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Summary. We give a new proof of the fact that the even terms (of a multiple
of) the Chern character of the Hodge bundles of semi-abelian schemes are torsion
classes in Chow theory and we give explicit bounds for almost all the prime pow-
ers appearing in their order. These bounds appear in the numerators of modified
Bernoulli numbers. We also obtain similar results in an equivariant situation.

1 Introduction

Let g > 1 (resp. n > 4) be an integer (resp. an even integer) and let Ag,n be
the fine moduli scheme of principally polarised abelian varieties over C with an n-
level structure (see [CF, chap. I]). By Ag,n we denote a toroidal compactification of
Faltings-Chai type (see [CF, chap. IV]). Let G → Ag,n be the universal semi-abelian
scheme over Ag,n. We set E := e∗ΩG/Ag,n

, where e : Ag,n → G is the zero-section.

For any integer k > 0, we shall write chk
0(V ) for the additive characteristic class on

vector bundles V , such that chk
0(V ) := c1(V )k when V is a line bundle. Furthermore

for any integer l > 2 we shall write B′
l for the numerator of the rational number

(2l−1)Bl, where Bl is the l-th Bernoulli number. Recall that the Bernoulli numbers
are defined by the formula

t

exp(t)− 1
=

∑
j>0

Bj
tj

j!
.

Theorem 1. Let b : Ãg,n → Ag,n be any desingularisation and let l > 2 be an even
integer. Then:

(1) The characteristic class chl
0(b

∗E) ∈ CHl(Ãg,n) is a torsion class.
(2) Let t > 1 be the smallest natural number such that t · chl

0(b
∗E) = 0 and let p be a

prime number such that p > l. If q > 0 is the largest integer such that pq|t then
pq|B′

l.

Here are some numerical examples. Case l = 2: the class ch2
0(b

∗E) is a torsion
class of order a power of 2, since (22 − 1)B2 = 3/6 = 1/2. Case l = 12: there is an
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integer r > 0 such that 691 · 2310r · ch12
0 (b∗E) = 691 · (2 · 3 · 5 · 7 · 11)r · ch12

0 (b∗E) = 0,
since (212 − 1)B12 = −2073/2 = −3 · 691/2.

Recall that CH(Ãg,n) refers to the Chow intersection ring of Ãg,n (see [F]). The

ring CH(Ãg,n) carries a natural ring grading and CHl(Ãg,n) refers to its l-th graded
term. Characteristic classes with values in a cohomology theory factor via the cycle
class map through their counterparts with values in the Chow ring. The Chow ring
is thus a universal target for characteristic classes.

If one replaces Ag,n by Ag,n in Theorem 1 (so that b becomes an isomorphism)
then the statement that the characteristic class chl

0(b
∗E) is a torsion class was proven

by van der Geer in [VDG]. Prompted by his work, Esnault and Viehweg then proved
(1) in [EV1]. The original contribution of Theorem 1 thus consists in the information
(2) given about the order of the torsion.

For z belonging to the unit circle S1, we define the Lerch’s ζ-function ζL(z, s) :=∑
k>1 zk/ks for s ∈ C such that <(s) > 1, and using analytic continuation, we

extend it to a meromorphic function of s over C.
In the next theorem, n is an integer > 1 and D is any Dedekind ring containing

OQ(µn) as a subring. Recall that OQ(µn) is the ring of integers of the subfield Q(µn)
of C generated by the n-th roots of unity. Let C be a smooth quasi-projective scheme
over Spec D[ 1

n
]. Let furthermore C → C be a polarized abelian scheme and let ι be

an automorphism of finite order n of C over C. Suppose that the fixed point scheme
Cι of ι is finite and flat over C. Let H := H1

dR(C/C). The automorphism ι induces an
automorphism of finite order of H, which we also denote by ι. For each u ∈ µn(D),
let Hu := Ker(ι− u · Id).

Theorem 2. Let l > 1 be an integer. The meromorphic function ζL(u, z) is regular
at z = 1− l and the complex number ζL(u, 1− l) lies in OQ(µn)[

1
n·l! ]. The equality∑

u∈µn(D)

ζL(u, 1− l) chl
0(Hu) = 0

holds in CHl(C)⊗OQ(µn)[
1

n·l! ].

