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Abstract

In this article we consider some questions raised by F. Benoist, E. Bous-

caren and A. Pillay. We prove that infinitely p-divisible points on abelian

varieties defined over function fields of transcendence degree one over a

finite field are necessarily torsion points. We also prove that when the

endomorphism ring of the abelian variety is Z then there are no infinitely

p-divisible points of order a power of p.

1 Introduction

Fix once and for all a prime number p.

Let K0 be the function field of a smooth curve over a finite field F of characteristic

p. Let B be an abelian variety over K0.

For any abelian group G, define G# := ∩l>0p
lG. We call the elements of G# the

infinitely p-divisible points of G. Furthermore, write Tor(G) for the subset of G

consisting of elements of finite order. If n ∈ N∗, we write Torn(G) for the subset

of Tor(G) consisting of elements of order prime to n. Similarly, we write Torn(G)

for the subset of Tor(G) consisting of elements whose order divides a power of n.

The following conjecture is made at the very end of the article [3].
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Conjecture 1.1. The inclusion B(Ks
0)# ⊆ Tor(B(Ks

0)) holds.

Here Ks
0 is the separable closure of K0.

In the same context, F. Benoist then asked the following question (see [2]).

Question 1.2. Suppose that there are no non vanishing K̄0-homomorphisms

BK̄0
→ C, where C is an abelian variety, which has a model over F̄.

Do we have B(Ks
0)# ∩ Torp(B(Ks

0)) = 0 ?

We recall (in the notation of Question 1.2) that a model of C over F̄ is an abelian

variety C0 over F̄ such that C ' C0 ×F̄ K̄0.

In response to these questions, we shall prove the following two results in this

text :

Theorem 1.3. Conjecture 1.1 holds.

A. Pillay explained that Conjecture 1.1 can be viewed as a positive characteristic

analog of Manin’s ”theorem of the kernel” (see [14] for the latter). He also out-

lined a proof of the Mordell-Lang conjecture over function fields of characteristic

p > 0 (in the case of abelian varieties), which is based on Conjecture 1.1 and a

quantifier elimination result.

Conjecture 1.1 is also linked to the Mordell-Lang conjecture in the following

way. Lemma 2.4 below (which plays a key role in the proof of Conjecture 1.1)

implies that the infinitely p-divisible points defined over a certain separable (but

transcendental) field extension of K0 are annulled by a fixed Weil polynomial (in

particular it has no roots of unity among its roots) applied to a lifting of the

Frobenius automorphism. This fact, combined with the existence of arc schemes

(see for instance [23, before Lemma 2.3])) as well as Proposition 6.1 in [19] can be

used to give a quick proof of Theorem 4.1 in [23]. This last theorem is the main

tool in the proof of the Mordell-Lang conjecture given in [23]; more precisely,

the Mordell-Lang conjecture follows quickly from it (see par. 3.2 in [23] for the

argument), once the existence of jet schemes (see for instance par. 2.1 in [23] for

the latter) is established.

Details about the argument outlined in the last paragraph will appear in [4],

where it will also be generalized to the semiabelian situation; it would be very

interesting to understand the link (if there is one) between this argument and A.

Pillay’s approach to the Mordell-Lang conjecture mentioned above.
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Theorem 1.4. Suppose that EndK̄0
(B) = Z. Then B(Ks

0)# ∩ Torp(B(Ks
0)) = 0.

Ie the answer to F. Benoist’s question is affirmative if EndK̄0
(B) = Z.

We actually prove a stronger result, but the stronger form is (as very often) more

difficult to formulate. See the last remark of the text for this stronger form.

In particular, the answer to Question 1.2 is affirmative if B is an elliptic curve

over K0. This was also proved in [3]. In [26, after Th. 3], F. Voloch shows that

if B/K0 is ordinary and has maximal Kodaira-Spencer rank, then B[p](Ks
0) = 0

and thus the answer to Question 1.2 is also affirmative in that situation.

The hypothesis B(Ks
0)#∩Torp(B(Ks

0)) = 0 is a crucial hypothesis in B. Poonen’s

and J. F. Voloch’s work on the Brauer-Manin obstruction over function fields.

See for instance [20, Th. B.].

