Av||L2(R2) == §L (’UM- + 7 + r—z) dv
Eat) = <lol2 _1 2W26td6
a(t) = §||P||L2(0,27r) D) ; p~(0,1)
Es(t) = L 2 -1 ” 2(0,t)do
5(t) = §||P0||L2(0,27r) =35 A pe(0,t)
1 9 1 27 9
Eg(t) = §||P09||L2(0,2n) =3 ; Paa(0,1)d0.
It will be useful to consider also the weighted primitive V' of v:
r [ee]
V(r,0,t) = / v(z,0,t)(z — s(0,1),2)dz = —/ v(z,0,t)¢(z — s(0,1), 2)dz.
0 r

Note that V(0,6,t) = V(co,0,t) = 0 as v is a transversal perturbation for
any 0 € (0,27), see (24). Under the above assumptions on v and p, V €
C1((0,7], W) and it satisfies an evolution equation easily computed by integra-
tions by parts from (25,26):

Vi = Ve — wi (1, 0,)Vy + Gs(r,0,2), (27)
where
Lo Yo(r—s(0,)  x'(r) 1
wl(r’g’t)_Ql/)o(r—s(ﬂ,t))+2x(r) o

. A(r, 0,1) ! : A(r,0,1) /°° .
G 0t)=1— ———— 8, t)dz — ———— 0,t)dz.
5(7”, ) ) < A(oo,@,t))/o g(za 3 ) z )\(OO,H,t) . g(Z, 3 ) z
We also consider the last functional Eq for V:

. 1 1
Eo(t) = §||V||i2(R2) = 5/9‘/2‘1”'
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Note that there exist two positive constants /1 and 5 such that for any ¢ € (0,7),
(see Appendix B),

LEL(t) < Eo(t) < L Ey(t). (28)

We first give the equations satisfied by these functionals and then find the
inequalities involving Ey to Es which are useful for the next calculations.

Lemma 2.6 If T > 0 and (v,p) € C1((0,T],W x Z) is any solution of (25,
26), then E; € C1((0,T]) fori=0,..,6. Ey satisfies the equation:

foy == [ o | (S=SR) Ve

+/w2(r,6,t)V2drd6+/ V(r,0,t)Gs(r,0,t)dv (29)
Q Q

N r N r 7
where ws(r,0,1) = =G+ X0 + (7).

Moreover, the functions E1, Ey, E4 and Ex satisfy:
. ‘ 1,
El(t) =—2F, +/ F’(w)'u2dl/+/ v <wypt — ﬁdo(wypg) + N + S) dv
Q Q
(30)
. 1, .
Ey(t) =—2E5— / Ay <F'(w)v + wypr — r—zdg(wypg) +N+ S) dv
Q

: _ Pa Yuwy ﬁ Yywy
Ea(t) = / 72 A(oo, 0 t)d d6+/n r? Moo, 0,1) drdf

PPe Ag(o0) p 1
+A 1/) y)\Z(OO) drdf — A W <g1 + r—z’(/)l)(,\(;> drdf (31)

' Pee Yy pospy Yy
E5(t) = — ———drdf ———==—drdf 32
5() /ﬂ 72 A(o0, 0,1) +L r2  A(oo,0,1) " (32)
Pos 1
_ — drdd.
+ /ﬂ Moo, 0.9) <g1 + 3 1,1)009) P
Proof: Obviously, Eo fn VVidv. Equation (27) and integrations by

parts yield to the desired expression for Eo. The derivatives with respect to t
of E1 and FEs are more easily computed by analogy with the heat equation in
R? with usual coordinates z € R2 instead of polar coordinates. As far as the
functionals for p are concerned, E4 and E5 are computed by a few integrations
by parts. Note that all the functlons depending on @ are 2w periodic. The
expressions of E4 and E5 have been put in that way to highlight the first terms.

Indeed, as we shall see below, [, ff—g ;\p{;}g) drdfl behaves essentially like (R+(ct))2 and
Q ’;"2‘9 ;p(wy) drdf like (R+(tt)) . These quantities are going to play an important

role in the next energy estimates. Finally, we do not mind about E5 and Eg as
we are only interested in the H! norms of v and p. ®

2.2.2 Bounds on the functionals and proof of theorem 2.5

Proposition 2.7 There ezist positive constants Ra, €2, k, co,d, es and e;; for

(i,5) € {0,..,6}? such that if T > 0 and if (v,p) € C°([0,T],W x Z) is any
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solution of (25,26) satisfying for all t € [0,T],

vl + lp@)l7 < €

for some R > Ry and some € < €5, then the following inequalities hold:

Eo(t) <—/. V0 dv + €01 By + €0 B + £ Ee + c0
o) <= | 01E1 + eo2 B Rra(Rtc) (Rt )
Ei(t) < — 2B, +/ F'(w)v*dv + €11 Ey + e12E3 + €133
Q
+ E5 + €g E6 + Co
€
B(Rtct) VRt (R+ct)? (R+ct)?