Theorem 2 is compatible with Theorem 1 in the following sense. Let C = Ag,n

and let C be the restriction of G to Ag,n. Let ι be the automorphism of order 2 of C
over C given by taking the inverse in the group scheme. Then the equality statement
in Theorem 2 is equivalent to Theorem 1 with Ag,n replaced by Ag,n.

Theorem 2 overlaps with Stickelberger’s theorem; this is explained at the end of
subsection 4.2.

We shall now describe our methods of proof. Theorem 1 and Theorem 2 are
both proved by applying a relative coherent Lefschetz fixed point formula (see sub-
section 2.3) to certain vector bundles and certain fibrations. A formula involving
the extended Hodge bundle b∗E (resp. the first Gauss-Manin bundle H1

dR) is then
obtained and Theorem 1 (resp. Theorem 2) is deduced from this formula, using
some linear algebra and some facts relating the exponential function and the Lerch
zeta-function.

In the paper by Esnault and Viehweg quoted above [EV1], the Grothendieck-
Riemann-Roch is applied to a quotient of a compactification of the group scheme
G to prove that chl

0(b
∗E) is a torsion class. This method is conceptually close to

ours but its seems difficult to obtain fine information about denominators using it,
because it involves the Chow group of the compactification, where the denominators
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of the Chern character can become large, when the dimension of the compactification
is large. By contrast, the relative Lefschetz formula only involves the Chow group of
the fixed point set, which has the same dimension as the base. Another advantage
of the fixed point formula is that it involves less denominators at the outset whereas
the Grothendieck-Riemann-Roch theorem would probably have to be replaced by
the Adams-Riemann-Roch theorem to make control of denominators possible.

The authors were led to the theorems 1 and 2 and the methods of proof presented
here by a conjecture on characteristic classes of Hodge bundles in the context of
Arakelov theory. For this we refer to subsection 4.2.

The structure of the article is as follows. In the second section, we describe some
results from the book of Chai and Faltings on the toroidal compactification of the
universal semi-abelian family, as presented in the article [EV1]; we use these results
to relate the sheaf of relative differentials with logarithmic singularities to the normal
bundle of the fixed point set of −1 (see Proposition 2). We then proceed to describe
the relative fixed point formula which will be our main tool in the proof. In the
third section, we first prove Theorem 2 by applying the fixed point formula to the
relative de Rham complex of the relevant abelian scheme; second we prove Theorem
1 by applying the fixed point formula to the relative logarithmic de Rham complex.
In the fourth section, we shall discuss some consequences of the above theorems,
as well as some conjectures to which they lead. A salient consequence of Theorem
2 is Corollary 1, which concerns abelian schemes with complex multiplications but
possibly no automorphisms of finite order other than −1.

Acknowledgements. The authors thank G. van der Geer and B. Moonen for encour-
aging them to write up the results of this paper and more generally for their interest.
Our thanks also go to C. Soulé, for interesting discussions and suggestions. Finally,
we are especially grateful to H. Esnault and E. Viehweg for taking the time to dis-
cuss their paper [EV1] with us. This paper was the technical basis for the present
article.

2 Preliminaries

2.1 Differentials with Logarithmic Singularities

In this subsection we shall review the definition of a sheaf of differentials with
logarithmic singularities along a divisor with normal crossings, as well as its basic
properties. Our basic reference is [EV2, chap. 2].

