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Abstract. Bistable reaction-diffusion equations are known to admit one-dimensional trav-
elling waves which are globally stable to one-dimensional perturbations - Fife, McLeod [7].
These planar waves are also stable to two-dimensional perturbations - Xin [26], Levermore-
Xin [17], Kapitula [14] - provided that these perturbations decay, in the direction transverse
to the wave, in an integrable fashion. In this paper, we first prove that this result breaks
down when the integrability condition is removed, and we exhibit a large-time dynamics
similar to that of the heat equation. We then apply this result to the study of the large-
time behaviour of conical-shaped fronts in the plane, and prove that, in some cases, the
dynamics is given by that of two advection-diffusion equations.

1 Introduction

Consider the following scalar parabolic equation:

ut −∆u = f(u) , (x, y) ∈ R2, t > 0(1.1)

u(0) = u0 , (x, y) ∈ R2

where u : R+ × R2 → R. The function f is of class C2(R) and it is assumed to be
of the ’bistable’ type. Namely, there exists θ ∈ (0, 1) such that

f(0) = f(θ) = f(1) = 0,
f < 0 on (0, θ) ∪ (1,+∞), f > 0 on (−∞, 0) ∪ (θ, 1),
f ′(0) < 0, f ′(1) < 1, f ′(θ) > 0.

Moreover, we shall assume that

∫ 1

0

f(u)du > 0.

This reaction-diffusion equation is a classical model for spreading and interacting
particules -see [8], [15], [1]- and the transport of information is often represented by
some particular solutions to (1.1) characterized by their time independent profile,
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uniformly translating at some constant speed c. Plugging the ansatz u(t, x, y) =
φ(x, y + ct) yields the elliptic equation

(1.2) −∆φ+ c∂yφ = f(φ) in R2,

completed by the following conditions at infinity, understood in the pointwise sense
in x:

(1.3) φ(x,−∞) = 0, φ(x,+∞) = 1.

Looking for planar travelling waves (i.e solutions of (1.2)-(1.3) independent of
x), it is well known, see [7], that there is a unique speed c0 > 0 and a unique profile
φ0 (up to translations) such that the ordinary differential equation

(1.4) −φ′′0 + c0φ
′
0 = f(φ0) in R, φ0(−∞) = 0, φ0(+∞) = 1

has a solution. The function φ0(y + c0t) is a planar solution of (1.1).
It is also known that (1.1) has genuinely nonplanar, conical-shaped, travelling

wave solutions. Taking a uniform limit in x in (1.3) automatically yields that φ is a
planar wave φ(x, y) = φ0(y+ y0) for some translate y0 ∈ R; see [2]. Taking the limit
in (1.3) pointwise - as opposed to uniformly - in x, the papers [10], [11] and [12] -
see also [20] - prove the existence of solutions (c, φ) = (c0/ sinα, φ) of (1.2)-(1.3) for
some angle α ∈ (0, π/2) satisfying the following properties:

(P1)0 < φ < 1 in R2,
(P2) φ(x, y) = φ̃(|x|, y), ∂|x|φ̃ ≥ 0, ∂yφ > 0,
(P3) the function φ satisfies

(1.5)


lim sup

A→+∞, y≥A−|x| cotα

(1− φ(x, y)) = 0,

lim sup
A→−∞, y≤A−|x| cotα

φ(x, y) = 0.

(P4) the function φ is decreasing in any unit direction τ = (τx, τy) ∈ R2 such
that τy < − cosα,

(P5) there is exponential convergence of φ(x, y) to the planar fronts φ0(±x cosα+
y sinα) in the directions (± sinα,− cosα); moreover the slopes of the level lines of
φ converge exponentially, in the same directions, to ∓ cotα. More precisely, if we
set

(1.6) X = x sinα− y cosα, Y = x cosα+ y sinα

and still denote φ(x, y) by φ(X, Y ) with an obvious abuse of notations,then the level
line {φ(X, Y ) = a} is described in the half-plane {x ≥ 0} by an equation {Y =
ψa(X)}, and there is ω = ω(α, f) > 0 such that, for all a ∈ (0, 1) and X > 0,

(1.7) |ψ′a(X)| ≤ Cae
−2ω|X|

for some constant Ca = Ca(a, α, f, φ). Also, for all Y such that the point (X, Y +
ψa(X)) is in the half-plane {x > 0}, we have

|φ(X, Y + ψa(X))− φ0(Y + φ−1
0 (a))| ≤ Cae

−2ω(|X|+|Y |).
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The constant Ca degrades as a converges to 0 or 1.

As far as the Cauchy problem for (1.1) is concerned, if u0 is a continuous func-
tion from R2 to (0, 1) trapped between two (planar or conical) waves, then there
exists a unique solution u(t, x, y) of equation (1.1) emanating from u0 with the same
properties as u0 for any time t > 0.

One question of interest for this reaction diffusion equation (1.1) is the behaviour
as t goes to infinity of u(t, x, y). A prominent role is played by the family of the
travelling waves, and much is understood about their stability. What is already
known is summarised in the following set of properties:

(P6) Let u0(y) be a - one-dimensional - Cauchy datum to (1.1), satisfying

lim sup
y→−∞

u0(y) < θ, lim inf
y→+∞

u0(y) > θ.

Then there is y0 ∈ R and ω > 0 such that, if u(t, y) is the solution of (1.1) emanating
from u0, we have - Fife-McLeod [7] - u(t, y)− φ0(y+ y0 + c0t) = O(e−ωt), uniformly
in y ∈ R.

(P7) Let u0(x, y) be a - possibly two-dimensional - Cauchy datum to (1.1), sat-
isfying

(1.8) ε := ‖u0 − φ0‖H1(R2) << 1.

Then - see Xin [26], Levermore-Xin [17], Kapitula [14] - we have, for some ω > 0:
u(t, x, y)− φ0(y + c0t) = O(t−ω), uniformly in (x, y) ∈ R2.

(P8) Let u0(x, y) be a - two-dimensional - Cauchy datum to (1.1), satisfying

(1.9) |u0(x, y)− φ(x, y)| = O(e−α(|x|+|y|)),

where α is some positive number, and φ(x, y) a solution of (1.2)-(1.3)-(1.5). Then
- see Hamel-Monneau-Roquejoffre [10] - we have, for some ω > 0 uniformly in
(x, y) ∈ R2:

u(t, x, y)− φ(x, y + ct) = O(e−ωt)

(P9) Let u(t, x, y) be a time-global - i.e. defined on {(t, x, y) ∈ R3} - solution
of (1.1), such that there is (X1, X2) ∈ R2 × R2 for which we have uniformly in
(t, x, y) ∈ R3

φ((x, y + ct) +X1) ≤ u(t, x, y) ≤ φ((x, y + ct) +X2).

Then - see Hamel-Monneau-Roquejoffre [10] - we have, for some X0 ∈ R2:
u(t, x, y) = φ((x, y + ct) +X0).

Let us examine the differences between these four properties. Let u0 be a Cauchy
datum for (1.1), lying between two conical waves:

φ((x, y) +X1) ≤ u0 ≤ φ((x, y) +X2)

Define its ω-limit set as

ω(u0) = {ψ(x, y) ∈ C(R2) | ∃(tn)n → +∞ s.t. lim
n→+∞

u(tn, x, y + ctn) = ψ(x, y)}.
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It is important to note that the convergence in the above definition of the ω-limit
set should a priori be understood in the pointwise sense - or uniformly on every
compact subset of R2 -: at this stage, we only have at our disposition the derivative
estimates, which are not strong enough to imply uniform convergence properties. In
fact, ω(u0) might well be empty if we insist in talking about uniform convergence
on R2.

There is a gap between the behaviour described in (P8) and that described in
(P9). Applying (P9) yields that ω(u0) is made up of solutions of (1.2)-(1.3). How-
ever, due to the translational invariance of (1.2)-(1.3), ω(u0) may well be homeo-
morphic to a nontrivial compact subset of R2. On the contrary, applying (P8) yields
that ω(u0) is reduced to a single conical wave and is homeomorphic to a single point
of R2. It is therefore natural to ask whether a conclusion similar to that of (P8)
is kept, even if its assumptions are relaxed. See [18] for a result in this direction:
the difference u0 − φ is only supposed to vanish at infinity instead of doing it in
an exponential fashion; in return no particular rate of convergence holds. However,
assuming only that the initial datum lies between two waves is still weaker than this
last assumption. Finally, let us just remark that a similar gap exists between data
which converge to a planar wave at infinity - property (P7) - and data which simply
sit between two planar waves - one can prove, in a similar fashion as in (P9), that
their ω-limit sets are made up of planar waves.

The contribution of this paper is to prove that the ω-limit set of a Cauchy datum
to (1.1) is nontrivial in general. We will, in particular, construct Cauchy data u0,
trapped between two waves, such that ω(u0) is homeomorphic to a compact of R2

with nonempty interior. To this end, we will first have to understand what happens
with planar fronts and extend those results to conical fronts. In other words, this
paper shows that the asymptotic stability of planar (resp. conical) traveling waves
proved in (P7) (resp. (P8)) breaks down as soon as the assumptions are relaxed
as low as ”the initial datum u0 to (1.1) lies between two planar (resp. conical)
waves”. Comparing these results to (P6) highlights the gap between the dynamics
in dimension n = 1 and dimensions n ≥ 2.

We note here that such nontrivial behaviour has already been observed in
reaction-diffusion equations: see, for instance [23] or [27], where it is proved that
an expanding, initially compactly supported, solution of (1.1), does not necessarily
attain eventual spherical symmetry. See also [21] for different aspects of the problem
in bounded domains.