Ez(t) < —2E3+ (ea1 + (dk)?)Ey 4 €29 Fa + (€23 + 1) F3

Le Es n €6 Eg n co
P(R+ct)? VRt (R+ct)? (R+ct) (33)
: Ls 5
Fit) < —d———= F FE FE —_—
4(t) < (R+ct)2+641 1+ €eq2F9 + €43 3+645(R—1—ct)2
besga Dty
Y (R+ct)> " (R+ ct)?
. FEs d FEs
Es(t) < —d—-— E E E )
5(t) < (R+ct)2+651 1+ es52E9 4 es3 3+(€56+4)(R—|—ct)2
Co 2
Tt ey T g Bt O+ )’

and

sup (F'(wo(x)) — ki (2)) < —2.

rzER
Moreover, constants e;; can be chosen as small as we want by choosing R large
enough and ¢35 small enough.

We prove right now how theorem 2.5 follows from proposition 2.7.

Proof of theorem 2.5: Let Ry, ¢3,k,¢o,d, e and ¢;; be as in proposition
2.7, Ry, €y be as in lemma 2.4 and [;, /5 as in (28). Choose m > 0, Ry > 0,¢; >
0,/ =L > 0 such that

Ry > max(1, Ro, Ra,a’, ac), € < min(e2, es), \/61_1 <e, m(dk)*< %,
R{

where ¢ = max(1 + kla, m) and b = min(1 + ki1, m). We also request that for

any R > Ry, and any 0 < € < €1, the following inequalities hold for any ¢ > 0:

keo1 + e11 +m(ear + (dk)?) + ear +es1 < 1
-2 +k602 + e19 +megg + €49 + €52 S -1
m
— 9m +ei3 +m(eas + 1) + eaz + €53 < ) (34)
—d + €15 +meas + ea5 <0
€g €g €g d d
—d 4k + et tegstess b - < ——.
VRt VRt VRtea @ ®TTETL=T9
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This is possible by first choosing m > 0, then e; small enough and R; large
enough. Take R > Ry,¢ < €1 and (vg, po) € W x 7 satisfying

1
R=Jvolliy + [lpollz < e.

By lemma 2.4, let (v, p) € C°([0, T*), W x Z) be the maximal solution of (25,26)
with initial data (vg, po). Define, for some n € N*,

N . N 1
7 = sup {T € 0.7°)] (R 02 o)y + (01 <0 (e + )
t 1 ~
and / (R+ cs)U?(s)ds < 2 <e—|— E) for 0 <t < T}.
0

where

L{(t) = ]i’EO + E1 + mEz
and b(El + Eg) S L{(t) S CL(E]_ + EQ)

We also give some conditions on n: we assume that

%Jr(M(H\/i)H) <a+d%> <n—1  (35)

b
2(k 4+ 1+ m)es c 4 c /2
2t Ames 1) (S =)+ S 2o
( B LTV )<c+db2>+2b+ =" (36)
ae N Qa_n (2(1{:—1—1—1—7}1)6651 n 261) <1 (37)
T d o
1

n <61 + R_1> < e (38)

where & = ae1+ %-I—% (61 + R%) and c is definied by (39, 42) and (43). This
is possible by first choosing n large enough such that the first two inequalities
are valid and finally ¢; small enough and R; large enough such that the last two
inequalities hold.

By continuity of v and p, it is clear that 7' > 0. We claim that T' =
T*, which also implies T' = T* = +oco. Then, the inequalities satisfied by v
and p are true for all ¢ > 0 and theorem 2.5 follows immediately. Indeed, if
T < T*, it follows from proposition 2.7 and inequality (38) that for ¢ € [0, 7],
inequalities (33) are satisfied. To get a contradiction on the definition of T
we must judiciously bound the expressions (R + ct)%”v(t)”%, + |lp(®)||Z and
fOt(R + es)U?(s)ds. Therefore, define

E(t)=kEo+ E1 4+ mEy + Eq+ Es = U(t) + E4 + Es.

Using (33) and (34), there exists ¢ > 0 such that

E(t) < —Fy — By — %Eg,(t) -5

dFEe(t) ¢
(R+ct)2  (R+ ct)?

(R+ ct)(F1 + Eq)?.
(39)

:
d
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Integrating this inequality between 0 and ¢t < T', we get

¢ dE(;(S)

m t
™ Fa(s)d 26t g
3 Bals) 5+/0 2R+ecs)?

