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Institut de Mathématiques, Université Paul Sabatier, F-31062 Toulouse, France
∗E-mail: bages@mip.ups-tlse.fr, ∗∗E-mail: martinez@mip.ups-tlse.fr

∗∗∗E-mail: roque@mip.ups-tlse.fr

V. ROUSSIER-MICHON
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Solutions of bistable reaction-diffusion equations, posed on the whole real

line, will converge to travelling waves (Fife, McLeod). When the same equa-
tion is posed on the plane, or in the N -dimensional space, sufficiently well-

prepared initial data will still give raise to convergence to 1D travelling waves

(Levermore-Xin; Kapitula). We explain here why, when the initial datum is
slightly less well-prepared than in the Levermore-Xin setting, the solution will

not converge to a single 1D wave; it will instead undergo some diffusive be-

haviour. We also discuss what happens when the level sets of the initial datum
are conical-shaped. Finally, we describe what happens for KPP equations: non-

trivial behaviour occurs even in one space dimension.
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1. Introduction; motivation

Consider the reaction-diffusion equation

ut − uxx = f(u) (t > 0, x ∈ IR), u(t,−∞) = 0, u(t,+∞) = 1 (1)

where the function f is of the bistable, unbalanced type:

f(0) = f(1) = 0; f ′(0), f ′(1) < 0; f < 0 on (0, θ), f > 0 on (θ, 1);
∫ 1

0

f > 0.

It is well-known1 that the solutions of (1) will converge to travelling waves,
i.e. solutions of the form φ0(x+ c0t). The profile φ0 satisfies

φ′′0 + c0φ
′
0 = f(φ0), (x ∈ IR); φ0(−∞) = 0, φ0(+∞) = 1 (2)
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Suppose now that (1) is an equation in the plane IR2, i.e.

ut −∆u = f(u), t > 0, (x, y) ∈ IR2 (3)

with an initial datum u0 whose level sets are at bounded distance from hor-
izontal straight lines. Under the assumption that ε := ‖u0−φ0‖H1(IR2) <<

1, we have - see Xin,2 Levermore-Xin,3 Kapitula4 - for some ω > 0:
u(t, x, y) − φ0(y + c0t) = O(t−ω), uniformly in (x, y) ∈ IR2. Notice that
the assumption u0−φ0 ∈ H1(IR2) is somewhat more stringent than simply
supposing level sets trapped between straight lines: it says that the level
sets of u0 are asymptotic to horizontal straight lines. A natural question is
therefore whether something drastically different occurs if we relax it.

The goal of this paper is to review some recent results obtained by the
authors of the present paper. To sum up: unless the initial datum of (3) is
really of the Xin, Levermore-Xin or Kapitula form, convergence to a single
wave is never likely to occur. The profile of the solution does converge to
that of a wave, but with a spatial shift whih does not converge to any
value as t → +∞. In Section 2, we review how two-dimensional effects in
the bistable case (3) prevent convergence; in Section 3 we describe what
happens when f is of the KPP type: here, non-convergence occurs even in
the one-dimensional case.

2. Planar and conical waves for bistable equations

Let us start with almost planar initial data for (3).

Theorem 2.1. (Roquejoffre, Roussier-Michon5) Given u0 ∈ C(IR2), as-
sume the existence of two reals y1 ≤ y2 such that

∀(x, y) ∈ IR2 : φ0(y + y1) ≤ u0(x, y) ≤ φ0(y + y2),

where φ0(y) is a solution of (2). Then there is t0 > 0 and a function
s(t, x) ∈ C2([t0,+∞)×IR) such that the solution u(t, x, y) of (3), emanating
from u0, satisfies, for all δ ∈ (0, 1):

sup
t≥t0,(x,y)∈IR2

|u(t, x, y)− φ0(y + c0t+ s(t, x))| = O(tδ−1). (4)

Moreover, for all δ ∈ (0, 1), there is Cδ(u0) > 0 such that the function
σ(t, x) := ec0s(t,x)/2 satisfies, for t ≥ t0:

|σt − σxx| ≤
Cδ(u0)

(1 + t)2−2δ
. (5)
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Equation (5) indicates that the solution has a local shift that behaves,
as t → +∞, as a solution of the heat equation. We know, since Collet-
Eckmann,6 that a lot of solutions of the heat equation do not converge as
t → +∞, while all the derivatives go to 0. In our case it is possible5 to
construct initial data to (3) that will not converge to a single wave - while
the large-time profile is that of the wave.