The above considerations draw the plan of the paper: after presenting our results
in Section 2, and deriving some consequences, we will prove in Section 3 that the
large-time dynamics of (1.1), complemented by a datum lying between two planar
waves, is that of a one-dimensional heat equation. Such an equation is, counter-
intuitively enough, known to exhibit nontrivial dynamics, see Collet-Eckmann [5]
and later papers such as, for instance, [25]. Section 4 will be devoted to conical-
shaped - with the same angle α - data; we will prove that the resulting dynamics
is that of the product of two advection-diffusion equations. The last section is
an appendix in which we shall recall, for the reader’s convenience, some classical
interpolation inequalities deduced from the scaling properties of the heat equation.
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2 Results and their consequences

The large-time behaviour of (1.1) will be described by two asymptotic estimates -
one for the planar case, one for the conical case - in which we will show that the
solution of (1.1) evolves to a shifted travelling wave, with the property that the shift
will be varying in space and time. What will allow us to say something is that the
shift will be slowly varying in time.

2.1 Main results

As announced in the introduction, let us start with almost planar initial data.

Theorem 2.1 (Almost planar initial data). Given u0 ∈ C(R2), assume the exis-
tence of two reals y1 ≤ y2 such that

∀(x, y) ∈ R2 : φ0(y + y1) ≤ u0(x, y) ≤ φ0(y + y2),

where φ0(y) is a solution of (1.4).
[i]. Then, there is t0 > 0 and a function s(t, x) ∈ C2([t0,+∞) × R) such that the
solution u(t, x, y) of (1.1), emanating from u0, satisfies, for all δ ∈ (0, 1):

(2.1) sup
t≥t0,(x,y)∈R2

|u(t, x, y)− φ0(y + c0t+ s(t, x))| = O(tδ−1).

Moreover, for all δ ∈ (0, 1), there is Cδ(u0) > 0 such that the function σ(t, x) :=
ec0s(t,x)/2 satisfies, for t ≥ t0:

(2.2) |σt − σxx| ≤
Cδ(u0)

(1 + t)2−2δ
.

[ii]. Assume the existence of ε > 0 and of a smooth function s0(x) such that

(2.3) sup
(x,y)∈R2

|u0(x, y)− φ0(y + s0(x))|+ ‖∂xxσ0‖L∞(R) ≤ ε,

where we have set σ0 = ec0s0/2. Then, if ε is small enough, we may choose

(2.4) t0 = 0, and Cδ(u0) = O(εδ).

We note that a result similar to [ii] was already proved by Brauner-Hulshof-Lunardi
[4], in the case of the following free boundary problem:

(2.5)
ut −∆u = 0 in {u < 1}

[u] = 0, [uν ] = −1 on ∂({u < 1})

Problem (2.5) is very much related to our equation: it is indeed - at least in a formal
fashion: passing to the limit in a mathematically rigorous way is a difficult question
- the limit, as ε→ 0, of the reaction-diffusion equation

ut −∆u =
1

ε2
(1− u)ϕ

(
u− 1

ε

)
,
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where ϕ is, for instance, the characteristic function of the interval [−1,+∞). See,
for instance, [3] on this aspect.

Turn now to the conical case. Define the tilted coordinates (X±, Y±):

(2.6)

{
X+ = x sinα− y cosα, Y+ = x cosα+ y sinα
X− = −x sinα− y cosα, Y− = −x cosα+ y sinα

Theorem 2.2 Let φ(x, y) be the only solution of (1.2)-(1.3) that is even in x and
satisfies φ(0, 0) = θ. Consider a Cauchy data u0(x, y) ∈ C2(R2) satisfying the
following requirements.

• there exist a small ε > 0 and a couple (X1, X2) ∈ R2 × R2 such that

(2.7) φ((x, y) +X1) ≤ u0(x, y) ≤ φ((x, y) +X2), |X1 −X2| ≤ ε,

• there holds ∂yu0 > 0. Moreover there is ρε > 0, with lim
ε→0

ρ4
ε

ε
= 0, such that

(2.8) lim sup
X±→+∞

‖∂X±X±u0(X±, .)‖L∞(R) ≤ ρ2
ε.

Choose λ ∈ (0, 1), let the set {u0(x, y) = λ} be written as {Y+ = s+
0 (X+)} - resp.

{Y− = s−0 (X−)} in the right half-plane {x > 0} - resp. in the left half-plane {x < 0}
(the dependence in λ is deleted for commodity). Define the functions σ±0 (X±) as

(2.9) σ±0 (X±) =

{
ec0s

±
0 (X±)/2 if X± ≥ 1

ec0s
±
0 (1)/2 if X± ≤ 1

Let σ±(t,X±) be the solutions of the advection-diffusion equations

(2.10)
(∂t − ∂X±X± − c cosα∂X±)σ± = 0

σ±(0, X±) = σ±0 (X±)

Let u(t, x, y) be the solution of (1.1) emanating from u0. For a given λ ∈ (0, 1),
there exists A > 0 such that the set {u(t, x, y) = λ} can be described as of the form
{Y+ = χ+(t,X+)} in the half-plane {x ≥ A} - resp. {Y− = χ−(t,X−)} in the half-
plane {x ≤ −A}. Moreover there is a constant Cε > 0 - possibly going to +∞ as
ε→ 0 - and another constant C > 0 independent of ε, such that there holds, for all

δ ∈ (0,
1

2
), and uniformly in (t, x, y) ∈ R+ × R2:

(2.11) |χ±(t,X±)− Logσ±(t,X±)| ≤ Cε

(
1

(1 + t)1−2δ
+ e−ω(|x|+|y|)

)
+ Cρδ/2ε .

This theorem calls the following

Remark 2.3 [i]. The assumption ∂yu0 > 0 is a commodity assumption that can
certainly be removed. See [10], Theorem 1.7, how it is possible to take into account
fluctuations at infinity. Notice, however, that the strong maximum principle and
(2.7) imply that ∂yu(1, ., .) > 0 on a very large subset of R2.
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[ii]. If we set u0 = φ, then we may take ρε = 0 by Property (P5). We wish to express
here that the level sets of u0 deviate from those of φ in a non-integrable fashion, but
that the oscillation is very mild - and in any case, smaller than the distance between
u0 and the travelling wave closest to it in the L∞ norm.
[iii]. The assumption that the initial datum is L∞-close to a front can also certainly
be removed. However, it is quite sufficient to display explicit examples of nontrivial
behaviour.

2.2 Interpretation and consequences of Theorems 2.1 and
2.2

2.2.1 Interpretation of Theorem 2.1

The presence of the term
Cδ(u0)

(1 + t)2−2δ
in equation (2.2) does allow us to conclude

- because of the time-integrability of this term - that the eventual dynamics of
σ(t, x) = ec0s(t,x)/2 is the one of the heat equation, but does not allow us to conclude
that this dynamics is nontrivial. In order to exhibit a nontrivial dynamics, we resort
to Part [ii] of Theorem 2.1.

Let us consider an initial datum u0 satisfying (2.3). We note that the smallness
assumption concerns the derivatives of s0, but not the function s0 itself: hence this
function has a lot of room to oscillate. In particular, we may take

(2.12) sup
R
s0 = 1, inf

R
s0 = 0,

while keeping s′0 and s′′0 small. If σ0(t, x) is the solution of the heat equation

σ0
t = σ0

xx, σ0(0, .) = ec0s0/2 := σ0,

we denote by ω(σ0) the ω-limit set of σ0 with respect to the above dynamical system.
Let us construct s0 in such a way that we have ω(σ0) = [1, ec0/2]. Let (an)n be an
increasing sequence such that

(2.13) lim
n→+∞

an+1

an
= +∞

and s0(x) defined by

(2.14) s0(x) =

{
1 if a2n ≤ |x| < a2n+1

0 if a2n+2 ≤ |x| < a2n+3

with smooth matching in the intervals [a2n+1, a2n+2] and [a2n+3, a2n+4] - this is to
keep the derivatives of s0 small. We have

(2.15) σ0(t, 0) =
1√
π

∫ +∞

−∞
e−y

2

σ0(
√
ty) dy .

Let (tn)n be an increasing sequence such that

(2.16) lim
n→+∞

an√
tn

= 0, lim
n→+∞

an+1√
tn

= +∞;
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this is possible by (2.13). A possible choice is an = (n + n0)! and tn = na2
n; the

integer n0 is chosen large enough so that s′0 and s′′0 are suitably small. In any case,
equation (2.16) and the dominated convergence theorem permit us to infer from
(2.15):

lim
n→+∞

σ0(t2n, 0) = ec0/2, lim
n→+∞

σ0(t2n+3, 0) = 1.

This is exactly the behaviour that we were looking for.
The just constructed example is, of course, by no means new. It was first iden-

tified in [5], where the reader may find a much more exhaustive study.
Apply Theorem 2.1 to u0: estimate (2.2) implies

(2.17) ‖σ(t, .)− σ0(t, .)‖L∞(R) = O(εδ), uniformly in t.

From (2.12), for all x ∈ R, the function t 7→ s(t, x) has an interval of asymptotic
values of length at least 1 − O(εδ). This implies the nontrivality of ω(u0), and
this also implies that the dynamics of the function σ(t, x) = ec0s(t,x) is εδ-close to a
nontrivial dynamics of the pure heat equation.