< £(0) —+—/O Mds —+—/0 %(R +cs)(Ey 4 Eo)%(s)ds < € (40)

5(t)+/0t(E1+E2)(s)ds+/0

where € = ae + % + % (6 + %) . Moreover, we also get from inequalities (33)
that

U(t) < —E1(t) — Eot) + () < =WU) + Ft) (41)
where
f(t) . (k + 14+ m)e6 Ee(t) (615 + 1n625)E5(t) n co
 JVER+et (R+ ct)? (R + ct)? (R+ ct)?’

Then, U(t) < U(0)e™" + [T e~1t=%) f(s)ds. Finally,

ac L f(s)
Ei(t)+ Es(t) < —=e7" —|—/ D e —tt=s) s,
18+ Ba(t) < Wiz N
To evaluate this last integral, we cut it into two parts and use inequality (40)
and the fact that F5(t) <n (e + %) < €9:

1

ER T _u (2(k+ 14+ m)egé  cot
Kt=5) f(s)ds < e= 3 <—+_)
/0 e f(s)ds <e R 7 )

t 3 t 3
/ 6—l(t—s)f(s)d8 < 66(k+1+m)/ E6(S),2d8+ Co -

2(k+1+m)66'€+ co

d\/Ryct  1B+e5)”

Finally, using (35, 36, 40) and the above inequalities, there exists ¢ > 0 such
that

<

(R+ ct)Z(Ey + Eo)(t) + Eq(t) + Es(t)

2k + 1 ¢ ¢ 2 (2k+1 ¢ @
L ac, Akt 1+ mes? c§+£<(+ + m)esé c§>+g
b db 2R: b d IR

(n—1) <€ + %) . (42)

We now want to evaluate the integral fot(R + ¢es)U?(s)ds. Therefore, define

IN

G(t) = (R+ ct)U?(t).
Then, using (41) and Ry > ac,

ﬁ _ i (k+l+m)66E6(t) Co
7 S lg+2tm<6+R>< (R cl)? +(R+ct)%>'
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By Gronwall’s lemma, we get a bound on G and by integrating between 0 and

t,
t 2 2
/g(s)ds < ac
O l

1 b v [ (k+1+m)esEs(T) ¢o
2 = —He=m) drds.
e () [ (B e gt o

Finally, by Fubini’s theorem, (40) and (37), there exists ¢ > 0 such that

t 2.2 ~ _
o a‘e 2an 1 2(k+ 14 m)egé 2¢
< — —
/0 (R+ es)U*(s)ds < 7 + ] <€+ R> < 7 + Y

<(e+g)- (43)

Then, by (42) and (43), we get for any € < ¢; and any R > Ry,

(R+ ct)?(Ey + Eo) + Fa+ F5 < (n— 1) <e+ i)

R
f 1
/ (R+ cs)lﬂds < <€ + —>
0 R

for all 0 <¢ < 7T'. This contradicts the definition of 7" and concludes the proof.
|

2.2.3 Proof of proposition 2.7

The proof of proposition 2.7 is technical and we need a few intermediate lemmas
to prove inequalities (33). We only use a few fundamental ideas: Cauchy-
Schwartz’ inequality, Jensen’s inequality, Schur’s lemmaand the fact that ¢q(r—
R — ct) and ¢o(r — R — ct) are localized around r = R + ¢t. We encourage
the reader to refer to Appendix B where we explain in detail the way those
fundamental ideas are used in the following lemmas. For the whole section
2.2.3, we call (H) the following assumptions:

Fix ¢, R, T positive constants.

Let (v,p) € C°([0,T],W x Z) be any solution of (25,26) satisfying

vy + e < et €0,T]. (44)

In the following six lemmas, we prove that inequalities (33) follow from

equations (29) to (32) of Eq to Es and inequality (44).

Lemma 2.8 Under assumptions (H), there erxist positive constants Ra, €, cg
such that for any t € (0, T] and any R > R, € < €3,

2 pipt
. < 6 ‘ 5 6» A B
[1pellz20,27) < co ((R+ct)2 TRy T
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where

- < s )5 o (By+ E2)3E3 | (EvEo)% | (E1Fs5)®
(R+ ct)? (R + ct)? (R +ct) R4ct  (R+ct)?
n Esé n ( Es )i EQ%Eé
(R+ct)? (R+ct)?) R+ct’
b 2B LBt D 1
(R+ct)?  VR+ect (R+ct)?