Equation (3) has genuinely nonplanar travelling wave solutions, still
propagating downwards; of the form u(t, x, y) = φ(x, y + ct), solving

−∆φ+ c∂yφ = f(φ) in IR2; φ(x,−∞) = 0, φ(x,+∞) = 1 (6)

where the limit is now taken pointwise in x. We restrict ourselves to those
waves whose level sets are globally Lipschitz graphs; we then may7,8 classify
them all; moreover we have very precise stability properties for them The
following properties of these waves are extracted from.7–9 and9 - see also10

for the existence part:
(P1) For a solution φ of (6) whose level sets are globally Lipschitz graphs
we have c ≥ c0 - the planar wave speed; moreover 0 < φ < 1 in IR2,
(P2) φ(x, y) = φ̃(|x|, y), ∂|x|φ̃ ≥ 0, ∂yφ > 0,

(P3) There is α ∈ (0,
π

2
] such that c =

c0
sinα

, and the function φ satisfies

lim sup
A→+∞, y≥A−|x|cotα

(1− φ(x, y)) = 0, lim sup
A→−∞, y≤A−|x|cotα

φ(x, y) = 0.

(P4) the function φ is decreasing in any unit direction τ = (τx, τy) ∈ IR2

such that τy < − cosα,
(P5) there is exponential convergence of φ(x, y) to the planar fronts
φ0(±x cosα + y sinα) in the directions (± sinα,− cosα); moreover the
slopes of the level lines of φ converge exponentially, in the same directions,
to ∓cotα.
(P6) Let u0(x, y) be a - two-dimensional - Cauchy datum to (3), satisfying
|u0(x, y)−φ(x, y)| = O(e−ω(|x|+|y|)), where ω is some positive number, and
φ(x, y) a solution of (6) - hence a conical-shaped solution. Then we have,
for some γ > 0 uniformly in (x, y) ∈ IR2: u(t, x, y)−φ(x, y+ ct) = O(e−γt).

Notice that the assumption on u0 in (P5) is similar to the Xin-
Levermore-Kapitula one, and we wonder what happens if this assumption
is slightly relaxed. In what follows, (X±, Y±) is the refrence frame obtained
by rotating the axes (x, y) by an angle ±α.

Theorem 2.2. Consider a smooth Cauchy datum u0 such that: - there
exist a small ε > 0 and a couple (X1, X2) ∈ IR2 × IR2 such that

φ((x, y) +X1) ≤ u0(x, y) ≤ φ((x, y) +X2), |X1 −X2| ≤ ε, (7)
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- there holds ∂yu0 > 0. Moreover there is ρε > 0, with lim
ε→0

ρε

ε4
= 0, such

that lim sup
X±→+∞

‖∂X±X±u0(X±, .)‖L∞(IR) ≤ ρ4
ε.

Choose λ ∈ (0, 1), let the set {u0(x, y) = λ} be written as {Y+ =
s+0 (X+)} - resp. {Y− = s−0 (X−)} in the right half-plane {x > 0} - resp.
in the left half-plane {x < 0} (the dependence in λ is deleted for commod-
ity). Define the functions σ±0 (X±) as

σ±0 (X±) =

{
ec0s±0 (X±)/2 if X± ≥ 1
ec0s±0 (1)/2 if X± ≤ 1

(8)

Let σ±(t,X±) be the solutions of the advection-diffusion equations

(∂t − ∂X±X± − c cosα∂X±)σ± = 0, σ±(0, X±) = σ±0 (X±) (9)

Let u(t, x, y) be the solution of (3) emanating from u0. For a given
λ ∈ (0, 1), there exists A > 0 such that the set {u(t, x, y) = λ} can be
described as of the form {Y+ = χ+(t,X+)} in the half-plane {x ≥ A} -
resp. {Y− = χ−(t,X−)} in the half-plane {x ≤ −A}. Moreover there is a
constant Cε > 0 - possibly going to +∞ as ε → 0 - and another constant

C > 0 independent of ε, such that there holds, for all δ ∈ (0,
1
2
), and

uniformly in (t, x, y) ∈ IR+ × IR2:

|χ±(t,X±)− Logσ±(t,X±)| ≤ Cε

(
1

(1 + t)1−2δ
+ e−ω(|x|+|y|)

)
+ Cρδ/2

ε .