2.2.2 Interpretation of Theorem 2.2

This time, the difference between the two translates of the conical wave bounding
the initial datum u0 is small; however we still have the freedom to choose how slowly
the level lines of u0 will oscillate at infinity. In particular, we may decide that their
oscillation rate will be much smaller than their amplitude, and this is the meaning
of Condition (2.8). In particular, we may take

(2.18) sup
R
s±0 = ε, inf

R
s±0 = 0.

while keeping the derivatives of both functions s±0 of order ρ2
ε . Let us construct s±0

in such a way that ω(σ±0 ) is non-trivial, where σ±0 = ec0s
±
0 /2 and where the ω-limit

set is taken with respect to the advection-diffusion equations (2.10), with solutions
σ±(t,X±).

If (an)n is a sequence satisfying (2.13), and if s0(X±) is defined by (2.14), we
have

(2.19) σ±(t, 0) =
1√
π

∫ +∞

−∞
e−y

2

σ±0 (
√
ty + ct cosα) dy .

If (tn)n satisfies (2.16), then we have

lim
n→+∞

σ±(t2n, 0) = ec0ε/2, lim
n→+∞

σ±(t2n+3, 0) = 1.

This, and much more, is explained in Vázquez-Zuazua [25].

Apply Theorem 2.2 to u0: if δ ∈
(

1

2
, 1

)
, estimate (2.11) implies:

(2.20) ‖χ±(t, .)− Logσ±(t, .)‖L∞({|(x,y)|≥ω−1|Logρε|}) = O(ρδ/2ε ),

as soon as t > 0 is large enough. Now, choose any δ >
1

2
. From (2.20), for all x ∈ R,

the function t 7→ σ±(t,X±) has an interval of asymptotic values of length at least

ε(1 + O(ρ
δ/2
ε ε−1)) = ε(1 + O(ε2δ−1)) = ε(1 + oε→0(1)). As a consequence, we once

again recover the nontrivality of ω(u0).
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2.3 Notations

Let us close the section by setting up some notations that will be used all along
the paper. We will extensively work with Hölder’s spaces defined as follows: If I is
an open, not necessarily bounded interval of R+, let us denote - as is classical - by
C

α
2
,α(I × Rn) the space of all functions u(t,X) ∈ L∞(I × Rn) such that

(2.21) ‖u‖
Ċ

α
2 ,α(I×Rn)

:= sup
|u(t,X)− u(t′, X ′)|
|t− t′|α2 + |X −X ′|α

< +∞,

where the supremum is taken over all quadruples (t, t′, X,X ′) ∈ I2 × R2n such
that t 6= t′ and X 6= X ′. The set C1+α

2
,2+α(I × Rn) is the space of functions

u(t,X) ∈ L∞(I ×Rn) such that ∂tu and ∂2
Xu exist and belong to C

α
2
,α(I ×R2). See

[16] for an extensive study of the properties of these spaces. The spaces Cα(Rn) and
C2+α(Rn) - the functions of these spaces do not depend of t - are defined similarly.

Let now φ0(y) be a solution of (1.4). If BUC(R) is the set of all bounded,
uniformly continuous functions of R, and if BUCk(R) is the set of all bounded, Ck

functions of R whose kth derivative is in BUC(R), define L0 by

D(L0) = BUC2(R), L0 = − d2

dy2
+ c0

d

dy
− f ′(φ0).

L0 stands for the linearised operator of equation (1.4) around the wave φ0. Recall
that 0 is a simple isolated eigenvalue of L0 with eigenvector φ′0. Therefore, see [13],
[14], [24], the space BUC(R) may be broken as

BUC(R) =<φ′0 > ⊕R(L0) = N(L0)⊕R(L0),

and the projector P onto N(L0) parallel to R(L0) is given by

(2.22) (Pu)(y) =

(
α

∫
R
e−c0zφ′0(z)u(z) dz

)
φ′0(y) =

(∫
R
ψ0(z)u(z)dz

)
φ′0(y).

where ψ0(y) = αe−c0yφ′0(y) and α is chosen so that
∫

R ψ0φ
′
0 = 1. We set

Q = I − P.

The spectral subspace corresponding to the eigenvalue 0 is defined by N(L0) =
{u ∈ BUC2(R) |u = Pu} and its supplementary by R(L0) = {u ∈ BUC2(R) |Pu =
0}. Then, R(L0) equipped with the L∞(R) norm is a Banach space and L0|R(L0)

generates an analytic semigroup which satisfies ‖etL0‖L(R(L0)) ≤ Ce−γt for all t ≥ 0
and some given positive constants C and γ.

Finally, we denote by C a generic positive constant, which may differ from place
to place even in the same chain of inequalities.

3 Almost planar fronts

The proof of Theorem 2.1, presented in this section, is broken into two parts. In
the first part, we assume that the initial datum is L∞-close to a wave, and more
precisely that (2.3) holds. In the second part, we prove that the problem may be
reduced to the model situation of the first part, provided a sufficiently large time
has elapsed.
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3.1 Local study

Here is the exact statement that we are going to prove here.

Theorem 3.1 Fix α ∈ (0, 1). Consider u0(x, y) ∈ C2+α(R2) for which we may find
a couple (s0(x), v0(x, y)), and two positive numbers C and ε such that
(i) s0 ∈ C2+α(R), v0 ∈ C2+α(R2); moreover, if σ0 = ec0s0/2 we have

(3.1) ‖v0‖C2+α(R2) ≤ ε, ‖σ0‖L∞(R) ≤ C, ‖∂xxσ0‖Ċα(R) ≤ ε.

(ii) For all x ∈ R we have Pv0(x, .) = 0; moreover we have the equality

(3.2) u0(x, y) = φ0(y + s0(x)) + v0(x, y + s0(x)).

Then, there exists a unique global in time solution u of equation (1.1) emanating
from u0 and there is a unique decomposition for any (t, x, y) ∈ R+ × R2

(3.3) u(t, x, y) = φ0(y + c0t+ s(t, x)) + v(t, x, y + c0t+ s(t, x)), Pv(t, x, .) = 0

such that, for all δ ∈ (0, 1) we have

‖v(t)‖L∞(R2) = O

(
εδ

(1 + t)1−δ

)
and the function σ(t, x) := ec0s(t,x)/2 satisfies, for some Cδ > 0:

(3.4) |σt − σxx| ≤
Cδε

δ

(1 + t)2−2δ
.

Proof of Theorem 3.1. Since u0 ∈ C2+α(R2), there exists a unique solution
u ∈ C1+α/2,2+α(R+×R2) of equation (1.1) emanating from u0. Let u(t, x, y) undergo
the three successive transformations.

• Set u(t, x, y) = U(t, x, y + c0t + s(t, x)) - the function s(t, x) is, at this stage,
an unknown that satisfies s(0, x) = s0(x) - the function U satisfies

(3.5) Ut −∆U − 2sxUxy − s2
xUyy + (st + c0 − sxx)Uy = f(U)

where Uy denotes the derivative of U with respect to its third variable.

• Denoting by (t, x, y) the new system of coordinates and setting u(t, x, y) :=
U(t, x, y) - the old reference frame will not be referred to anymore - we look
for a decomposition of u(t, x, y) as

u(t, x, y) = φ0(y) + v(t, x, y), Pv(t, x, .) = 0, v(0, x, y) = v0(x, y).

Such a decomposition is certainly valid at time t = 0. To be valid for all later
time, it must go with an equation for s. To derive it, we look for s(t, x) as
- Hopf-Cole transform - σ(t, x) = ec0s(t,x)/2. Expand equation (3.5) about φ0;
then project it, pointwise in x, onto N(L0) and R(L0), this yield the system

(3.6)

{
vt + (−∂xx + L0)v = f1(σ, v)

σt − ∂xxσ = f2(σ, v)

where the fi’s are functionals whose expressions can be explicitely computed
from (3.5) and the Taylor’s formula with integral remainder.
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• Finally, let (σ∗, v∗) be the unique solution of the (linear) system

(3.7)


∂tv∗ + (−∂xx + L0)v∗ =

4

c20

(
∂xσ∗
σ∗

)2

Q(φ′′0)

∂tσ∗ − ∂xxσ∗ = 0
σ∗(0, x) = σ0(x), v∗(0, x, y) = v0(x, y)

The unknown (σ, v) is sought for under the form (σ∗ + σ1, v∗ + v1), and the
new unknown satisfy

(3.8)


∂tv1 + (−∂xx + L0)v1 = F1(σ1, v1)

∂tσ1 − ∂xxσ1 = F2(σ1, v1)
σ1(0, x) = 0, v1(0, x, y) = 0

where the expressions of the functionals Fi are given by

F1(σ1, v1) = Q(Kφ0 [v]v
2) +

4

c0

σx
σ
Q(vxy) +

4

c20

(σx
σ

)2

Q(vyy)

+
4

c20

(((σx
σ

)2

−
(
∂xσ∗
σ∗

)2
)
Q(φ′′0)−

2

c0

(
σt
σ
− σxx

σ
−
(σx
σ

)2
)
Q(vy)

)
F2(σ1, v1) =

c0
2
σ

∫
R

ψ0(y)Kφ0 [v]v
2 dy + 2σx

∫
R

ψ0(y)vxy dy

+
2

c0

σ2
x

σ

∫
R

ψ0(y)vyy dy −
(
σt − σxx +

σ2
x

σ

)∫
R

ψ0(y)vy dy

where we have noted, for commodity: (σ, v) = (σ∗ + σ1, v∗ + v1) and

Kφ0 [v]v
2 = f(φ0 + v)− f(φ0)− f ′(φ0)v =

v2

2

∫ 1

0

(1− ζ)f ′′(φ0 + ζv) dζ .

The expressions of F1 and F2 look formidable, but they are only standard quadratic
terms in the unknowns that we wish to keep small, i.e. v1 and σ1. From now on, we
fix δ ∈ (0, 1). All the constants in the rest of the section will depend on δ.