Proof: p is a solution of equation (26) and we want to bound the L? norm of p;.
Therefore, we need to bound A(cc,6,t) from below and | f;° g(r,0,t)dr| from
above. Using Jensen’s and Cauchy-Schwartz’ inequalities and the Sobolev’s

embedding H!(R?) — L4(R2), we first have
< sup / [yv?|dr (Jensen)

/ wyvdr
8€(0,27) J0
2w 2w oo
g/ / |v21/)y|drd9-|-/ / [2vvg iy |drdd
27 ’
[ Wbt

< FLF)% + E2
CO<R+ ++(F1F9)? + Ef

sup
€E 0, 27r

(Eq +E2))
(R+ ct)%

as for any function f such that f 6)df =0, sup|f| < fo | fold0.
As A(00,0,t) = [57 dwydr — ;7 1/)yvdr and [ pwydr = 1 — O(e~H+et)),
we have
1—c¢o (e% + e‘R) < A(o0, 0,1)

for any 0 € (0,2n) and any ¢ > 0. Then, for convenient 5 and Ry, A\(c0,0,1)71 <
2 for any 6 € (0,27),t > 0, R > Ry and € < €3.
Moreover, using Schur’s lemma (see Appendix B), we have

e Yw, cOEé
Y a0 am < 26
”p”/o X (o0, 0,0) 12027 < T gy
and
< Yw co
||P5/0 mdrﬂw(o,zw) < WHPGHL (0,2m)l1Po [l L= (0,27)

COE;EGZ
(R4 ct)?

as ||psl|Lee(0,27) < (E5E6)‘11 To bound the norm of fo ;@f’“ )dr, we introduce

the difference T% —

1
(R+ct)

g [ 1 Yvge 1/”)09
/0 rz)\(oo,ﬁ,t)dr_/o <(R—|—ct)2 r2>/\( )d+R+ct /
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The first term is bounded in the L%(0,27) norm by Eé/(R + ct)%. For the
second one, we write fooo Yugedr with derivatives of p and v by derivating twice
identity (11) with respect to 6:

o o0 o o
/ Yugedr = pag / Yyvdr — pﬁ/ Yyyvdr + 2p9/ Yy vedr.
0 0 0 0

Finally, by Jensen’s and Cauchy-Schwartz’ inequalities, Schur’s lemma and the
Sobolev’s embedding H!(R?) — L*(R?), we get

o] 27 [es) %
I [ el <o ( [ ngwyvﬁdrde})
0 o Jo
27 e} % 2w %
co </ / pgwyyv2drd€> +co </ / pgwyvgdrdﬂ)
o Jo o Jo

o0 1
< co||p00||L2(0,27r)||/ %'UQd’"Hioo (0,27)

27

+ COHPGHLw 0,27) </ / _‘/’yyd’/>
27

+ collpe Lo (0,27) </ / —gl/)yrdv>
o Jo

B L (B + Eo)*
< coE¢ (R+ct+(EE) + FE (R+ct)4 )

1
E\E5Eg\ ? 1 L

Then,

Yuge
”/ r2)\(c0, 0, 1) = 5 4 llz0,2m) < coA.

The last term fo vA+4(N+S)dr is bounded by Jensen’s inequality, Schur’s
lemma (see Appendix B) and the Sobolev’s embedding H!(R?) — L*(R?).
Then, || fooo vA + (N + S)dr||12(0,2x) < coB. Notice that as H'(R?) is not an
algebra, we need some more assumptions to bound the norm of N. We assumed
in the introduction that every solution of u; = F'(u) is uniformly bounded in
time. Therefore, v is bounded and Taylor’s theorem and Sobolev’s embedding
enable us to bound || N||zz(r2). This concludes the proof of lemma 2.8. m

Lemma 2.9 Under assumptions (H), there exist positive constants cg, Ra, €3
such that for any t € [0,T] and any R > Rs, € < €3,

. I
i 2,2 1
Eo(t) < /ﬂwvdu+c0<R+d

%B-l-O)

where

Al

- E2 < E6 )
“Ria (R+ct)? VRt | VRt

1 Nt V1 N
fo ) ((E0E5)5 . (E1E5)5) L (BaBs)

((E1E2)%E5% (EoE»)}Ed )

_+_

(R+ ct)? R+ ct R+ ct R+ect
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Consequently, there exist positive constants eg1, eqa, €5 such that
E6 + Co
\/R+c (R+ect)2  (R+ ct)?

where egy and egy can be chosen small with appropriate Ry and €,.

Eo(t) < /1/)2 vidv + eg1 By + egaFa +

1\ ! N\ !
Proof: We know that V, = ¢v; by appendix C, we have (%g—) = (%g—) < 0 and
there exists some constant co > 0 such that |wz| < c¢o. Then, by equation (29),
the only difficulty in Ey comes from fﬂ VGsdv. If r << R+ ct, the main term
in G5 is for gdz and if r >> R+ct, froo gdz. We bound separately the term with
g1 and the one with g,.