Let Z be a quasi-projective non-singular variety over C and let D be a normal
crossings divisor in Z. Let d be the dimension of Z. We set U := Z\D and denote by
j : U ↪→ Z be the inclusion map. We shall write Ω∗

Z(log D) for the complex of sheaves
of differential forms with logarithmic singularities along D. The complex Ω∗

Z(log D)
is a subcomplex of the complex j∗Ω

∗
U and it has the following defining property: if

V ⊆ Z is an open set, p > 0 is an integer and and ω ∈ j∗Ω
p
U (V ) = Ωp

Z(U ∩ V ) then
ω ∈ Ωp

Z(log D)(V ) iff ω and dω have simple poles along D ∩ V . To say that ω has
a simple pole along D ∩ V in the latter situation means the following: in any affine
open subscheme W ⊆ V such that the ideal of D ∩ W in OZ(W ) is principal, the
section e ·ω|U∩W lies in the image of the restriction map Ωp

Z(W ) → Ωp
Z(U ∩W ) for

any generator e ∈ OZ(W ) of the ideal of D ∩W (this condition does not depend on
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the choice of e). The definition of Ω∗
Z(log D) implies that for each p > 0 the sheaf

Ωp
Z(log D) has the structure of OZ-module, which is compatible with the injection

Ωp
Z(log D) ↪→ j∗Ω

p
U ; furthermore, Ωp

Z(log D) is then locally free for this OZ-module
structure.

Abusing language, we shall write OD0 for ⊕n
i=1OCi , where the Ci run over the

irreducible components of D. Let P ∈ Z and let m be the maximal ideal of the
local ring OP . We write s for the number of irreducible components of D which
contain P . We may suppose without restriction of generality that the components
C1, . . . , Cs contain P . We denote by f1, . . . , fs ∈ m generators of the ideals of
the components C1, . . . , Cs. Since by definition f1, . . . , fs form a regular sequence
in OP and since OP is a regular ring, we may find (see [M, Par. 14, Th.14.2])
elements fs+1, . . . , fd ∈ m, such that the elements f1, . . . , fd form a regular system
of parameters in OP . There is then a neighborhood V of P , such that the elements
df1, . . . , dfd form a basis of ΩZ(V ) as a OZ(V )-module. It is shown in [EV2, chap.
2, 2.2 (c), p. 11] that in this situation the elements df1/f1, . . . dfs/fs, dfs+1, . . . dfd

form a basis of ΩZ(log D)(V ) as an OZ(V )-module.
Furthermore, there is a canonical exact sequence

0 −→ Ω1
Z −→ Ω1

Z(log D)
r−→ OD0 −→ 0

where the morphism r has the following description. We shall use the terminology of
the last paragraph. The homomorphism ΩZ(log D)(V ) → OD0(V ) = ⊕s

i=1OCi(V )
sends α · dfi/fi (resp. α · dfi), where α ∈ OZ(V ) and 1 6 i 6 s (resp. d > i > s), to
the image of α in OCi(V ) (resp. on 0).

Now let Z′ be a non-singular quasi-projective variety over C and g : Z′ → Z
be a morphism over C. Let D′ := (g∗(D))red and suppose that D′ is a divi-
sor with normal crossings. We write U ′ for its complement and let j′ : U ′ ↪→ Z′

be the inclusion morphism. Notice that by adjunction, there is a natural mor-
phism of coherent sheaves j∗ΩZ(log D) → j∗ΩZ = ΩU ; this induces a morphism
g|∗U (j∗ΩZ(log D)) → g|∗U (j∗ΩZ) and since j ◦ g|U = g ◦ j′, we obtain a morphism
g∗ΩZ(log D) → j′∗j

′∗g∗ΩZ by adjunction. Composing with the natural morphism
g∗ΩZ → ΩZ′ , we finally obtain a morphism g∗ΩZ(log D) → j′∗j

′∗ΩZ′ = j′∗ΩU′ .

Lemma 1. The image of the morphism of coherent sheaves g∗ΩZ(log D) →
j′∗j

′∗ΩZ′ = j′∗ΩU′ just given lies inside ΩZ′(log D′).

We shall prove Lemma 1 together with the Lemma 2 which we first describe.
Consider first the following diagram:

g∗ΩZ −→ g∗ΩZ(log D) −→ g∗OD0 −→ 0y y
0 −→ ΩZ′ −→ ΩZ′(log D′) −→ OD′

0
−→ 0 ,

where the middle vertical arrow is defined via Lemma 1. By construction this di-
agram is commutative and its existence shows that there is a unique morphism
g∗OD0 → OD′

0
such that the completed diagram

g∗ΩZ −→ g∗ΩZ(log D) −→ g∗OD0 −→ 0y y y
0 −→ ΩZ′ −→ ΩZ′(log D′) −→ OD′

0
−→ 0 ,

commutes.
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Lemma 2. If D and g∗(D) are normal schemes then the morphism g∗OD0 → OD′
0

just described is an isomorphism.