Lemma 3.2 (Estimates on (σ∗, v∗)). Under the assumptions of Theorem 3.1, we
have, for some C > 0 independent of ε:

‖σ∗(t)‖L∞(R) ≤ C,

‖∂xσ∗(t)‖∞ ≤ Cε
δ

2+α

(1 + t)1/2−δ/2 , ‖∂xxσ∗(t)‖∞ ≤ Cε
δ

2+α

(1 + t)1−δ

‖σ∗‖Ċα, α
2
≤ Cε

δ
2+α

(1 + t)1/2−δ/2 , ‖∂xσ∗‖Ċα, α
2
≤ Cε

δ
2+α

(1 + t)1−δ

‖v∗(t)‖L∞(R2) ≤
Cε

2δ
2+α

(1 + t)1−δ ,

‖∂xv∗(t)‖∞ ≤ Cε
3δ

2+α

(1 + t)3/2−3δ/2
, ‖∂yv∗(t)‖∞ ≤ Cε

2δ
2+α

(1 + t)1−δ

‖∂xyv∗(t)‖∞ ≤ Cε
3δ

2+α

(1 + t)3/2−3δ/2
, ‖∂yyv∗(t)‖∞ ≤ Cε

2δ
2+α

(1 + t)1−δ

‖v∗‖Ċα,α/2 ≤
Cε

3δ
2+α

(1 + t)3/2−3δ/2
, ‖∂yv∗‖Ċα,α/2 ≤

Cε
3δ

2+α

(1 + t)3/2−3δ/2

‖∂xyv∗‖Ċα,α/2 ≤
Cε

4δ
2+α

(1 + t)2−2δ
, ‖∂yyv∗‖Ċα,α/2 ≤

Cε
3δ

2+α

(1 + t)3/2−3δ/2
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These estimates will be proved in Appendix.

Proof of Theorem 3.1 (continued). By a standard analytic semigroup argu-
ment - see [13], Chap. 3 - system (3.8), endowed with the initial datum (σ1, v1)(t =
0) = (0, 0), has a unique local in time solution (σ1, v1) ∈ C1+α

2
,2+α([0, T ∗[×R) ×

C1+α
2
,2+α([0, T ∗[×R2) for some T ∗ > 0. Let T > 0 be the largest time T ′ such that,

forall t ∈ [0, T ′], we have

(3.9)



‖σ1(t)‖L∞(R) ≤ ε
2δ

2+α

‖∂xσ1(t)‖L∞(R) ≤
ε

2δ
2+α

√
1 + t

‖∂xxσ1‖Ċ α
2 ,α((t,2t)×R)

+ ‖∂tσ1‖Ċ α
2 ,α((t,2t)×R)

≤ ε
2δ

2+α

(1 + t)1+α
2

‖v1(t)‖L∞(R2) ≤
ε

2δ
2+α

1 + t

‖∂yyv1‖Ċ α
2 ,α((t,2t)×R2)

≤ ε
2δ

2+α

1 + t

‖∂xxv1‖Ċ α
2 ,α((t,2t)×R2)

+ ‖∂xyv1‖Ċ α
2 ,α((t,2t)×R2)

≤ ε
2δ

2+α

(1 + t)1+α
2

Since at time t = 0, σ1 = 0 and v1 = 0, the definition of T makes sense and by
continuity, T > 0. We claim that T = T ∗ which also implies T = T ∗ = +∞. Indeed,
if T < T ∗, for any t ∈ [0, T ], inequalities (3.9) hold and by appendix 5.4,

‖F2(t)‖L∞ ≤C
(
‖v(t)‖2

∞ + ‖σx(t)‖∞‖vxy(t)‖∞ + ‖σx(t)‖2
∞‖vyy(t)‖∞

)
+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖∂xσ∗(t)‖2

∞)‖vy(t)‖∞

≤ ε
4δ

2+α

(1 + t)2(1−δ)

‖F2‖Ċ α
2 ,α((t,2t)×R)

≤ ε
5δ

2+α

(1 + t)
5
2
(1−δ)

Using the integral formulation of (3.8) for σ1, the above estimates on F2 norms and
Proposition 5.4, we obtain the following more precise estimates

‖σ1(t)‖L∞(R) ≤ ε
4δ

2+α ‖σ1‖Ċ α
2 ,α((t,2t)×R)

≤ ε
4δ

2+α

√
1 + t

‖∂xσ1(t)‖L∞(R) ≤
ε

4δ
2+α

√
1 + t

‖∂xσ1‖Ċ α
2 ,α((t,2t)×R)

≤ ε
4δ

2+α

1 + t

‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ ≤ ε
4δ

2+α

1 + t
‖∂tσ1‖Ċ α

2 ,α + ‖∂xxσ1‖Ċ α
2 ,α ≤

ε
4δ

2+α

(1 + t)1+α
2
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We now plug these last inequalities into the equation for v1. By Appendix 5.4 there
holds

‖F1(t)‖L∞(R2) ≤C
(
‖v(t)‖2

∞ + ‖σx(t)‖∞‖vxy(t)‖∞ + ‖σx(t)‖2
∞‖vyy(t)‖∞

)
+ C(‖∂xσ1(t)‖∞‖σ∗(t)‖∞ + ‖σ1(t)‖∞‖∂xσ∗(t)‖∞)‖∂xσ∗(t)‖∞
+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖∂xσ∗(t)‖2

∞)‖vy(t)‖∞

≤ ε
4δ

2+α

1 + t

In a similar way, we get the same decay, rate for ‖F1‖Ċ α
2 ,α((t,2t)×R2)

and thus,

‖v1(t)‖L∞(R2) + ‖∂yyv1(t)‖L∞(R2) ≤
∫ t

0

e−γ(t−τ)
ε

4δ
2+α

1 + τ
dτ ≤ ε

4δ
2+α

1 + t
.

Finally, using Proposition 5.4 once again, we get

‖∂xxv1‖Ċ α
2 ,α + ‖∂xyv1‖Ċ α

2 ,α ≤
ε

4δ
2+α

(1 + t)1+α
2

.

Thus, at time t = T , the inequalities satisfied by the norms of σ1 and v1 are better
than expected and we contradict the maximal nature of T . Thus T = T ∗ = +∞
and estimates (3.9) are satisfied for all times. This concludes the proof of Theorem
3.1.

3.2 Global study

The aim of this section is to bridge the gap between Theorem 2.1 and Theorem 3.1.
We assume here that the initial datum lies between two waves and we show that,
provided a long time has elapsed, the solution satisfies the assumptions (3.1) and
(3.2) of Theorem 3.1, that is to say the model situation (2.3) in which the solution
u can be split, in each point x ∈ R, into a translate of the wave φ0 and a small
perturbation v0.

Theorem 3.3 Given u0 ∈ C(R2), assume the existence of y1 ≤ y2 such that

∀(x, y) ∈ R2 : φ0(y + y1) ≤ u0(x, y) ≤ φ0(y + y2),

where φ0(y) is a solution of (1.4). We denote by u(t, x, y) the solution of equation
(1.1) emanating from u0. Fix α ∈ (0, 1). Then, for any ε > 0, there exist some time
tε > 0 and some function sε ∈ C2+α(R) such that

‖u(tε, x, y)− φ0(y + sε(x))‖C2+α(R2) ≤ ε

‖∂xxsε‖Ċα(R) ≤ ε

Let us postpone the proof of this theorem to the end of this section and use it
for the
Proof of Theorem 2.1. Let u0 ∈ C(R2) be as in the assumptions of Theorem
2.1. Let y1 and y2 be two real numbers such that

∀(x, y) ∈ R2 , φ0(y + y1) ≤ u0(x, y) ≤ φ0(y + y2) .
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Let u(t, x, y) be the unique solution to the Cauchy problem

∂tu−∆u = f(u) t > 0 , (x, y) ∈ R2

u(0, x, y) = 0 (x, y) ∈ R2

Fix α ∈ (0, 1) and ε > 0. By Theorem 3.3, there exist tε > 0 and a function
sε ∈ C2+α(R) such that

‖u(tε, x, y)− φ0(y + sε(x))‖C2+α(R2) ≤ ε

‖∂xxsε‖Ċα(R) ≤ ε .

Let us define the following functions

v0(x, y + sε(x)) = u(tε, x, y)− φ0(y + sε(x))

s0(x) = sε(x)

σ0(x) = ec0s0(x)/2

Then, s0 ∈ C2+α(R), v0 ∈ C2+α(R2), ‖v0‖C2+α(R2) ≤ ε and there exists a constant
C > 0 such that ‖σ0‖∞ ≤ C. In ordrer to use Theorem 3.1, we just need to estimate
the norm Ċα(R) of ∂xxσ0, which is easily computed from the previous estimates,
interpolation inequalities developped in Appendix 5.1 and Taylor’s formula for the
exponential function. Thus,

‖∂xxσ0‖Ċα ≤ Cε
4

(2+α)2(1+α)

where C > 0 is some positive constant.

Letting ε̃ = ε
4

(2+α)2(1+α) , we finally have (v0, s0) ∈ C2+α(R) × C2+α(R2), the
estimates ‖v0‖C2+α(R2) ≤ ε̃, ‖∂xxσ0‖Ċα(R) ≤ ε̃. By modifying v0 and σ0 in an ε̃-
fashion - this only requires the Implicit functions Theorem - we may also assume
that the decomposition u0(x, y) = φ0(y+s0(x))+v0(x, y+s0(x)), with Pv0(x, .) = 0,
holds. Applying Theorem 3.1, there exists a unique decomposition for t > tε

u(t, x, y) = φ0(y + c0t+ s(t, x)) + v(x, y + c0t+ s(t, x)) and Pv(x, .) = 0

where s and v satisfy the expected estimates.
Turn to the proof of Theorem 3.3, which will be divided in a few lemmas for

clarity. The idea is to show that the distance in y between the fonction u(t, x, .) and
the family of the travelling waves {φ0(.+ y0)}y0∈R goes to zero as t goes to infinity.