1
The term with g1 is bounded by Ej B as in lemma 2.8. The term with g
is bounded after one integration by parts in 8, Cauchy-Schwartz’ and Jensen’s
inequalities by C'. Indeed, if r << R + ct, as

Ve = / (Yvg — poibyv) dz
0

2

AR+Ct/ V(r,0,t) ngzﬂtdzdy_ /R+Ct/ %(Ar¢’09d2> dv
[ ) (] (- 2) )
L) ([

wy = dz> dv

. /T'—";jdz> </T1/)vgdz>d1/
L] ) (o)

Notice that the first term is negative and can be omitted. The following terms

can be treated as described before.
Inequality (33) for Fy is easily computed from this result using inequalities

such as ab < “—2‘5‘;2. Then,

1
€01 = C + Ve + Ve
R+et /R+4+e R+Hct

= (va * viea V)

e )

We easily notice that eg; and egs can be chosen very small with appropriate R
and €.
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Lemma 2.10 Under assumptions (H), there exist positive constants cg, Ra, €3
such that for any t € (0, T] and any R > R, € < €3,

Elu)g-—2E24-]"F%uov%h/+c0(Ef[)+(E1+.Eg%)
Q

where

1

1 Feg 2
D= VEFclllpellus + ( _ )
C ||pt||L /—R—i—ct (R-|—Ct)2

. Bl < Ee >4—+ 1
R+ ct \(R+ ct)? (R+ct)s
Consequently, there exist positive constants ey, €13, €13, €15 and eg such that
Ey(t) < — 2B, + / F'(w)v*dv + €11 E1 + €125 + €13F3
Q
E5 + €g Ee + Co
(R+ct)?  /R+ct(R+ct)2 (R+ct)

where {e1;};=1.5 can be chosen small with appropriate Ry and €.

+ €15

Proof: From equation (30), we bound E'l(t) term by term: |lvpiwy||L2(r2) is
bounded with Cauchy-Schwartz’ inequality by \/R+ct||pt||Lz(072,,)El%. The

three other terms are bounded as explained in Appendix B:
EgEP

(R+ct)?

EfESEg

(R+ct)

v
I|r_2p€€wy||L2(R2) < ¢
v o9
||r—2Pe'wyy||L2(R2) < ¢o
JoE
||U(N + S)||L2(R2) S Cp ((El + Ez)% + m) .

This last inequality is also obtained by Sobolev’s embedding H!(R?) — L3(R?).
We then get inequality (33) for E; using inequalities such as ab < ‘122&. [ |

Lemma 2.11 Under assumptions (H), there exist positive constants cg, d, Ra,
€2 and k > 1 such that for any t € (0,T] and R > Rs, € < €3,

. L Nt
1Mn34&+%g(wﬂﬁ+m+m+p)
Consequently, there exist positive constants esq, €93, €33, €95 and eg such that

Ez(f) < —2E3+ (ea1 + (dk)?)Ey 4 €29 Fa + (23 + 1) F3
E5 + € E6 + Co
(R+ct)?  /R+ct(R+ct)?2 (R+ct)

where {eq;};=1 5 can be chosen small with appropriate Ry and €s.

+ €25
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Proof: The proof of this lemma is very similar to the last one and we may leave it
out. Notice that k large enough can be chosen so that sup(F’(wo) — ky2) < —2.
Then, sup |F'(wg)| < dk. Once more, inequality (33) for F follows for R > R
and e < ¢5. W

Lemma 2.12 Under assumptions (H), there exist positive constants cg, d, Ra,
€9 such that for any t € (0,T] and any R > Ra, € < €3,

. Es 1 Jo8] < e >%
Ea(t) < ~d———— + coE . A+B+G|.
s g T 4((R+ct>5 @Eray) TETOT

where

1 1 1
E} Es il 1 1 o ¥ L
= E2H+EE | s Vv tEs | .
G (R-I—Ct)g <(R—|—Ct)2> ( 5+ 15 <(R—|—Ct)2) +vR+c 2)

Consequently, there exist positive constants eqq, €43, €43, €45 and e4g such that

E5 5
—_— E E E —_—
(R+ct)2+€41 1+ €423 + €43 3+€45(R+ct)2

Es
(R+ et

Ey(t) < —d

Co

(R + ct)?’

+ €46 E +

where {e4;}i=1.6 can be chosen small with appropriate Ry and €s.

Proof: From equation (31), we bound E4 term by term. The only difficulty
which has not been seen yet in the previous lemmas is the term G which bounds

pre . Ao(o0)
/ﬂ 2 Ywy )\2(Oo)drd9

with Cauchy-Schwartz’s inequality.
Let us recall that Ay = fooo P9 (Yyyv — Yywy — Ywyy) — Yyvedr. Then,

E% 1 1
X6 ll2(0,27) < co (||P€||L°° \/ﬁ +EZ +VR+ ctE;)

and the inequality ||pg||p= < (E5E6)% ends the proof. B

Lemma 2.13 Under assumptions (H), there exist positive constants cg, R, €3
such that for any t € (0, T] and any R > R, € < €3,

Eg Eg

£t < i+ (B o

+E§(A+B)>.