The ideas underlying the proof of Theorem 1.3 are the following. First we notice

that we may choose a (necessarily discrete) valuation on K0 such that all the

pl-th roots of a given infinitely p-divisible point lie in a corresponding maximal

unramified extension of the completion of K0 along the valuation (this is Propo-

sition 2.2). Secondly, we notice that an infinitely p-divisible point on B can be

recovered from the images of all its pl-th roots in the reduction of B modulo the

ideal of the valuation (this is Lemma 2.4). This correspondence is Galois equiv-

ariant and this implies that an infinitely p-divisible point must have an infinite

Galois orbit, if it is not a torsion point. This is a contradiction, because we are

dealing with algebraic points (see the end of the proof of Proposition 2.3).

Here is the train of thought underlying the proof of Theorem 1.4. To obtain

a contradiction, we suppose that we are given a sequence of non-zero points

Pi ∈ B(Ks
0) such that p · Pi = Pi−1. We then consider the successive quotients of

B by the groups generated by the Galois orbits of the Pi. This gives a sequence

of abelian varieties, which is shown to have decreasing modular height (see (2)).

Using a fundamental result of Zarhin (see Theorem 3.1), we deduce that infinitely

many of the quotients are isomorphic and thus an abelian variety isogenous to

B is endowed with a non-trivial endomorphism. This contradicts one of the

assumptions of Theorem 1.4.

In the following two sections, we prove the results described above in the same

order. The two sections are technically and terminologically independent of each
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other and can be read in any order.

Acknowledgments. We are very grateful to R. Pink for his detailed comments

on an earlier version of this text. Without his input, this text would certainly be

a lot less clear. We also thank A. Pillay and F. Benoist for explaining their ideas

and conjectures to us and for interesting discussions. Finally, we want to thank

J.-F. Voloch for an interesting exchange on and around the problems addressed

in this article. Thanks also to B. Poonen for his remarks.

2 Proof of Theorem 1.3

Before describing the proof, we would like to point out the following special case

(which is not needed in the proof) :

Lemma 2.1. If the p-rank of B is 0 then we have B(Ks
0)# ⊆ Tor(B(Ks

0)).

Proof (of the lemma) This is a consequence of the Lang-Néron theorem. The

details are left to the reader.

Theorem 1.3 will be shown to be a simple consequence of the following two

propositions.

To formulate them, let S be the spectrum of a complete noetherian local ring of

characteristic p. Let K be the fraction field of S. Let A be an abelian scheme

over S.

Write Ssh for the spectrum of the strict henselisation of the ring underlying S and

L for the fraction field of Ssh. See for instance [16, I, 4, p. 38] for the definition

of the strict henselization. We choose once and for all a K-embedding L ↪→ Ks.

Proposition 2.2. Suppose that S is a scheme of characteristic p. Suppose that

the p-rank of the fibres of A is constant. Then we have

(p · A(Ks)) ∩ A(L) = p · A(L).

The proof of Proposition 2.2 will be given further below.

Proposition 2.3. Suppose that the residue field of the closed point of S is finite.

Then we have A(L)# = Tor(A(L)#).
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The proof of Proposition 2.3 will be given further below.

Proof of Theorem 1.3 (assuming Propositions 2.2 & 2.3). Let x ∈ B(Ks
0)#.

We shall show that x is a torsion point.

We may assume without restriction of generality that x ∈ B(K0) (otherwise, we

replace K0 by K0(κ(x))). After again possibly replacing K0 by a finite extension,

we may suppose that B[p](K0) = B[p](K̄0). Let U be a smooth algebraic curve

over F. We may suppose without restriction of generality that there is an abelian

scheme B over U extending B and that the p-rank of the fibres of B is constant.

Let now u be any closed point of U . Let S be the completion of the local ring of

U at u and let A := BS. Let K be the fraction field of S and L be the fraction

field of the strict henselisation Ssh of S, as before.

Now let x1, x2, · · · ∈ B(Ks
0) be elements such that p · xl = xl−1 for all l > 2 and

such that p ·x1 = x. Such a sequence exists by assumption. Applying Proposition

2.2 to x and all the xl successively, we conclude that x ∈ A(L)#. We conclude

the proof of Theorem 1.3 by appealing to Proposition 2.3.

Proof of Proposition 2.2. Let N := ker [p] be the kernel of the multiplication

by p morphism [p] : A → A. This is a (non-reduced) finite group-scheme over S.

There is an exact sequence of finite, flat, S-group schemes

0→ N0 → N → Net → 0 (%)

where N0 is connected and Net is étale. See [24, (1.4)] for this. Since the unit

section of N is open and closed (by the assumption on the p-rank), we see that

N0 is an infinitesimal group-scheme.

