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Abstract

We study the long-time behavior of solutions of the Navier-Stokes equation in R2× (0, 1).
After introducing self-similar variables, we compute the asymptotics of the vorticity up
to second order and prove that they are governed by the two-dimensional Navier-Stokes
equation. In particular, we show that the solutions converge towards Oseen vortices.

We consider the motion of an incompressible viscous fluid filling a three dimensional layer
R2× (0, 1). If no external force is applied, the velocity field u and the pressure p of the fluid are
given by the Navier-Stokes equation

∂tu + (u · ∇)u = ∆u−∇p , div u = 0 , (x, z) ∈ R2 × (0, 1) , t ≥ 0 , (1)

where u = u(x, z, t) ∈ R3 and p(x, z, t) ∈ R , together with initial and boundary conditions

u(x, z, 0) = u0(x, z) , (x, z) ∈ R2 × (0, 1) ,

u(x, z + 1, t) = u(x, z, t) , (x, z, t) ∈ R3 × R+ .

For simplicity, the kinematic viscosity has been rescaled to 1. As no external force is applied,
the velocity converges towards an equilibrium and we study its asymptotic behavior. The first
key idea is to use the vorticity formulation. Setting ω = rot u, equation (1) is transformed into

∂tω + (u · ∇)ω − (ω · ∇)u = ∆ω , div ω = 0 , (2)

where the velocity field u can be reconstructed from ω via the Biot-Savart law (see V. Roussier
[2]), together with initial and boundary conditions

ω(x, z, 0) = ω0(x, z) , (x, z) ∈ R2 × (0, 1) ,

ω(x, z + 1, t) = ω(x, z, t) , (x, z, t) ∈ R3 × R+ .

The other key idea comes from methods of infinite dynamical systems and spectral projections:
we express the vorticity ω and the velocity u in terms of self-similar variables (ξ, z, τ) defined
by

ξ = x√
1+t

, τ = log(1 + t) ,

ω(x, z, t) = 1
1+t w

(
x√
1+t

, z, log(1 + t)
)

,

u(x, z, t) = 1√
1+t

v
(

x√
1+t

, z, log(1 + t)
)

.
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Then, w satisfies the following non-autonomous equation

∂τw = Λ(τ)w + N(w)(τ) , divτw(τ) = 0 , τ ≥ 0 , (3)

where

Λ(τ) = L + eτ∂2
z

L = ∆ξ +
1
2
ξ · ∇ξ + 1

N(w)(τ) = (w · ∇τ )v − (v · ∇τ )w
divτw(τ) = ∇τ · w

∇τ = (∂ξ1 , ∂ξ2 , e
τ
2 ∂z)T

and the velocity field v is given in terms of w by the Biot-Savart law (see V. Roussier [2]).
Existence and uniqueness of solutions of (3) for small initial data proceed from the following
theorem:

Theorem 0.1 Let m > 1. There exists K0 > 0 such that, for all initial data w0 ∈ L2(m) with
div w0 = 0 and ‖w0‖m ≤ K0, equation (3) has a unique global solution w ∈ C0([0,+∞);L2(m))
satisfying w(0) = w0 and for any τ ≥ 0, divτw(τ) = 0. In addition, there exists K1 > 0 such
that

‖w(τ)‖m ≤ K1‖w0‖m , τ ≥ 0 , (4)

where the weighted Lebesgue space L2(m) is defined by

L2(m) = {f(ξ, z) : R3 → R3 | f is 1-periodic in z, ‖f‖m < ∞} ,

‖f‖m =
(∫

R2

∫ 1

0
(1 + |ξ|2)m|f(ξ, z)|2dzdξ

) 1
2

.

Additionally, the asymptotics of (3) are driven by the two-dimensional Navier-Stokes equa-
tion studied by Th. Gallay and C.E. Wayne [1]. Thanks to the previous manipulations, the oper-
ator L has in L2(m) remarkable spectral properties . For instance, if m > 1, 0 is a simple isolated
eigenvalue of L with eigenfunction G = (0, 0, G)T where G(ξ) = 1

4π exp(− |ξ|2
4 ) for ξ ∈ R2. The

corresponding velocity is called Oseen vortex. For m > 2, −1
2 is an isolated eigenvalue of mul-

tiplicity 3 with eigenfunctions F1 = (0, 0, ∂1G)T , F2 = (0, 0, ∂2G)T and F3 = (−∂2G, ∂1G, 0)T .
Thus, the long-time asymptotics in a neigborhood of the origin are determined, up to second
order, by a finite system of ordinary differential equations. Indeed, we prove in [2] the following
theorems which drive the asymptotics of w.

Theorem 0.2 Let 0 < µ < 1
2 and m > 1 + 2µ. There exists K ′

0 > 0 such that, for all initial
data w0 ∈ L2(m) with div w0 = 0 and ‖w0‖m ≤ K ′

0, equation (3) has a unique global solution
w ∈ C0([0,+∞);L2(m)) satisfying w(0) = w0 and for any τ ≥ 0, divτw(τ) = 0. In addition,
there exists K2 > 0 such that

‖w(τ)− αG‖m ≤ K2 e−µτ‖w0‖m , τ ≥ 0 ,

where α =
∫

R2×(0,1)(w0)3(ξ, z) dz dξ.

Theorem 0.3 Let 1
2 < ν < 1, m > 1 + 2ν. There exists K ′′

0 > 0 such that, for all initial data
w0 ∈ L2(m) with div w0 = 0,

∫
R2×(0,1) w0dξdz = 0 and ‖w0‖m ≤ K ′′

0 , equation (3) has a unique
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global solution w ∈ C0([0,+∞);L2(m)) satisfying w(0) = w0 and for any τ ≥ 0, divτw(τ) = 0,∫
R2×(0,1) w(ξ, z, τ)dξdz = 0. In addition, there exists K3 > 0 such that

‖w(τ)−
3∑

i=1

βiFie
− τ

2 ‖m ≤ K3 e−ντ‖w0‖m , τ ≥ 0 ,

where

β1 =
∫

R2×(0,1)
ξ1(w0)3(ξ, z) dz dξ ,

β2 =
∫

R2×(0,1)
ξ2(w0)3(ξ, z) dz dξ ,

β3 =
∫

R2×(0,1)

1
2
(ξ1(w0)2 − ξ2(w0)1)(ξ, z) dz dξ .
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