Consequently, there exist positive constants es1, €52, €53 and esg such that

. FEg d FEs
Es(t) < —d——"— E E E —)
5(t) < (R+ct)2+651 1+ e52l + €53 3+(656+4)(R—1—ct)2
c 2 , .
+m+E(R+Ct)(E1+E2)2

where {es5;};=1.6 can be chosen small with appropriate Ry and €.
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Proof: Once more, the proof is very similar to the previous ones, using Cauchy-
Schwartz’ inequality. However, we may detail how we get, from the first result,

inequality (33) for Es. Using inequalities such as ab < “—z‘lz'ﬁ, the only difficulties

1 3 1
come from the terms Fg (5%) and % which appear in E¢ B: for any
d>0,

E? 2 . d_F
(R+ct)2 ~d(R+ct)? " B (R+ct)?
1/ FE+ FEy Eg 3
2 (L2 ) < —— ) (VR¥c(E i+ E
6 <\/R+ct>_ ((R+ct)2> +et(Er + 2)>
d FEg 2 ,
= 4+ t)(E1 + E
S §mrap TalT A

This ends the proof of inequalities (33). ®
These six lemmas end the proof of proposition 2.7 and hence of theorem 2.5.
Equipped with these energy estimates, we are able to prove the end of theorem

2.

2.3 Example and density of non radial profiles

In this paragraph, the end of theorem 2 is proved thanks to theorem 2.5.

Lemma 2.14 Under the assumptions of theorem 2.5, there exists a function
poo € L2(0,27) such that p(.,t) converges in the L%(0,2m) norm to pe, ast goes
to infinity.

Proof: By lemma 2.8 and theorem 2.5, we get

Ie®llozn < o (S 4 R0 oo b )
2 ) C V5 '
P = O\ JR¥d Rt  JRE+d(R+el)  (R+ct)l

Then, by inequality (40),

Anmwmms%(v;)

As this bound is independent of ¢, fooo [lp¢(s)]|L>(0,2x)ds is convergent and there
exists a function ps € L?(0,27) such that

Hm—%ﬁhmmﬁ/l%@hmm@
t

converges to zero as ¢ goes to infinity. This completes the proof. m

Lemma 2.15 There exist positive constants R and € such that if tg(r,0) =
w(r — R— \/5=sin0,r), the solution u(r,0,t) of equation (1) with initial data
ug converges to a non radial profile.

Proof: Take Ry and €1 as in theorem 2.5 and R > R1,¢e < ¢;. Then ug satisfies
the assumptions of theorem 2.5. Indeed, ug = w(r — R — pg,r) + vo where
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po(ﬁ) =, /%Sil’l f, vo = 0 and R%”UO”%V + ||p0||2Z = €. Since vg = 0, notice that
R and € can be chosen independently. Therefore, choose R sufficiently large so
that \/g > clll\/ﬁg. Let a(r,0,t) = w(r — s(0,t),7) + v(r,6,t) be the solution
of equation (1) with initial data ug where s(0,t) is defined by (9) . Then, by
lemma 2.14, fot llpel|L2(0,2m)ds < coll\/ﬁf. Finally,

. € . 1+¢€
llp(0,t) — 4/ 5, sin 0]l 220,27y < co ( \/§>

for any ¢ > 0. If there exists some ¢t > 0 such that p(0,¢) = p is independent of

f, then
€ . € 1+¢€
'W"V§;ﬂn9mﬂmzm:=v2ﬂﬂ*'§>“1<:ﬁ§>'

This contradicts the latter inequality. Therefore, for any ¢t > 0, p(6,t) is not
constant.

Moreover, as theorem 2.5 is satisfied, ||v||w converges to zero as t goes to
infinity and wu(r,@,t) converges to a non radial profile as ¢ goes to infinity. ®
This ends the proof of theorem 2. We give a few more information by
introducing two new spaces as follow:
81 = {up € H'(R?) | for some R > max(Ry, R}), tio(r,0) — w(r — R, r) =
&(r, 0) satisfies lemma 2.3 and (vg, po) € W x Z satisfy theorem 2.5}
Moreover, there exists, for any function ug € &1, a unique function po, €

L%(0,27) satisfying lemma 2.14. We call Sy the set of all these functions
peo € L?(0,27) satisfying the above properties for ug € 8.

Lemma 2.16 Sy is a subset of L?(0,2m) which contains some non constant
functions and Sy is dense in the ball B(0, min(d], /1)) of 7.

Proof: For any ps, € 82, we know that p., € L2(0,27). Moreover, there exists,
by lemma 2.15, some ug € 81 such that po, € 82 is not constant.