Proof of lemmas 1 and 2. Since the lemmas 1 and 2 are both local statements
on Z and Z′, we may assume that Z′ = Spec A, Z = Spec B and that the
morphism g is induced by a ring morphism g0 : A → B. We may also suppose
that ΩZ(log D)(Z) is free over A and that a basis of ΩZ(log D)(Z) is given
by df1/f1, . . . dfs/fs, dfs+1, . . . dfd, where the elements f1, . . . , fs are generators
of the ideals of the irreducible components C1, . . . , Cs of D and the elements
df1, . . . , dfd form a basis of ΩA over A. Similarly, we may also suppose that a ba-
sis of ΩZ′(log D′)(Z′) over B is given by df ′1/f ′1, . . . df ′s′/f ′s′ , df ′s′+1, . . . df ′d′ , where
the elements f ′1, . . . , f

′
s are generators of the ideals of the irreducible components

C′
1, . . . , C

′
s′ of D′ and the elements df1, . . . , dfd′ form a basis of ΩB over B. We

may also suppose that g0(fk) =
∏s′

r=1 uk,rf
′
r

mk,r , where uk,r ∈ B×, mk,r ∈ Z>0 and
1 6 k 6 s (this follows from the fact that the local rings of Z′ are regular rings and
hence unique factorization domains).

Notice that we have a canonical isomorphism j∗ΩU (Z) ' ΩA,f1···fs (resp.
j′∗ΩU′(Z′) ' ΩB,f ′1···f

′
s′

). If we follow the steps of the definition of the mor-

phism g∗ΩZ(log D) → j′∗ΩU′ , we see that it corresponds to the morphism
ΩZ(log D)(Z)⊗A B → ΩB,f ′1···f

′
s′

of B-modules such that

dfk

fk
7→

s′∑
r=1

(duk,r

uk,r
+ mk,r

df ′r
f ′r

)
(1)

for 1 6 k 6 s and
dfk 7→ d(g0(fk)) (2)

for s < k 6 d. Since the expressions appearing after the arrows in (1) and (2) are
both linear combinations over B of the elements

df1

f1
, . . . ,

df ′s′

f ′s′
, df ′s′+1, . . . , df ′d′ ,

we have proven Lemma 1.
To prove Lemma 2, notice first that we may assume without loss of generality

in the situation of Lemma 2 that D and g∗(D) are integral. We then have s = 1,
s′ = 1 and mk,r = 1 for all k, r. The module associated to the coherent sheaf
g∗OD0 (resp. OD′

0
) is then A/(f1)⊗A B (resp. B/(g0(f1))). Furthermore, if a⊗A b ∈

A/(f1) ⊗A B (resp. b′ ∈ B/(g0(f1))), then a ⊗A b is by definition the image of the
element a · df1/f1 ⊗ b ∈ g∗ΩZ(log D)(Z′) (resp. b′ · df ′1/f ′1 ∈ ΩZ′(log D′)(Z′)).
Looking at the diagram (2.1), we see that the morphism A/(f1)⊗A B → B/(g0(f1))
sends a⊗Ab to the image of g(a)b·(df ′1/f ′1+du1,1/u1,1), i.e. g(a)b. Thus the morphism
g∗OD0 → OD′

0
is given by the natural isomorphism A/(f1)⊗A B ' B/(g0(f1)). ut

2.2 The Toroidal Compactification of the Universal Abelian
Scheme

We shall need the following result, whose proof can be found in [CF, chap. I, prop.
2.7].
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Proposition 1 (Raynaud). Let S be a noetherian normal scheme and let U ⊆ S
be an open dense subset. Let B → U be an abelian scheme. If there is a semi-abelian
scheme B̃ → S extending B, then it is unique up to unique isomorphism.

We now quote a theorem stated in [EV1, Th 3.1], which sums up some results
that can be found in [CF, chap. VI, par. 1]. Recall that n > 4 is an even integer.