Thus the decomposition (%) of N leads to S-isogenies of abelian schemes

A φ→ A1
µ→ A

such that µ is étale, φ is purely inseparable and µ ◦ φ = [p].

Let now x ∈ (p · A(Ks)) ∩ A(L). Let T ↪→ ASsh be the closed subscheme arising

from the section ofASsh over Ssh associated to x. We have Ssh-morphisms [p]∗T →
µ∗
SshT → T , where the morphism [p]∗T → µ∗

SshT is purely inseparable over L and

the morphism µ∗
SshT → T is étale. Furthermore, by construction, there is an

element y ∈ A(Ks) such that y ∈ ([p]∗T )(Ks) and such that p · y = x. Let V be

the connected component of µ∗T containing the image of φSsh(y). We obtain a
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sequence of Ssh-morphisms

Spec Ks → ([p]∗T )V → V → T → A

whose composition is x.

Since Ssh is strictly henselian, the morphism V → T must be an isomorphism.

Let now v ∈ V be the image of the composition Spec Ks → ([p]∗T )V → V .

Let w ∈ ([p]∗T )V be the image of y. Since the morphism ([p]∗T )V → V is purely

inseparable, the extension of residue fields κ(w)|κ(v) is purely inseparable. Hence

it must be trivial, since the field extension κ(w)|κ(T ) = L = κ(v) is separable,

because it is a subextension of the separable algebraic extension Ks|κ(T ). Hence

the extension κ(w)|κ(T ) is trivial.

This shows that we actually have x ∈ p ·A(L), which completes the proof of the

proposition.

Proof of Proposition 2.3. Let us temporarily use the following notation. Let

R := Γ(S,OS) be the local ring underlying S. Let m ⊆ R be the maximal

ideal of R and let k := R/m. We write correspondingly Rsh := Γ(Ssh,OSsh)

and msh ⊆ Rsh for the maximal ideal of Rsh. We fix an identification of k̄ with

Rsh/msh. Let also Ŝsh be the spectrum of the completion R̂sh of Rsh along msh

and let L̂ be the fraction field of R̂sh.

Let A0 be the special fibre of A, ie the fibre of A over the unique closed point of

S.

Let Ip(A0(k̄)) := lim←−l>0
A0(k̄), where the transition morphisms are all given by

multiplication by p (beware : Ip(A0(k̄)) is not the classical Tate module). So an

element of lim←−l>0
A0(k̄) is given by an inverse system

· · · → tl → tl−1 → · · · → t0

where tl ∈ A0(k̄) and tl−1 = p · tl for all l > 0. Now notice that for any l > 1,

the kernel of the reduction map A(Rsh/msh,l) → A0(k̄) is a commutative group,

which is killed by multiplication by pl−1. This follows from the fact that the

kernel of the reduction map A(Ŝsh)→ A0(k̄) can be identified with the points of

a commutative formal group. See [6, Th. 8.5.9 (a), p. 213].

For a fixed r > 1, let λr : Ip(A0(k̄)) → A(Rsh/msh,r) be the map sending the

inverse system

· · · → tr → tr−1 → · · · → t0
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to the element pr−1 · t̃r−1, where t̃r−1 is any lifting of tr−1 to A(Rsh/msh,r).

Notice that the composition of λr with the reduction map A(Rsh/msh,r) →
A(Rsh/msh,r−1) is the map λr−1. Hence we obtain a homomorphism

λ : Ip(A0(k̄))→ lim←−
r

A(Rsh/msh,r) ' A(Ŝsh) ' A(L̂).

Remark. A variant of the map λ appears in the theory of the Serre-Tate lifting

of ordinary abelian varieties over finite fields (see [12]).

Lemma 2.4. We have A(L̂)# = Im(λ).

Lemma 2.4 is a variant of [22, Lemme 3.2.1]. The proofs of both Lemmata are

actually identical.

Proof (of the lemma). Let x0, x1, · · · ∈ A(L̂) be such that p · xi = xi−1 for all

i > 1. Let ρ : A(L̂)→ A0(k̄) be the reduction map. Consider the inverse system

q ∈ Ip(A0(k̄)) given by

· · · → ρ(xi)→ ρ(xi−1)→ · · · → ρ(x0).

We claim that λ(q) = x0. For this, it is sufficient to prove that

λr(q) = x0 (mod msh,r)

for all r > 1. We compute

λr(q) = pr−1 · (xr−1(mod msh,r)) = (pr−1 · xr−1)(mod msh,r)) = x0 (mod msh,r).

This shows that ∩l>0p
lA(L̂) ⊆ Im(λ).