We believe that the size restrictions on the initial datum can be removed.
However, Theorem 2.2 is still sufficient to exhibit nontrivial large-time dy-
namics.

3. Nontrivial dynamics for KPP type equations

We consider here the one-dimensional Cauchy problem

ut − uxx = f(x, u), (t > 0, x ∈ IR) u(t,−∞) = 0, u(t,+∞) = 1 (10)

where the nonlinear term f is 1-periodic in x, and of KPP (Kolmogorov-
Petrovskii-Piskunov) type:

f(x, 0) = f(x, 1) = 0; f(x, u) > 0 if 0 < u < 1, fuu(x, .) < 0 on [0, 1].

Rather than that of travelling waves, the relevant notion is that of pulsating
waves, i.e. solutions φ(t, x) of (10) for which there exists c > 0 such that

t 7→ φ(t, x − ct) is
1
c
-periodic. When f does not depend on x, existence
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and stability of travelling waves is an old problem dating back to;11 see for
instance.12 In the x-dependent case, existence theory qualitative theory are
very well developped.13,14 Essentially: there is c∗ > 0 such that (11) has
pulsating wave solutions φc of velocity c if and only if c ≥ c∗. Moreover,
∂tφc > 0. The minimal speed c∗ is characterised as follows: set ζ(x) :=
fu(x, 0) > 0; let k(λ) be the least eigenvalue of the operator Lλ := −dxx −
2λdx − (λ2 + ζ(x)), acting on the space of 1-periodic functions. Then c∗ =

minλ>0
k(λ)
λ

. Moreover each φc behaves at −∞ like eλc(x+ct)ψλ(x), where

λc the smallest (positive) root of k(λ) = cλ, and (Lλ − cλ)ψλ = 0. To
study the large-time behaviour of (10), we need a slightly more precise
information.

Proposition 3.1. 15,16 For c > c∗, (10) has a unique (pulsating) wave
solution φc(t, x) such that, as x + ct → −∞: φc(t, x) = eλc(x+ct)ψλ(x) +
O(e(λc+δ)(x+ct)).

Consider the case c > c∗. An easy follow-up of the argument of the preceding
proposition proves the following: consider an initial datum u0(x) for (10),
such that there is a pulsating wave φc and δ > 0 satisfying

u0(x) = φc(0, x)(1 +O(eδx)) as x→ −∞. (11)

Then, as t → +∞ we have, uniformly in x: u(t, x) = φc(t, x)(1 + O(e−ωt)
for some ω > 0.

We wish to understand what happens when the - quite stringent - as-
sumption (11) is slightly relaxed. A natural way to loosen it is to assume
that u0 is trapped between two translates - in time - of a pulsating wave;
the beaviour of u(t, x) is given by the following theorem - whose proof is
much more difficult than that of Proposition 3.1:

Theorem 3.1. Assume there is M > 0 such that φc(−M,x) ≤ u0(x) ≤
φc(M,x). Let m(t, x) solve

mt −mxx − 2(λc +
ψ′λc

ψλc

)mx − cλcm
2
x = 0; m(0, x) = φc(., x)−1(u0(x))

Then, as t → +∞: [i] we have ‖mt(t, .)‖∞ = O(t−1), ‖mx(t, .)‖∞ =
O(t−1/2); [ii] we have, uniformly in x ∈ IR: |u(t, x)− φc(t+m(t, x), x)| =
O(t−1/2).

The following remarks are in order. First, we point out that Theorem 3.1 is
new, even in the x-independent case. Then, let us mention that nontrivial
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dynamics does occur: once again in the x-independent case, the Collet-
Eckman example can be adapted. Part [i] of this theorem is the most in-
volved: it relies on very precise asymptotics of a heat kernel that the current
literature17 cannot treat. Let us finally point out a consequence of this part:
although we cannot treat the case c = c∗ in the same generality, we have

Theorem 3.2. 15,16 Assume that, as x → −∞: u0(x) = φc∗(0, x)(1 +
O(eδx)) for some δ > 0. Then, as t → +∞: ‖u(t, x) − φc∗(t, x)‖∞ =
O(t−1/2).

The stability of the wave with speed c∗ is, as opposed to the case c > c∗,
a delicate matter. In the x-independent case, the optimal result is due
to Gallay.18 When the initial datum does not decay exactly as the wave,
investigation of the dynamics is currently going on.
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