Lemma 3.4 Under the assumptions of Theorem 3.3, lim
t→+∞

∂tu = 0 uniformly in

(x, y) ∈ R2.

Proof. The - by now classical - idea is to use a sliding method both in time and
space. Pick h > 0, t > 0 and s ≥ t. Define uk(s, x, y) = u(s + h, x, y + k). Then,
∂tu

k = ∆uk − c0∂yu
k + f(uk). By the maximum principle, u stays between two

travelling waves; therefore there holds lim
y→−∞

u(s, x, y) = 0 and lim
y→+∞

u(s, x, y) = 1

uniformly in (s, x) ∈ [t,+∞) × R. Thus, because φ0 is increasing there is A > 0
such that

∀k ≥ A , ∀s ≥ t , ∀(x, y) ∈ R2 , u(s, x, y) ≤ uk(s, x, y)
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Setting

k∗(t) = inf{k > 0 | ∀s ≥ t , ∀(x, y) ∈ R2 , u(s, x, y) ≤ uk(s, x, y)}

we shall prove that lim
t→+∞

k∗(t) = 0. Denote by l the limit of this positive non-

increasing fonction k∗ and let us prove by contradiction that l = 0.
Indeed, if l > 0, we are able to build a sequence (tn)n∈N going to infinity, such

that (k∗(tn))n converges to l as n→ +∞, and for any n ∈ N, there is (sn, xn, yn) ∈
[tn,+∞)× R2 with

(3.10) lim
n→+∞

(
u(sn, xn, yn)− u(sn + h, xn, yn + k∗(tn))

)
= 0 .

Denote by vn(s, x, y) = u(s + sn, x + xn, y) for s > −sn. Then, vn satisfies
∂tvn = ∆vn − c∂yvn + f(vn) and by standard parabolic estimates, Ascoli’s Theorem
and up to a sub-sequence, (vn)n∈N converges locally uniformly in (s, x, y) ∈ R3

towards a function v∞ which is a global solution to

∂tv∞ = ∆v∞ − c∂yv∞ + f(v∞) .

Because u is between two fixed translates of φ0, we may assume that (yn)n converges
to some y∞ ∈ R. From Property (P9) we have v(t, x, y) = φ0(y + y∞). However,
passing to the limit in (3.10) when n goes to infinity, we get v∞(h, 0, k∗) = v∞(0, 0, 0).
This is impossible; φ0 cannot be periodic. Then, l = 0 and lim

t→+∞
k∗(t) = 0.

Now, notice that our argument is valid irrespective of the sign of h. Indeed, we
only have to assume that |h| ≤ 1 and start the argument from t > 1. This implies:

(3.11) lim
t→+∞

(
u(t+ h, x, y)− u(t, x, y) = 0

)
uniformly in (x, y) ∈ R2.

To prove that lim
t→+∞

‖∂tu(t, ., .)‖∞ = 0, we argue as follows: pick any ε > 0; from

(3.11) with h = ε there is tε > 0 such that

(3.12) ∀t ≥ tε, ∀(x, y) ∈ R2, |u(t+ ε, x, y)− u(t, x, y)| ≤ ε2.

For t ≥ tε and (x, y) ∈ R2; (3.12) and the mean value theorem yield the existence
of tε,x,y ∈ [t, t+ ε] such that

ut(tε,x,y, x, y) =
u(t+ ε, x, y)− u(t, x, y)

ε
, hence |ut(t, x, y)| ≤ ε.

On the other hand, utt is uniformly bounded due to the parabolic estimates; therefore
we have |ut(t, x, y)| = O(ε).

Lemma 3.5 Under the assumptions of Theorem 3.3, lim
t→+∞

∂xu = 0 and lim
t→+∞

∂xxu =

0 uniformly in (x, y) ∈ R2.

Proof. Proof of lemma 3.4 can be followed along the same lines since the time
invariance and the space invariance in the x variable are the same in (1.1). Finally,
parabolic regularisation gives the result for the second derivative in x.
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Lemma 3.6 Under the assumptions of Theorem 3.3,

lim
t→+∞

sup
x∈R

dist(u(t, x, .), {φ0}) = 0

where {φ0} denotes the set of all translates of the one dimensional profile φ0.

Proof. We prove lemma 3.6 by reducing it to the absurd. If the conclusions of
lemma 3.6 were false, there would exist δ > 0 and some sequences (tn, xn) ∈ R+×R
such that tn goes to infinity and d(u(tn, xn, .), {φ0}) > δ. Define, for all (t, x, y) ∈
R+ × R2, vn(t, x, y) = u(t+ tn, x+ xn, y). The idea is to show that vn converges to
a function v∞ which satisfies equation (1.4) and by uniqueness is a travelling wave,
which contradicts the above assumptions.

The function vn verifies ∂tvn = ∆vn−c∂yvn+f(vn) for t > −tn. Once again, using
parabolic estimates, Ascoli’s Theorem and up to a subsequence, vn converges to a
function v∞ global solution to ∂tv∞ = ∆v∞− c∂yv∞+f(v∞). Using lemmas 3.4 and
3.5, we get lim

n→+∞
∂tvn = lim

n→+∞
∂xxvn = 0. Then, v∞ verifies ∂yyv∞−c∂yv∞+f(v∞) =

0.
Let us have a look at the limiting conditions satified by v∞. Since u satifies

uniformly in (t, x) ∈ R+ × R, lim
y→±∞

u(t, x, y) = 1 or 0, v∞ satifies the same limit

conditions and by unicity, there exists a real b such that v∞(t, x, y) = φ0(y− b) and
c = c0. This contradicts the initial assumption on u.

Let us notice that, since u0 is between two travelling waves, we have ω(u0) ⊂
{φ0(y − b) , b ∈ [y1, y2]}. The inclusion may be strict.

Lemma 3.7 Under the assumptions of Theorem 3.3, there exists a function s such
that

∀ε > 0 , ∃tε > 0 | ∀(t, x, y) ∈ [tε; +∞)× R2 ,∃s(t, x) ∈ R |
|u(t, x, y)− φ0(y − s(t, x))| ≤ ε

Proof. According to lemma 3.6, we have

∀ε > 0 , ∃tε > 0 | ∀t > 0 , t ≥ tε ⇒ ∀x ∈ R,∃b ∈ [y1, y2] |
∀y ∈ R |u(t, x, y)− φ0(y − b)| ≤ ε .

Setting s(t, x) = b in the above sentence, we prove lemma 3.7.

Proof of Theorem 3.3. Let u0 be a function trapped between two travelling
waves as in Theorem 3.3. Define u(t) the solution of (1.1) with u0 as initial condition.
By the above lemmas, we know that

lim
t→+∞

∂tu(t, x, y) = 0 uniformly in (x, y) ∈ R2

lim
t→+∞

∂xu(t, x, y) = 0 uniformly in (x, y) ∈ R2

lim
t→+∞

sup
x∈R

dist(u(t, x, .), {φ0}) = 0

Then, for all ε > 0, there exists t0 > 0 such that the partial derivatives of u with
respect to t and x are smaller than ε and |u(t0, x, y)− φ0(y − s(t0, x))| < ε.
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Let us denote by s1 the piecewise constant function defined by s1(t0, x) = s(t0, k)
when x ∈ [k, k + 1), k ∈ Z. Thus

|u(t0, x, y)− φ(y − s1(t0, x))| ≤ |u(t0, x, y)− u(t0, k, y)|+ |u(t0, k, y)− φ(y − s(t0, k))|
≤ ‖∂xu(t0, x, y)‖L∞(k,k+1)|x− k|+ ε ≤ 2ε .

We thus construct the function s1 such that

∀ε > 0 , ∃t0 > 0 | ∀(x, y) ∈ R2 , |u(t0, x, y)− φ(y − s1(t0, x))| ≤ 2ε .

Let us show that the jumps of s1 are not much larger than a few ε’s. Let (p, q) ∈ Z2.

|s1(t0, p)− s1(t0, q)| ≤
|φ0(y − s1(t0, p))− φ0(y − s1(t0, q))|

inf [y1,y2] φ
′
0

≤ C(4ε+ ‖∂xu(t0)‖L∞(p,q)|p− q|)
≤ C(4 + |p− q|)ε

where C−1 is the infimum of φ′0 on the compact set [y1, y2]. Then, for all integer k,
|s1(t0, k + 1)− s1(t0, k)| ≤ 5ε and s1 is bounded in the compact set [y1, y2].

Finally, let us define some mollifier ρ ∈ C∞
0 (R) such that s0 = ρ ∗ s1 on each

interval [k − 1
2
, k + 1

2
] satisfies s0(t0) ∈ C2+α(R) and ‖∂xxs0(t0)‖Ċα([k− 1

2
,k+ 1

2
]) ≤ 5ε.

Let us now prove that u−φ0(y− s0) satifies the conclusions of Theorem 3.3. We
set S0(x) = s0(t0, x) and v(t, x, y) = u(t, x, y)− φ0(y − S0(x)) on (t0, t0 + 1). Thus,
v satifies the parabolic equation

∂tv = ∆v − c∂yv + f(φ0 + v) + φ′′0 − S ′′0φ0 − S ′0φ
′
0

and by [16] on (t0 + 1
2
, t0 + 3

2
)×R2, there exists some time Tε in this interval satifying

‖v(Tε)‖C2+α(R2) ≤ Cε. This ends the proof of Theorem 3.3.