For the opposite inclusion (which is actually not needed in the text), let

· · · → t1 → t0

be an element of Ip(A0(k̄)). This element is the image under multiplication by p

of the element

· · · → t2 → t1

( in other words Ip(A0(k̄))# = Ip(A0(k̄)) ). Hence any image by λ of an element

of Ip(A0(k̄)) is infinitely p-divisible.
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Remark. Until now in the proof, we only used the fact that k is a field of

characteristic p (not that it is a finite field). In particular, the last lemma is true

in that generality.

Now notice that the map λ is compatible with the natural action of Gal(k̄|k) on

Ip(A0(k̄)) and A(L̂). Let σ ∈ Gal(k̄|k) ' Ẑ be the Frobenius automorphism. Let

x ∈ A(L)# ⊆ A(L̂)# = Im(λ). Since the residue field of x lies in an algebraic

extension of K, there exists r > 1 such that σr(x) = x. On the other hand,

by the Weil conjectures, there is a polynomial Q with integer coefficients and

no roots of unity among its roots, such that Q(σr) = 0 on Ip(A0(k̄)). Hence

Q(σr(x)) = Q(1) · x = 0. Since Q(1) 6= 0, this implies that x is a torsion point.

This proves Proposition 2.3.

Remark. Let L1 be the algebraic closure of L in L̂ (notice that if S is a discrete

valuation ring then L1 = L; see for instance [13, Ex. 8.3.34, p. 360]). The above

proof of Proposition 2.3 actually shows that

A(L̂)# ∩ A(L1) = Tor(A(L1)),

which is stronger.

3 Proof of Theorem 1.4

This section can be read independently of the previous one.

To prove Theorem 1.4, we shall crucially need the following theorem. Let U

be a smooth proper curve over F, whose function field is K0. A semiabelian

scheme A/U is a commutative group scheme over U , whose geometric fibres are

semiabelian varieties. We shall say that a semiabelian scheme over U is generically

abelian if its geometric generic fibre is an abelian variety. If A/U is a semiabelian

scheme with zero-section ε, we shall write

ω0
A/U := ε∗(det(ΩA/U))

for the determinant of the sheaf of differentials of A over U , restricted to the

zero-section.

Theorem 3.1 (Zarhin). Let β, g, n > 0. Suppose that (n, p) = 1 and that n > 3.

Up to isomorphism, there is only a finite number of generically abelian semia-

belian schemes A/U of relative dimension g over U , such that
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• degU(ω0
A/U) = β;

• there exists an isomorphism of group schemes AK0 [n] ' (Z/nZ)2g
K0

.

The Theorem 3.1 is well-known to specialists but I could find no formal proof of

it in the literature.

Proof (of Theorem 3.1). We shall first prove the following statement. Let β ∈ N.

Up to isomorphism, there is only a finite number of generically abelian semia-

belian schemes A/U of relative dimension g over U , such that (*)

• there exists a principal polarisation on AK0 ;

• there exists a symplectic isomorphism (Z/nZ)2g
K0
' AK0 [n];

• degU(ω0
A/U) = β.

To prove this, we shall use the following deep results of D. Mumford, A. Grothendieck,

L. Moret-Bailly, C.-L. Chai and G. Faltings.

Let Ag,n be the functor from the category of locally noetherian Fp-schemes to the

category of sets, such that

Ag,n(S) = { isomorphism classes of the following objects :

principally polarized abelian schemes over S endowed

with a symplectic isomorphism (Z/nZ)2g
S ' A[n] }

Then D. Mumford proves (see [18]) that the functor Ag,n is representable by a

scheme, which is separated and of finite type over Fp. We shall also denote this

scheme by Ag,n.

Furthermore, in [5, V, 2., Th. 2.5], C. Chai and G. Faltings prove that there

exists

• a scheme A∗g,n, which is proper over Fp;

• an open immersion Ag,n ↪→ A∗g,n;

• a semiabelian scheme B over A∗g,n, such that BAg,n is isomorphic to the

abelian scheme underlying the universal object over Ag,n.
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Also they show that ω0
B/A∗g,n

is an ample line bundle.

Now write Z := U ×Fp A∗g,n. Recall that the Hilbert scheme Hilb(Z/Fp) is a

scheme over Fp, which is locally of finite type and such that

Hilb(Z/Fp)(T ) = {closed subschemes of ZT , which are proper and flat over T}

for any locally noetherian scheme T over Fp (see [7]).