Theorem 3. There exists a cartesian diagram of morphisms of schemes

A ↪−→ X

f

y yf

Ag,n ↪−→ B

where f : A → Ag,n is the universal abelian scheme, such that

(1) the horizontal morphisms are open immersions;
(2) the closed set T := B\Ag,n, endowed with its reduced induced subscheme struc-

ture, is a normal crossings divisor;
(3) the closed subscheme Y := (f

∗
T )red is a normal crossings divisor;

(4) X and B are projective smooth varieties over C;

(5) there exists a semi-abelian scheme Ã → B which extends the universal abelian
scheme;

(6) the n-level structure sections Si : Ag,n → A (i ∈ (Z/nZ)2g) extend to pairwise
disjoint sections of X over B;

(7) the action of the inversion on A extends to an involution α of X over B whose
fixed point scheme factors through

∐
i∈(Z/nZ)2g Si;

(8) let ẽ : B → Ã be the zero-section and let Ẽ := ẽ∗ΩÃ/B; there is a natural
isomorphism

f
∗Ẽ ' ΩX(log Y )/f

∗
(ΩB(log T )) =: ΩX/B(log) ,

where
(9) there is a natural isomorphism

Rqf∗(OX) ' ∧q(Ẽ∨)

for all q > 0.

Notice that the statement (7) implies that Xα =
∐

i∈(Z/nZ)2g, 2·i=0 Si. The conor-
mal sheaf of Xα in X is locally free since both Xα and X are regular and we denote
the dual of the conormal sheaf by N .

Proposition 2. There is a natural isomorphism N∨ ' ΩX/B(log)|Xα .

For the proof, we shall need the following lemma.

Lemma 3. There exists an open neighborhood V of Xα such that f |V is smooth.
Furthermore, the natural map N∨ → ΩX/B |Xα is an isomorphism.
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Proof. Recall that there is an exact sequence

N∨ −→ ΩX/B |Xα −→ ΩXα/X −→ 0

(see [H, II, Prop. 8.12]). Using the determination of Xα given above we deduce that
ΩXα/X = 0. Furthermore, the restriction of the above sequence to Xα ∩A is exact,
since A → Ag,n is smooth (cf. [FL, IV, Par. 3, Prop. 3.7, (b)]). Hence rk(N) = g.
Now let r : X → Z be the function r(x) := dimκ(x) ΩX/B,x ⊗κ(x) κ(x), where κ(x)
is the residue field at x. This function is upper semi-continuous (see [H, II, Ex. 5.8,
(a)]) and thus reaches its minimum at g, which is the rank of ΩX/B on the open
dense subset A of X. The set V := {x ∈ X|r(x) = g} is open and the restriction of
ΩX/B to V is locally free of rank g (see [H, II, Ex. 5.8, (c)]). The existence of the
surjection N∨ → ΩX/B |Xα implies that r(x) 6 g when x ∈ Xα and thus r(x) = g on

Xα. Thus Xα ⊆ V . The restriction f |V is smooth, since V and B are non-singular
varieties over C and dim(V )− dim(B) = g (see [H, III, Prop. 10.4]). The morphism
N∨ → ΩX/B |Xα is a surjection of locally free sheaves of the same rank and is thus
an isomorphism. This concludes the proof. ut

Proof of proposition 2. Consider the commutative diagram with exact rows on X:

f
∗
ΩB −→ f

∗
ΩB(log T ) −→ f

∗OT0 −→ 0y y y
0 −→ ΩX −→ ΩX(log Y ) −→ OY0y y y

ΩX/B −→ ΩX/B(log) −→ OY0/f
∗OT0y y y

0 0 0

where the morphism f
∗OT0 → OY0 is defined by the two vertical morphisms on its

left side. Let V ⊆ T be the open subset of T which consists of all the points which
do not lie at the intersection of two irreducible components of T . The set V has
smooth disjoint irreducible components. Let U0 be the open neighborhood of Xα