4 Conical fronts

The aim of this section is to prove Theorem 2.2. The idea is to combine the results
developped by [12] on the asymptotic behaviour of the conical wave and the previous
section 3 on almost planar fronts. The Theorem that allows us to conclude is an
exponential stability result in [10].

First, recall the expression of the tilted coordinates (X±, Y±):

(4.1)

{
X+ = x sinα− y cosα, Y+ = x cosα+ y sinα
Y− = −x sinα− y cosα, Y− = −x cosα+ y sinα

The system (X+, Y+) will be used in the right half-plane, the system (X−, Y−) in
the left half-plane. From now on, we will only work in the right half plane and all
following calculations can be done in a symmetric way in the left half plane. We will
therefore delete all ±. For a given function V ∈ C(R2), we will indifferently use the
notation V (x, y) or V (X, Y )... according to the system of coordinates we consider.
Proof of Theorem 2.2. Let now u0 satisfy the assumptions of Theorem 2.2,
namely u0 is sandwiched between two conical waves, distant from each other by
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a small translation. By Property (P5) - recall that it says that a conical wave is
exponentially close to a planar wave in the directions X and up to some translation
that we may, without loss of generality, assume to be zero - there is some large
Xε > 0, and a function w0(X, Y ), defined when X is larger than Xε, such that

(4.2) u0(X, Y ) = φ0(Y ) + w0(X, Y ).

Using Property (P5) and the inequality inf(a, b) ≤
√
ab, valid for any set of positive

numbers a and b, we derive the following estimate, as soon as X ≥ Xε:

(4.3) |w0(X, Y )|+ |∇w0(X,Y )|+ |D2w0(X, Y )| ≤ ρεe
−ω|Y |.

Extend the functions w0 as

w0(X, Y ) = w0(Xε, Y ) if X ≤ Xε − 1, ‖∂XXw0‖∞ ≤ Cρε.

Finally, consider the solutions of the Cauchy Problem

(4.4)
(∂t −∆− c cosα∂X + c0∂Y )p = f(p) , t > 0, (X, Y ) ∈ R2

p(t = 0, X, Y ) = φ0(Y ) + w0(X, Y ) , (X, Y ) ∈ R2

Notice that the functions p(t,X + ct cosα, Y ) satisfy the assumptions of Theorem
2.1. In particular, setting ξ = X + ct cosα, we have, for every δ ∈ (0, 1):

(4.5)

p(t, ξ, Y ) = φ0(Y + S(t, ξ)) + w(t, ξ, Y ) with
Σ(t,X) = ec0S(t,X)/2

(∂t − ∂XX − c cosα∂X)Σ = O

(
εδ

(1 + t)2−2δ

)
‖eω|Y |w(t)‖C2(R2) ≤

Cδρε
(1 + t)1−δ

The constant Cδ may vary from one line of (4.5) to another, but will never depend
on ε.

For a positive number X0, let us denote by C(X0, α, µ) the cone with vertex the
point (X = X0, Y = 0), with axis the line {X ≥ X0, Y = 0}, and with angle µ > 0.
Let us once and for all fix

• a number µ ∈ (0,min(α,
π

2
− α)),

• a smooth, nonnegative, even function ρ(x, y) with unit mass, suppported in
the unit ball whose derivatives are small.

If 1A denotes the characteristic function of the set A, let us set

(4.6) γ = ρ ∗ 1C(2Xε,α,µ), γ0 = 1− γ.

The following properties are clear, if ε > 0 is small enough:

(4.7) suppγ0 ∩ suppγ ⊂ C(Xε, α, µ)\C(4Xε, α, µ)

18



Finally, let u(t, x, y) be the solution of (1.1) emanating from u0. In the reference
frame of the wave φ, (1.1) becomes

(4.8) ut −∆u+ c∂yu = f(u), (t > 0, (x, y) ∈ R2);

this new system of coordinates, still denoted by (x, y) will be used without further
mention. The system (X, Y ) will also be deduced from this new system by (4.1).

Let us finally set

(4.9) u(t, x, y) = γ(X,Y )p(t,X, Y ) + γ0(x, y)φ(x, y) + v(t, x, y)

Theorem 2.2 will be proved through the following intermediate result.

Proposition 4.1 Under the assumptions of Theorem 2.2, for all δ ∈ (0, 1), there
is a constant Cδ > 0, independent of ε such that

(4.10) ‖v(t)‖∞ ≤ Cδ(ρε +

√
ε

(1 + t)1−δ ).

Proof. Let us set, for a function U(t, x, y) ∈ C2,1(R+ × R2):

(4.11) NL[U ] = Ut −∆U + cUy − f(U).

Also, introduce the space

Xω = {u(x, y) ∈ BUC(R2)| eω(|x|+|y|)u(x, y) ∈ BUC(R2)}.

The operator L is defined as

(4.12) D(L) = {u ∈ Xω |∆u ∈ Xω}; ∀u ∈ D(L), Lu = −∆u+ c∂yu− f ′(φ)u.

Let us compute NL[u], using the expression (4.9). For two given functions ψ(x, y)
and v(x, y) let us set, for commodity

(4.13) Kψ[v] =
1

2

∫ 1

0

(1− ζ)f ′′(ψ + ζv) dζ

1. The region {γ0 = 1}. In this area we have u = φ+ v, therefore

NL[u] = vt + Lv +Kφ[v]v
2 := vt + Lv +H1(t, x, y, v)v.

2. The region {γ = 1}. In these area, we have γ0 = 0. Set - still for notational
commodity:

(4.14) φ0(x, y) = φ0(Y ).

We obtain:

NL[u] = vt + Lv + (f ′(φ)− f ′(p))v +Kp[v]v
2 := vt + Lv +H1(t, x, v)v.
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The important feature to notice is that, in the area {γ = 1} we have, from Property
(P5), assumption (2.7) and property (4.5),

(4.15)
|H1(t, x, y, 0)| ≤ |f ′(p)− f ′(φ0)|+ |f ′(φ0)− f ′(φ)|

≤ C(ρε + e−ωXε).

The last quantity goes to 0 as ε goes to 0.

3. The region {γ0 6= 0} ∩ {γ 6= 0}. Here we have γ 6= 1. Notice that, once this
area is examined, we will have computed NL[u] in the whole plane. Let us set

ψ(x, y) = φ(x, y)− φ0(x, y);

we have

NL[u] =ut −∆u+ cuy − f(u)

=vt −∆v + cvy + γf(p) + γ0f(φ)− f(γp+ γ0φ+ v) + r

where
r = −p∆γ − φ∆γ0 − 2∇p · ∇γ − 2∇φ · ∇γ0 + cpγy + cφ∂yγ0 .

Expand the nonlinear terms:

γf(p) + γ0f(φ)− f(γp+ γ0φ+ v) =γ(f(p)− f(φ)) + f(φ)− f(φ+ γ(p− φ) + v)

=γf ′(φ)(p− φ) + γ(p− φ)2Kφ[p− φ]

+ f(φ)− f(φ+ γ(p− φ))

− vf ′(γ0φ+ γp)− v2Kγ0φ+γp[v]

=γf ′(φ)(p− φ) + γ(p− φ)2Kφ[p− φ]

− γf ′(φ)(p− φ)− γ2(p− φ)2Kφ[γ(p− φ)]

− vf ′(γ0φ+ γp)− v2Kγ0φ+γp[v]

=γ(p− φ)2Kφ[p− φ]− γ2(p− φ)2Kφ[γ(p− φ)]

− vf ′(γ0φ+ γp)− v2Kγ0φ+γp[v]

The final expression for NL[u] is therefore

NL[u] = vt + Lv +H1(t, x, y, v)v +H2(t, x, y),

where we have set

H1(t, x, y, v) =(f ′(φ)− f ′(γ0φ+ γp))v −Kγ0φ+γp[v]v
2

H2(t, x, y) =r + (p− φ)2(γKφ[p− φ]− γ2Kφ[γ(p− φ)])

We have, from property (4.5):

‖γ(w − ψ)‖D(L) ≤ Cρε, ‖∂t(γ(w − ψ))‖Xω ≤
Cδρε

(1 + t)1−δ .

This implies

(4.16)
‖(H1(t, x, y, 0), eω(|x|+|y|)H2(t, x, y))‖C2({γ0 6=0,γ 6=0}) ≤ Cρε

‖∂t(H1(t, x, y, 0), eω(|x|+|y|)H2(t, x, y))‖L∞({γ0 6=0,γ 6=0}) ≤
Cδρε

(1 + t)1−δ
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Therefore the part that is nonlinear in v can be decomposed into a quadratic part
in v plus a small, exponentially decaying, part.

4. Decomposition of the function v and conclusion. Recall the following
result - [10], Theorem 4.1: L is a sectorial operator of Xω, whose spectrum lies in a
cone of the complex plane with positive vertex. Hence there is λ0 > 0 such that

(4.17) ‖e−tL‖L(Xω) ≤ Ce−λ0t.

The equation to solve for v is therefore

(4.18) vt + Lv +H1(t, x, y, v)v +H2(t, x, y) = 0

with the estimates (4.16) extending to the whole real plane - indeed, H2 = 0 outside
{γ0 6= 0, γ 6= 0}. To get estimate (4.10) for v, we proceed as follows.