Furthermore, fix Φ ∈ Q[λ], a polynomial with rational coefficients and L/Z an

ample line bundle. The Fp-scheme HilbΦ(Z/Fp) is then characterized by the

property that

HilbΦ(Z/Fp)(T ) :=

{closed subschemes W of ZT , which are proper and flat over T

and such that χ(Wt, L
⊗λ
Wt

) = Φ(λ) for all λ ∈ N and all t ∈ T}

Here Wt is the fibre at t ∈ T of the morphism W → T and LWt is the pull-back of

L to Wt by the natural morphism Wt → Z. The symbol χ(·) refers to the Euler

characteristic; by definition

χ(Wt, L
⊗λ
Wt

) =
∑
r>0

(−1)r dimκ(t) H
r(Wt, L

⊗λ
Wt

).

It is shown in [7], that HilbΦ(Z/Fp) is projective over Fp (as a consequence of the

projectivity of Z). Notice that by construction, we have a decomposition

Hilb(Z/Fp) =
∐

Φ∈Q[λ]

HilbΦ(Z/Fp).

Finally, it is shown in [6, part II, 5.23] that the functor MorFp(U,A∗g,n) from

locally noetherian Fp-schemes T to the category of sets, such that

MorFp(U,A∗g,n)(T ) = {T -morphisms from UT to A∗g,n,T}

is representable by an open subscheme of Hilb(Z/Fp). The open immersion

MorFp(U,A∗g,n) ↪→ Hilb(U×FpA
∗
g,n/Fp) is described by the natural transformation

of functors

T -morphism f from UT to A∗g,n,T 7→ graph of f

Now fix an ample line bundle M on U . Let L be the line bundle M � ω0
B/A∗g,n

on

Z = U ×Fp A
∗
g,n.
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Now we are finally ready to tackle our proof of finiteness. Suppose that we are

given A/U as in (*). Restricting to the generic point of U , we get a morphism

Specκ(U)→ A∗g,n (whose image is in Ag,n) and since A∗g,n is proper over Fp and

U is a Dedekind scheme, this extends to a morphism φ : U → A∗g,n. We thus get

a point φ ∈ MorFp(U,A∗g,n)(Fp). Let Γφ ↪→ U ×Fp A
∗
g,n be the graph of φ. We

compute its Hilbert polynomial

χ(Γφ, L
⊗λ
Γ ) = χ(U, (M ⊗ φ∗(ω0

B/A∗g,n))⊗λ) = degU((M ⊗ φ∗(ω0
B/A∗g,n))⊗λ) + 1− gU

= λ · degU(M ⊗ φ∗(ω0
B/A∗g,n)) + 1− gU

= λ · degU(M ⊗ ωA/U) + 1− gU
= λ · degU(M) + λ · degU(ωA/U) + 1− gU
= λ · degU(M) + λ · β + 1− gU := Q(λ). (1)

Here gU is the genus of U . The second equality is justified by the Riemann-

Roch theorem on U . From (1) we see that the Hilbert polynomial of φ ∈
MorFp(U,A∗g,n)(Fp) only depends on β (once M is given) and thus

φ ∈ HilbQ(λ)(U ×Fp A
∗
g,n/Fp)(Fp).

Now to prove that there are only a finite number of generically abelian semiabelian

scheme A/U satisfying (*), just notice that the set HilbQ(λ)(U ×Fp A
∗
g,n/Fp)(Fp)

is finite, since HilbQ(λ)(U ×Fp A
∗
g,n/Fp) is projective and hence of finite type over

Fp.

To conclude, recall the following facts.

First, a generically abelian semiabelian scheme A/U is completely determined by

its generic fibre AK0 - see [21, IX, cor. 1.4, p. 130]. Secondly, by Zarhin’s ”trick”

(see [17, IX, 1.]), for any abelian variety C/K0, the abelian variety (C ×K0 C
∨)4

can be principally polarized. Thirdly, a given abelian variety C/K0 has only a

finite number of direct factors (see [15, Th. 18.7]). Fourthly, if C/K0 is an abelian

variety, which extends to a semiabelian scheme C over U , then the dual abelian

variety C∨ has the same property (by Grothendieck’s criterion [9, IX, Prop. 5.13

(c)]) and furthermore deg(ω0
C/U) = deg(ω0

C∨/U) (here we wrote somewhat sloppily

C∨ for the semiabelian extension of C∨). See [5, V, 3., Lemma 3.4] for the latter

equality.