provided by Lemma 3. Let now VB be an open subset of B such that VB ∩ T = V

and let UB := Ag,n ∪ VB . Finally, let U := f
−1

(UB) ∩ U0. Using Lemma 2 and the
snake lemma, we see that the restriction of the last diagram to U has the following
appearance:

f
∗
ΩB |U −→ f

∗
ΩB(log T )|U −→ f

∗OT0 |U −→ 0y y ∥∥∥
0 −→ ΩX |U −→ ΩX(log Y )|U −→ OY0 |Uy y

ΩX/B |U ' ΩX/B(log)|Uy y
0 0
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Consider now an n-level section σ : B → X whose image is an irreducible com-
ponent of Xα. By the last diagram and the second statement in Lemma 3, we
have σ|∗UB

ΩX/B(log) ' σ|∗UB
N∨. Since B\UB has codimension 2 in B by con-

struction and since B is regular, there is a unique extension of the isomorphism
σ|∗UB

ΩX/B(log) ' σ|∗UB
N∨ to an isomorphism σ∗ΩX/B(log) ' σ∗N∨. This con-

cludes the proof. ut

2.3 A Relative Lefschetz Fixed Point Formula

In this subsection, we shall review a relative fixed point formula which is a corollary
of a formula in Arakelov theory proved in [KR1]. Let S be a noetherian affine
scheme. Let Z be a regular scheme which is quasi-projective over S. Let µn be the
diagonalisable group scheme over S which corresponds to Z/nZ. Suppose that Z
carries a µn-action over S; furthermore, suppose that there is an ample line bundle
on Z, which carries a µn-equivariant structure compatible with the µn-equivariant
structure of Z (see [T2, par. 1.2] for more details about the latter notion). We shall
write Kµn

0 (Z) for the Grothendieck group of locally free sheaves on Z which carry
a compatible µn-equivariant structure. Replacing locally free sheaves by coherent
sheaves in the latter definition leads to a naturally isomorphic group (see [T2, lemme
3.3]). If the µn-equivariant structure of Z is trivial, then the datum of a (compatible)
µn-equivariant structure on a locally free sheaf E on Z is equivalent to the datum
of a Z/nZ-grading of E. The group Kµn

0 (Z) carries a λ-ring structure such that for
any µn-equivariant locally free sheaf E, the element λk(E) is represented in Kµn

0 (Z)
by the k-th exterior power of E, endowed with its natural µn-equivariant structure
(see [K, lemma 3.4]). For any µn-equivariant locally free sheaf E on Z, we write

λ−1(E) for
∑rk(E)

k=0 (−1)kλk(E) ∈ Kµn
0 (Z). There is a unique isomorphism of rings

Kµn
0 (S) ' K0(S)[T ]/(1 − T n) with the following property: it maps the structure

sheaf of S endowed with a homogenous Z/nZ-grading of weight one to T and it maps
any locally free sheaf carrying a trivial equivariant structure to the corresponding
element of K0(S) (= Kµ1

0 (S)).
The functor of fixed points associated to Z is by definition the functor

Schemes/S → Sets

described by the rule
T 7→ Z(T )µn(T ) .

Here Z(T )µn(T ) is the set of elements of Z(T ) which are fixed under each element
of µn(T ). The functor of fixed points is representable by a scheme Zµn and the
canonical morphism Zµn → Z is a closed immersion (see [SGA3, VIII, 6.5 d]).
Furthermore, the scheme Zµn is regular (see [T, Prop. 3.1]). We shall denote the
immersion Zµn ↪→ Z by i. Write N∨ for the dual of the conormal sheaf of the closed
immersion Zµn ↪→ Z. It is locally free on Zµn and carries a natural µn-equivariant
structure. This structure corresponds to a µn-grading, since Zµn carries the trivial
µn-equivariant structure and it can be shown that the weight 0 term of this grading
is 0 (see [T, Prop. 3.1]).