Take now p € B(0,min(d], /e1)) and R > max(Ry, R}). Define iy €
H'(R?) by ug(r,0) = w(r—R—p(0),r). Then, [|[ug—w(r—R,r)||lw < |lpllz < 3,
and by lemma 2.3, there exists a unique pair (vg, po) € W x 7 satisfying

Go(r,0) = w(r — R— po(0),7r) + vo(r,0)
< v,y >=10
llvollw + llpollz < K" min(d1, /e1).

As a consequence, pg = p and vy = 0 and

1
R |lvolliy + [lpollz = llollZ < €.

Notice that as vy = 0, this last inequality is still valid for arbitrary large R.
Finally by theorem 2.5 and lemma 2.14, there exist (v, p, pos) € C(RT, W x
Z) x L?(0,2n) such that

1 1
(Rt 3ol + ol < (3

lim [[p(.,?) = peollL2(0,27) = 0

t—4o00
C1
llpo = peollL2(0,27) < ﬁ
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As R can be chosen as large as we need it, the last inequality shows that &, is
dense in Bz (0, min(d], /e1)). W

A Perturbation theorem for evolution operators

Theorem A.1 Let A be a sectorial operator on a Banach space X such that
Re(o(A)) > a> 0 and o € [0,1). We set X* = D(A®). Let >0, M > 0 so
that

- - - M _
le™ A lex) < Me™® and [l 42 [xo < S flallx

forallt > 0 and & € X. Suppose B : [to;+00) = L(X*, X) is locally Hélder
continuous with

1Bl cxex) <7
for allt > tog > 0 and some v > 0. Let T(t,7), to < 7 < t, be the family of
evolution operators so that the unique solution of

d.
d—‘: + Az =B(t)z, t>r (45)
z(1) = xo,

is z(t;m,20) = T(t, )20, to < 7 < t. Then, there exists vg > 0 such that for
any v € (0,70), there exists § € (0,3) such that for any to < s <1,

IT(t, )llex) < Mye?0=2), (46)
Proof: Given zq € X, tp < 7 < T and § € (0,5), we shall solve (45) in the
Banach space
V={zel([r,T],X)nC((r, 7], X*) | |lz|ly < oo}

where [|z[lv = XDz ()|x + sup (t = 7)) J2(t)]|xo
T7<t<T

sup e
r<t<T
First, given € V| we define the function F from V to V by

F(z)(t) = e= 4= + /t e~ A=) B(s)x(s)ds.

T

For r > 0, let 49 > 0 and R > 0 be chosen so that

¢ ds
(= [ e

R=4Mr
Cr =Myoe®=PIT=TU(T — 7)%¢(T) < i
V11—«
b= (T =7)7 7% 1
02 M'yoe 1— o S 4

Then, for any zq € X with ||z¢||x < r, F maps the ball By (0, R) of V into itself
and has a unique fixed point in the ball By (0, R). Using Gronwall’s lemma, it is
then straightforward to show that this fixed point is actually the unique solution
of (45) in the space V. Finally, since [|z||v < 2M||zo||x + (C1 + C2)||z||v, the
solution z(t) is defined for all # > 0 and the bound (46) holds with M; = 4 M.
|
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B A few lemmas

B.1 : Schur’s lemma

Lemma B.1 Let P be an operator of L?(R?) defined in polar coordinates by

Pu(r,0) = / u(z, 0)K (z,r,0)dz, u € L*(R?)
0

(o)
o
¢t = sup / |K(z, 7, €)|\/jdr < oo
2>0,6€[0,27) /0 2

[e 0]
cy = sup / |K(z,r, 9)|\/Zdz < 00.
r>0,6€[0,27) Jo Z

Then, P is continuous on L%(R?) and for any u € L*(R?),

||Pu||L2(R2) < \/6162||u||L2(R2) .
Proof: We fix 6 € [0, 2m). Then, by Hélder’s inequality and Fubini’s theorem,

00 00 2
/ [/ K(z,r,@)u(z,ﬁ)dz] rdr
0 0
< /00 < ” Kd—z> (/OO K'u2\/zdz> rdr
—Jo 0 vz 0
Sc;g/ u2(z)z/ K\/zdrdz
0 0 z

SC]_CQ] u?(z,0)z2dz.
0

so that

Integrating in 6 € (0, 27) the above inequality, we get the continuity of P.

Throughout the proof of lemma 2.7, we use Schur’s lemma in the follow-
ing way, most of the time without mentioning it. For instance, the following
inequality

27 pR+4ct r 2 2T poo v2
/ / (/ wvgdz> rdrdf < ¢o(R+ ct)2/ / —grdrdﬁ
0 0 0 0 o T

is proved by Schur’s lemma by writing

K(z,7,0,t) = L<,<(rpet)¥(2 — 5(0,1),2)z and u(z,0,t) = %
== z

Then, ¢;(t) < ¢o(R + ct) for i = 1,2. This concludes the proof of the above
inequality.