Putting all these facts together, the theorem readily follows from the just proven

fact that there are only a finite number of generically abelian semiabelian scheme

A/U satisfying (*).
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Proof (of Theorem 1.4). By contradiction. So suppose that there exists a point

P ∈ B(Ks
0)# such that P 6= 0 and pr · P = 0 for some r > 1. Then there exists

a sequence of points (Pn ∈ B(Ks
0))n∈N∗ such that P = P1 and p · Pi+1 = Pi for

all i ∈ N∗. Let Gi be the subgroup of B(Ks
0)# generated by the elements γ(Pi),

where γ runs through Gal(Ks
0|K0). By Galois descent, the groups Gi are naturally

defined over K0 and we have natural inclusion morphisms G1 ↪→ G2 ↪→ . . . over

K0. Furthermore, the order di of the group Gi is strictly increasing as a function

of i ∈ N∗.

Now we may replace K0 by a finite extension and U by the corresponding projec-

tive curve over k, without restricting generality. Hence we may suppose that B

extends to a generically abelian semiabelian scheme B over U (by Grothendieck’s

semiabelian reduction theorem [9, IX]). Furthermore, we may suppose that there

is an isomorphism ρB : (Z/lZ)2g
K0
' BK0 [l], where l > 3 is a natural number prime

to p. We fix such an l for the rest of the proof.

Now look at the sequence of K0-isogenies

B → B/G1 → B/(G1 ·G2)→ · · ·B/(G1 ·G2 ·G3)→ . . . (2)

Let Bi := B/(G1 · · ·Gi) and B0 := B. Let πi : Bi → U be the connected

component of the Néron model of Bi over U . Since all the Bi are isogenous,

the criterion [9, IX, Prop. 5.13 (c)] shows that all the Bi are generically abelian

semiabelian schemes over U . Furthermore, by the universal property of Néron

models, the morphisms in (2) extend to U -morphisms

B φ0→ B1
φ1→ B2 → · · · . (3)

Finally, since the isogenies φi are of degree prime to l, we obtain isomorphisms

φi ◦ φi−1 ◦ · · ·φ0 ◦ ρB : (Z/lZ)2g
K0
' Bi,K0 [l] for all i.

By construction, the morphisms φi are generically étale. Looking at differentials,

we see that there is an exact sequence of coherent sheaves

φ∗iΩBi+1/U → ΩBi/U → Ωφi → 0

since ΩBi+1/U is locally free and since the morphism of sheaves φ∗iΩBi+1/U → ΩBi/U

is injective at the generic point of Bi, we see that the morphism φ∗iΩBi+1/U → ΩBi/U

is actually injective so that we have an exact sequence

0→ φ∗iΩBi+1/U → ΩBi/U → Ωφi → 0. (4)
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Restricting the sequence (4) to the zero section εi : U → Bi, we get

0→ ε∗i (ΩBi+1/U)→ ε∗i (ΩBi/U)→ ε∗i (Ωφi)→ 0. (5)

Here the exactness on the left is again justified by the fact that the sequence (5)

is generically exact on U and the fact that ε∗i+1(ΩBi+1/U) is locally free. Applying

degU(·) to the objects in the last sequence, we conclude that

degU(ω0
Bi/U)− degU(ε∗i (Ωφi)) = degU(ω0

Bi+1/U
)

Since ε∗i (Ωφi) is a torsion sheaf, we have degU(ε∗i (Ωφi)) > 0 (see [10, Ex. 6.12,

chap. 7, p. 149]).

So we conclude that degU(ω0
Bi/U) 6 degU(ω0

B/U) for all i ∈ N. From Theorem 3.1,

we conclude that there exists j, l ∈ N such that j < l and such that Bj ' Bl. Since

there is also an étale K0-isogeny Bj → Bl of degree divisible by pl−j, this means

that there is an étale K0-isogeny Bj → Bj of degree divisible by pl−j. Since this

last isogeny cannot coincide with the isogeny given by a power of p (because the

isogeny given by multiplication by p always has an inseparable part), this implies

that EndK̄0
(Bj)Q 6= Q. Thus EndK̄0

(B)Q 6= Q. This concludes the proof.

Remark. The Proof of Theorem 1.4 gives a somewhat stronger result. In fact it

shows that the conclusion of Theorem 1.4 holds if the following weaker assumption

holds : there is no K̄0-isogeny φ : BK̄0
→ B′, such that

• φ is étale;

• deg(φ) is a power of p;

• B′ carries an étale and finite K̄0-endomorphism, whose degree is a power

of p.
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