Let W be a regular scheme which is quasi-projective over S and suppose that
W carries a µn-action over S. Let h : Z → W be a projective S-morphism which
respects the µn-actions and write hµn for the induced morphism Zµn → W . The
morphism h induces a direct image map Rh∗ : Kµn

0 (Z) → Kµn
0 (W ), which is a
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homomorphism of groups described by the formula Rh∗(E) :=
∑

k>0(−1)kRkh∗(E)

for a µn-equivariant coherent sheaf E on Z. Here Rkh∗(E) refers to the k-th higher
direct image sheave of E under h; the sheaves Rkh∗(E) are coherent and carry a
natural µn-equivariant structure. The morphism h also induces a pull-back map
Lh∗ : Kµn

0 (W ) → Kµn
0 (Z); this is a ring morphism which sends a µn-equivariant

locally free sheaf E on W on the locally free sheaf h∗(E) on Z, endowed with its
natural µn-equivariant structure. For any elements z ∈ Kµn

0 (Z) and w ∈ Kµn
0 (W ),

the projection formula Rh∗(z · Lh∗(w)) = w · Rh∗(z) holds. This implies that the
group homomorphism Rh∗ is a morphism of Kµn

0 (S)-modules, if the group Kµn
0 (Z)

(resp. Kµn
0 (W )) is endowed with the Kµn

0 (S)-module structure induced by the pull-
back map Kµn

0 (S) → Kµn
0 (Z) (resp. Kµn

0 (S) → Kµn
0 (W )).

Let R be a Kµn
0 (S)-algebra such that 1 − T k is a unit in R for all k such that

1 6 k < n.
We shall refer to the following hypothesis as (H): S is the spectrum of a Dedekind

ring which can be embedded in C, Z and W are flat over S and Zµn is flat over S.

Theorem 4. Let the hypothesis (H) hold. The element λ−1(N
∨) is a unit in the

ring Kµn
0 (Zµn)⊗K

µn
0 (S) R. If the µn-equivariant structure on W is trivial, then for

any element z ∈ Kµn
0 (Z), the equality

Rh∗(z) = Rhµn,∗
(
(λ−1(N

∨))−1 · Li∗(z)
)

holds in Kµn
0 (W )⊗K

µn
0 (S) R.

Proof. The theorem is a consequence of [KR1, Par. 6, Th. 6.1] if the morphism h is
an immersion. Furthermore, the theorem is a consequence of [KR1, Par. 4, Th. 4.4]
if W = S, Z = Pk

S for some k > 0 and h is the structural morphism Pk
S → S. These

two cases combined with the projection formula and the determination of Kµn
0 (Pk

S)
given in [T2, Th. 3.1] imply the full statement. ut

Remarks. (1) The Theorem 4, without the hypothesis (H) but with the hypothesis
that S is the spectrum of an algebraically closed field of characteristic not dividing n,
is proved in [BFM].

(2) The Theorem 4, without the hypothesis (H) but with the requirement that
R is a field is a consequence of [T, Th. 3.5].

(3) The proof of Theorem 4 given above only apparently refers to Arakelov
theory; its underlying structure is purely algebraic and is a variant of the proof
of the main result of [BFM]. This variant does not in fact use hypothesis (H). In
particular, Theorem 4 is true without hypothesis (H).

3 Proof of theorems 1 and 2

The proofs of theorems 1 and 2 are similar and proceed in two steps. In the first one,
we apply Theorem 4 to a certain geometrical situation and in the second one, we
transform the resulting expression using some combinatorics. The first subsection
contains the combinatorial statements we shall need and in the second one the
computations leading to the proofs are given.
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3.1 Combinatorics

Let’s consider the two following formal series

exp(x) :=

∞∑
j=0

xj

j!

and

log(1 + x) :=

∞∑
j=1

(−1)j+1 xj

j
.

For l > 1, we shall write C[x]6l for the quotient of the ring C[[x]] by the ideal of
formal series divisible by xr, where r > l. We then define exp6l(x) ∈ Z[ 1

l!
][x] and

log6l(1 + x) ∈ Z[ 1
l
][x] as the only polynomials of degree l representing the above

formal series exp(x) and log(1 + x) in C[x]6l.
About these polynomials, we have the following lemma.