• Let v0
1(t, x, y) be the unique solution of

Lv1 +H2(t, x, y) = 0 ,

we have ‖v1‖D(L) ≤ Cρε and ‖∂tv1‖D(L) ≤
Cρε

(1 + t)1−δ . By the implicit functions

Theorem, there is a unique solution to

(4.19) Lv1 +H1(t, x, y, v1)v1 +H2(t, x, y) = 0, ‖v1 − v0
1‖D(L) ≤ Cρ2

ε.

We have, in addition:

(4.20) ‖∂t(v1 − v0
1)‖Xω ≤

Cρ2
ε

(1 + t)1−δ .

• Set, finally: v2 = v− v1. We argue as in the proof of Theorem (2.22): suppose
that t1 > 0 is the maximal time such that we have

‖v2(t, ., .)‖Xω ≤
C
√
ε

(1 + t)1−δ .

Note that this is the only place where we use the poorer order of magnitude
for v(0), which is of order ε. We have

v2(t, x) = e−tLv2(0)−
∫ t

0

e(t−s)L(H1(s, x, y, v)v −H1(s, x, y, v1)v1 + ∂tv1) ds

which implies, for t ≤ t1:

‖v2(t)‖Xω ≤ C
√
εe−λ0t + C

∫ t

0

e−λ0(t−s)
(
ρε|v(s)|+

ρ2
ε + ρε

(1 + s)1−δ

)
ds

≤ Cε

(1 + t)1−δ

implying in turn that t1 = +∞, provided ε is small enough.
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This ends the proof of Proposition 4.1.
Proof of Theorem 2.2 (continued) We have ∂Y u > 0; therefore the level set
{u(t,X, Y ) = λ} is a union of curves {Y = χ(t,X)}. Also, we may assume, without
loss of generality, that φ0(0) = λ. For any t > 0 and (x, y) in the right half plane,
we have

Y = χ(X) ⇔ γp+ γ0φ+ v = λ

⇔ γφ0(Y + S(t,X)) + γ0φ0(Y − ψλ(X))

= λ+O

(
e−2ω(|X|+|Y |) + ρε +

ρε
(1 + t)1−δ

)
thanks to theorem (2.1), proposition (4.1) and property (P5). Since λ = φ0(0) =
φ(Y − χ(X)), we get

γ0|χλ − ψλ|+ γ|S + χλ| = O

(
e−2ω(|X|+|Y |) + ρε +

ρε
(1 + t)1−δ

)
Finally, all we have to do is to compare Σ and σ. We recall that Σ(t,X) = ec0S(t,X)/2

and σ is defined in theorem 2.2 by (2.10) as the solution of the advection-diffusion
equation

(4.21)
(∂t − ∂XX − c cosα∂X)σ = 0

σ(0, X) = σ0(X)

where σ0 is definied by (2.9) as

(4.22) σ0(X) =

{
ec0s0(X)/2 if X ≥ 1
ec0s0(1)/2 if X ≤ 1

Thus, by (4.5) and (4.21)

Σ(t,X)− σ(t,X) =et(∂XX+c cosα∂X)(σ0(X)− σ0(X))

+

∫ t

0

e(t−s)(∂XX+c cosα∂X)O

(
εδ

(1 + s)2−2δ

)
=O

(
εδ +

1

(1 + t)1−2δ

)
This implies (2.11).

5 Appendix: some interpolation inequalites

5.1 Basic Cα inequalities

We state here three standard propositions, whose prooves will be omitted. Let
α ∈ (0, 1) and f ∈ L∞(R).

Proposition 5.1 If f ∈ L∞(R) and f ′ ∈ Ċα(R) then f ∈ C1+α(R) and there exists
C > 0 such that

‖f ′‖L∞(R) ≤ C‖f‖
α

1+α

L∞(R)‖f
′‖

1
1+α

Ċα(R)
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Proposition 5.2 If f ∈ L∞(R) and f ′′ ∈ Ċα(R) then f ∈ C2+α(R) and there exists
C > 0 such that

‖f ′′‖L∞(R) ≤ C‖f‖
α

2+α

L∞(R)‖f
′′‖

2
2+α

Ċα(R)

Proposition 5.3 If f ∈ C2+α(R), there exists C > 0 such that

1. ‖f ′‖∞ ≤ C‖f‖
1
2∞‖f ′′‖

1
2∞ ≤ C‖f‖

1+α
2+α
∞ ‖f ′′‖

1
2+α

Ċα(R)

2. ‖f ′‖Ċα(R) ≤ C‖f ′‖
α

1+α
∞ ‖f ′′‖

1
1+α

Ċα(R)
≤ C‖f‖

α
2+α
∞ ‖f ′′‖

2
2+α

Ċα(R)

3. ‖f‖Ċα(R) ≤ C‖f‖
α

1+α
∞ ‖f ′‖

1
1+α

Ċα(R)
≤ C‖f‖

α(3+α)
(2+α)(1+α)
∞ ‖f ′′‖

2
(2+α)(1+α)

Ċα(R)

5.2 Estimates on σ∗

The aim of the subsection is to prove one part of lemma 3.2. We recall that σ0 and
σ∗ are defined in Theorem 3.1 by the following inequalities and equations:

σ0 ∈ C2+α(R) , ‖σ0‖∞ ≤ C , ‖∂xxσ0‖Ċα(R) ≤ ε

∂tσ∗ − ∂xxσ∗ = 0 (t, x) ∈ R+ × R
σ∗(0, x) = σ0(x) x ∈ R

Let us prove the estimates of lemma 3.2.
Estimates on the integral kernal of the heat equation leads to the existence of a

constant C > 0 such that, for all t ∈ R+,

‖σ∗(t)‖∞ ≤ C , ‖∂xxσ∗(t)‖∞ ≤ C‖∂xxσ0‖∞ ≤ Cε
2

2+α

and ‖∂xxσ∗(t)‖Ċα(R) ≤ C‖∂xxσ0‖Ċα(R) ≤ Cε

Interpolating those estimates, we get bounds on all the derivatives up to the second
order of σ∗ in both norms L∞ and Ċα.

In the same way, we know time dependent estimates on the heat kernel:

‖∂xσ∗‖∞ ≤ C√
t
‖σ0‖∞ .

We can deduce from this inequality and from proposition 5.3 similar time dependent
estimates on the L∞ and Ċα norm of the derivatives of σ∗.

Finally interpolating the first ones with the second ones, we get for any δ ∈ (0, 1),

‖σ∗‖∞ ≤ C, ‖∂xσ∗‖∞ ≤ Cε
δ

2+α

(1 + t)1/2−δ/2 , ‖∂xxσ∗‖∞ ≤ Cε
2δ

2+α

(1 + t)1−δ

‖σ∗‖Ċ α
2 ,α((t,2t)×R)

≤ Cε
δ

2+α

(1 + t)1/2−δ/2 , ‖∂xσ∗‖Ċ α
2 ,α((t,2t)×R)

≤ Cε
2δ

2+α

(1 + t)1−δ
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5.3 Estimates on v∗

The aim of the subsection is to prove the second part of lemma 3.2. We recall that
v0 and v∗ are defined in Theorem 3.1 by

v0 ∈ C2+α(R2) , ‖v0‖C2+α(R2) ≤ ε , Pv0(x, .) = 0

∂tv∗ + (−∂xx + L0)v∗ =
4

c20

(
∂xσ∗
σ∗

)2

Q(φ0”)

v∗(0, x, y) = v0(x, y) , (x, y) ∈ R2

Let us prove the estimates of lemma 3.2. Written in its integral form, equation (3.7)
satisfied by v∗ reads

v∗(t) = et(−∂xx+L0)v0 +

∫ t

0

e(t−τ)(−∂xx+L0) 4

c20

(
∂xσ∗
σ∗

)2

Q(φ′′0)dτ .

Keeping in mind that L0 generates an analytic semigroup which is exponentially
decreasing in time in the supplementary R(L0) of its kernel and using the above
section on σ∗, we can bound v∗ and its derivative in the L∞ norm. Let us just notice
that the desired power of ε is obtained for ∂xv∗ by inverting the derivative and the
semi-group. Finally, Ċα estimates are obtained by the inequality ‖f‖Ċα ≤ ‖f ′‖∞.

5.4 Estimates on F1 and F2

We recall the expressions of the non-linear terms F1 and F2 that appear in the
equations for v1 and σ1 in the local study of planar fronts (see section 3.1):

F1(σ1, v1) = Q(Kφ0 [v]v
2) +

4

c0

σx
σ
Q(vxy) +

4

c20

(σx
σ

)2

Q(vyy)

+
4

c20

(((σx
σ

)2

−
(
∂xσ∗
σ∗

)2
)
Q(φ′′0)−

2

c0

(
σt
σ
− σxx

σ
−
(σx
σ

)2
)
Q(vy)

)
F2(σ1, v1) =

c0
2
σ

∫
R

ψ0(y)Kφ0 [v]v
2 dy + 2σx

∫
R

ψ0(y)vxy dy

+
2

c0

σ2
x

σ

∫
R

ψ0(y)vyy dy −
(
σt − σxx +

σ2
x

σ

)∫
R

ψ0(y)vy dy

where we have noted, for commodity: (σ, v) = (σ∗ + σ1, v∗ + v1) and

Kφ0 [v]v
2 = f(φ0 + v)− f(φ0)− f ′(φ0)v =

1

2

∫ 1

0

(1− ζ)f ′′(φ0 + ζv) dζv2 .