B.2: Jensen’s Inequality

Proposition B.2 Let ¢ be a convex function and v a probability measure on a
measurable set A. Then, for any f € L*(A,dv),

¢</A fdv> < [ sty
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Corollary B.3

]02" (/Ooo w(r, 0,8)0(r — s(0,1), T’)dr>2 do < e ]Ozn /OOO vip(r — 5(0,1),r)drdd

Proof: For any 6 € (0,27) and any t > 0, let dv = ay(r — s(0,t), r)dr where &
is chosen so that fR ay(r — s(6,t),r)dr = 1. Then, v is a probability measure
for any fixed ¢ and 6, and ¢(x) = 2? is convex in R?. By Jensen’s inequality,

27 53] 2 21 poo
_ - [P
/o </0 v(r, 0,t)¢(r — s(0,1), r)dr) df < ]0 /0 v Y(r —s(0,t),r)drdd.

As @~ can be bounded independently of # and ¢, this ends the proof. m

C Log-concave functions

Proposition C.1 Let F' € C3(R) be a function satisfying the following condi-
tions:

F(0)=F(1)=0, F'(0)=a<0, F'(1)=4<0,
Au € (0,1) so that F(u) >0 foru € (p,1), F(u) <0 foruée (0,p),

1
/ F(u)du > 0, F(S)(u) <0 for all uw € [0,1].
0

Let ¢ > 0 and wy € C%(R) be a monotone solution of the ODE
wy + cwp + F(wo) = 0, r€ER, (47)
with the boundary conditions at infinity

lim wo(z) =1 and lim wg(z) = 0.
r——00 r—+o0

Define ¢g = wjy < 0. Then, ¢q is log-concave:

N

_ (%) > 0.
0

F(wlu)

Proof: As —‘;—g =% — 4

w

= ¢+ g, it is sufficient to prove that ¢ is

increasing on R, i.e. tl'fat h = g' is positive. We first study the behaviour of g
and h as |z| goes to infinity. Tt is a standard result that wq (respectively 1—wyg)
decreases exponentially fast to zero as z goes to +0o (resp —oo). Let us begin
with the behaviour of wg at —oo:

wo(z) = 1 — e + Ae?T 4 o(e?27),
where A > 0. Then,

wh(z) = — Ae M 4 20 Ae?AT 4 o(e27),
wg(x) I /\26)\;3 + 4/\2A62)\x + 0(62)\@')’
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and by Taylor’s theorem,

F(wo(w)) =F'(1)(wo(x) — 1) + 5 F"(1)(wo(2) — 1) + o(e*7)
. 1 .
:ﬂ(_e)\z -I-AGZ)‘I) + 5Fvl/(]_)ez)\z _|_0(€2)\z).
As wy is a solution of (47), the first order of the expansion says that A is the

positive root of
A2+ e+ 8=0.

The second order gives
A4 +2eX 4+ B) + %F”(l) =0,

i.e. A(3M2 4 ¢eX) + 3 F”(1) = 0. Notice that the above assumptions on F' forces
F"(1) to be negative. Therefore, A > 0. Finally,

and h ~ 24X2e*? as x goes to —oo. We can then conclude from this study that
h is positive for z < 0 sufficiently large.

A similar study in +oo with wo(z) = e#® — Be#® + o(e2#7) where p is the
negative root of u? + cp+ a = 0, gives that —B(2u% — a) + $F”(0) = 0 which
implies that B > 0. Finally, as g(z) = —(c + p) + 2Bpe#® + o),

h(z) ~ 2Bu%e"® when 2 — 400

and h is positive for z > 0 sufficiently large.
Suppose now that there exists some zg € R such that h(zg) < 0 and define

zy=inf{z eR | h(x)

<0
zo =sup{fz € R | h(z) <0}
Then, h'(z1) <0 and h/(22) > 0. As h = cg + g% + F'(wo), we get

h' = c(1+2g)h + F" (wo)wg. (48)

Then, F"(wo(z1)) > 0 and F"(wg(z2)) < 0. As 21 < 29 and F"'(wyg) is increas-
ing, we conclude that

F"(wo(z)) = 0 for all z € [z1, z4].
Then, F"(wo(z)) > 0 for all z > 25 and by (48),

{ W(z) <e(l+2¢g(x))h(z) =€ [xe,+0)

Finally, by the maximum principle, h(z) < 0 for all # > 25 which contradicts

the definition of z5. Therefore, h is positive on R and g is increasing. This
concludes the proof. ®
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