For any t > 0, we need some bounds on the norms ‖F1(t)‖L∞(R2), ‖F2(t)‖L∞(R),
‖F1‖Ċ α

2 ,α((t,2t)×(R2))
and ‖F2‖Ċ α

2 ,α((t,2t)×(R))
. To get the bounds of the L∞ norms, all

you have to know are the following ideas:

• Since σ0 > 0 on the real line and ∂xxσ0 is small, due to the maximum principle,
there exists a > 0 such that σ(t, x) > a for any time and any real x.

• The operator Q is a projector.
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•
∣∣∫

R ψ0(y)v(t, x, y)dy
∣∣ ≤ ‖v(t)‖L∞(R2)‖ψ0‖L1(R)

Then,

‖F1(t)‖L∞ ≤C
(
‖v(t)‖2

∞ + ‖σx(t)‖∞‖vxy(t)‖∞ + ‖σx(t)‖2
∞‖vyy(t)‖∞

)
+ C(‖∂xσ1(t)‖∞‖σ∗(t)‖∞ + ‖σ1(t)‖∞‖∂xσ∗(t)‖∞)‖∂xσ∗(t)‖∞
+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖∂xσ∗(t)‖2

∞)‖vy(t)‖∞

and

‖F2(t)‖L∞ ≤C
(
‖v(t)‖2

∞ + ‖σx(t)‖∞‖vxy(t)‖∞ + ‖σx(t)‖2
∞‖vyy(t)‖∞

)
+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖∂xσ∗(t)‖2

∞)‖vy(t)‖∞

Going through the Ċ
α
2
,α norms, the only new idea is that for any (f, g) ∈ Cα(R),

‖fg‖Ċα ≤ ‖f‖∞‖g‖Ċα + ‖g‖∞‖f‖Ċα .

‖F1‖Ċ α
2 ,α((t,2t)×R2)

≤ C(‖v(t)‖∞‖v‖Ċ α
2 ,α + ‖σx(t)‖∞‖vxy‖Ċ α

2 ,α + ‖σx‖Ċ α
2 ,α‖vxy(t)‖∞)

+ C(‖σx(t)‖2
∞‖vyy‖Ċ α

2 ,α + ‖σx(t)‖∞‖σx‖Ċ α
2 ,α‖vyy(t)‖∞)

+ C(‖σ∗(t)‖∞‖∂xσ1(t)‖∞ + ‖σ1(t)‖∞‖∂xσ∗(t)‖∞)(‖∂xσ∗(t)‖∞ + ‖∂xσ∗‖Ċ α
2 ,α)

+ C(‖σ∗(t)‖∞‖∂xσ1‖Ċ α
2 ,α + ‖σ∗‖Ċ α

2 ,α‖∂xσ1(t)‖∞)‖∂xσ∗(t)‖∞
+ C(‖σ1(t)‖∞‖∂xσ∗‖Ċ α

2 ,α + ‖σ1‖Ċ α
2 ,α‖∂xσ∗(t)‖∞)‖∂xσ∗(t)‖∞

+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖σx(t)‖2
∞)‖vy‖Ċ α

2 ,α

+ C(‖∂tσ1‖Ċ α
2 ,α + ‖∂xxσ1‖Ċ α

2 ,α + ‖σx‖Ċ α
2 ,α‖σx(t)‖∞)‖vy(t)‖∞

and

‖F2‖Ċ α
2 ,α((t,2t)×R)

≤ C(‖σ(t)‖∞‖v(t)‖∞‖v‖Ċ α
2 ,α + ‖σ‖

Ċ
α
2 ,α‖v(t)‖2

∞)

+ C(‖σx(t)‖∞‖vxy‖Ċ α
2 ,α + ‖σx‖Ċ α

2 ,α‖vxy(t)‖∞)

+ C(‖σx(t)‖2
∞‖vyy‖Ċ α

2 ,α + ‖σx(t)‖∞‖σx‖Ċ α
2 ,α‖vyy(t)‖∞)

+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖σx(t)‖2
∞)‖vy‖Ċ α

2 ,α

+ C(‖∂tσ1‖Ċ α
2 ,α + ‖∂xxσ1‖Ċ α

2 ,α + ‖σx‖Ċ α
2 ,α‖σx(t)‖∞)‖vy(t)‖∞ .

5.5 The inhomogeneous one-dimensional heat equation

Some estimates in Section 3 relie on the following simple equation:

(5.1)

{
ut(t, x)− uxx(t, x) = f(t, x) t > 0 x ∈ R
u(0, x) = 0 x ∈ R .

where f ∈ C α
2
,α(R+ × R) is an external force which satisfies for any t0 > 0

(5.2) ‖f(t0)‖L∞(R) ≤
ε

4δ
2+α

(1 + t0)2−2δ
‖f‖

Ċ
α
2 ,α((t0,2t0)×R)

≤ ε
5δ

2+α

(1 + t0)
5
2
(1−δ)

The aim of this appendix is to estimate the C1+α
2
,2+α((t0, 2t0) × R) norm of the

solution u of equation (5.1) and more precisely to prove the following
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Proposition 5.4 Let u ∈ C1+α
2
,2+α(R+×R) be the solution of equation (5.1) where

f satifies bounds (5.2), then, for any t0 > 0, ‖u(t0)‖L∞(R) ≤ ε
4δ

2+α

‖ut‖Ċ1+ α
2 ,2+α((t0,2t0)×R)

+ ‖uxx‖Ċ1+ α
2 ,2+α((t0,2t0)×R)

≤ ε
4δ

2+α

(1+t0)1+
α
2
.

Proof. Thanks to [16], we know that for any t > 0

‖u‖
C1+ α

2 ,2+α((0,t)×R)
≤ C

(
‖u0‖∞ + ‖f‖Cα/2,α(R+×R)

)
This theorem is enough to bound the C1+α

2
,2+α((t0, 2t0) × R) norm of the solution

u for t0 ∈ (0, 2) but we have to find another way to estimate this norm for t0 > 2.
Let us remind that

u(t, x) =

∫ t

0

∫
R
G(t− s, x− y)f(s, y)dyds

where G is the heat kernel G(t, x) = 1√
4πt
e−

x2

4t . We immediately get ‖u(t)‖∞ ≤ ε
4δ

2+α .
As far as the partial derivatives of u are concerned, we will only deal with ∂tu
since they both play the same role and it is important to keep in mind that by
interpolation, the three norms described in 5.4 are sufficient to bound the C1+α

2
,2+α

norm of u.
Let us bound ‖ut‖Ċ1+ α

2 ,2+α((t0,2t0)×R)
. We devide the integral definition of u into

two pieces: for any 0 < t0 < t < 2t0

u(t, x) =
∫ t0

2

0

∫
RG(t− s, x− y)f(s, y)dyds +

∫ t
t0
2

∫
RG(t− s, x− y)f(s, y)dyds

= I(t, x) + J(t, x)

Since ∂τG(τ, η) = 1√
4πτ3/2

(
−1

2
+ η2

4τ

)
e−

η2

4τ and by the classical change of variables

z = x−y
2
√
t−s ,

It(t, x) =

∫ t0
2

0

∫
R

C

t− s

(
−1

2
+ z2

)
e−z

2

f(s, x− 2
√
t− sz)dzds .

Denoting X = x− 2
√
t− sz for simplicity, for any t 6= t′ and x 6= x′,

|It(t, x)−It(t′, x′)| ≤ C

∫ t0
2

0

∫
R

z2 + 1

t20
e−z

2 (|t− t′|‖f(s)‖∞ + |t− s||X −X ′|α‖f‖
Ċ1+ α

2 ,2+α

)
Thus,

|It(t, x)− It(t
′, x′)| ≤ C

∫ t0
2

0

∫
R

z2 + 1

t20
e−z

2

t
1−α

2
0

(
‖f(s)‖∞ + ‖f‖

Ċ1+ α
2 ,2+α

)
dzds

≤ C

(1 + t0)
1+α

2

∫ t0
2

0

(
‖f(s)‖∞ + ‖f‖

Ċ1+ α
2 ,2+α

)
ds

∫
R
(z2 + 1)e−z

2

dz .
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The conclusion of this calculation is important: the Ċ
α
2
,α norm of It does not depend

on the decreasing rate in time of the external force f provided it is integrable in
time. The assumptions on f (5.2) could have been

‖f(t0)‖L∞(R) ≤
ε

(1 + t0)1+λ
‖f‖

Ċ
α
2 ,α((t0,2t0)×R)

≤ ε

(1 + t0)1+λ′

with λ and λ′ two strictly positive numbers.
Let us now turn to J . It satisfies the following partial differential equation:{

Jt − Jxx = f , t > t0
2
, x ∈ R

J( t0
2
, x) = 0 , x ∈ R

We make the usual change of variables τ = t
t0

, η = x√
t0

and denote v(τ, η) = J(t, x),

F (τ, η) = f(t, x). Then,{
vτ − vηη = F , τ > 1

2
, η ∈ R

v(1
2
, x) = 0 , η ∈ R

By [16], ‖v‖
C1+ α

2 ,2+α((1,2)×R)
≤ C‖F‖

C
α
2 ,α((1,2)×R)

and

‖Jt‖Ċ α
2 ,α((t0,2t0)×R)

≤ C

(1 + t0)
1+α

2

‖vt‖Ċ α
2 ,α((1,2)×R)

≤ C

(1 + t0)
1+α

2

‖F‖
C

α
2 ,α((1,2)×R)

≤ C

(1 + t0)
1+α

2

(
‖f(t0)‖∞ + (1 + t0)

1
2‖f‖

Ċ
α
2 ,α

)
≤ Cε

4δ
2+α

(1 + t0)
3−2δ+α

2

Finally, putting together the estimates on It and Jt, we conclude the proof.
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