Lemma 4. Let u ∈ µn(C), u 6= 1. Then the equality

log6l

(
1− u · exp6l(x)

1− u

)
= −

l∑
j=1

ζL(u, 1− j)
xj

j!

holds in C[x]6l. In particular, the values ζL(u, 1 − j)xj/j! lie in OQ(µn)[
1

n·l! ] when
1 6 j 6 l.

Proof. It will be sufficient to prove the identity

log

(
1− u · exp(x)

1− u

)
= −

∞∑
j=1

ζL(u, 1− j)
xj

j!
(3)

in C[[x]]. In [MR2, (6), proof of lemma 3.1], the identity of complex power series

u · exp(x)

1− u · exp(x)
=

∞∑
j=1

ζL(u,−j)
xj

j!
(4)

is proven. If one takes the formal derivative of both sides of equation (3) (for x), one
obtains equation (4). Hence it is sufficient to show that the constant terms of the
power series on both sides of (3) coincide. Since both constant terms can be seen to
vanish, we are done. ut

The following Lemma will be used in the proof of Theorem 1.

Lemma 5. The equality ζL(−1, 1− l) = −(2l − 1)Bl/l holds for all l > 2.

Proof. Let s ∈ C be such that <(s) > 1. By definition, we have

ζL(−1, s) =
∑
k>1

(−1)k

ks

and

ζQ(s) =
∑
k>1

1

ks

where ζQ is Riemann’s ζ-function. From these equalities, we deduce that ζL(−1, s) =
ζQ(s)(21−s − 1). Now ζQ(1 − l) = −Bl/l (see for example [W, chap. 4, Th. 4.2]),
whence the lemma. ut
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If Z is a scheme which is smooth over a Dedekind ring, we shall write CH(Z)6l

for the ring CH(Z)/⊕∞j=l+1 CHj(Z). If E is a locally free sheaf on Z, we shall write

ch6l(E) (“truncated Chern character”) for the element of CH(Z)6l⊗Z[ 1
l!
] given by

the formula ch6l(E) :=
∑l

j=0
1
j!

chj
0(E). The proof of the following lemma is similar

to the proof of the multiplicativity and additivity of the Chern character and we
shall omit it.

Lemma 6. The map ch6l factors through a ring homomorphism

K0(Z) → CH(Z)6l ⊗ Z[
1

l!
] .

Let CH(Z)6l,∗ be the multiplicative subgroup of CH(Z)6l consisting of elements
of the form 1 + z, where z has the property that its degree 0 part vanishes.

The following lemma is a consequence of the fact that log((1 + x)(1 + y)) =
log(1 + x) + log(1 + y) in the ring of power series C[[x, y]].

Lemma 7. The polynomial log6l defines a map CH(Z)6l,∗ → CH(Z)6l⊗Z[ 1
l
] which

is a group homomorphism.

3.2 Final Computations

We shall now prove Theorem 2.

Lemma 8. Let ξ be a primitive n-th root of unity in OQ(µn). Then the elements
1− ξk are units in OQ(µn)[

1
n
] for every integer k such that 1 6 k < n.

Proof. Recall the polynomial identity
∏n−1

j=1 (X − ξj) = Xn−1 + · · · + X + 1. This

identity implies that the inverse of 1− ξk is given by n−1 ∏n−1
r=1,r 6=k(1− ξr). ut

If A is a D[ 1
n
]-algebra such that Spec A is connected and non-empty, then A

contains exactly n distinct n-th roots of unity, all of which are images of roots of
unity contained in D[ 1

n
]. This is a consequence of the last lemma and of the Chinese

remainder theorem. Fix a primitive root of unity ζ. This choice fixes an isomorphism
Z/nZ ' µn(D[ 1

n
]) and hence for each D[ 1

n
]-algebra A, there is a canonical isomor-

phism of groups µn(A) '
∏

C∈CC(A) Z/nZ, where CC(A) is the set of connected

components of Spec(A). We have thus described a D[ 1
n
]-isomorphism between the

constant group scheme over D[ 1
n
] associated to Z/nZ and the group scheme µn over

D[ 1
n
].
Let W be a scheme which is smooth over Spec D[ 1

n
] and which carries the trivial

µn-equivariant structure. For each µn-equivariant locally free sheaf E on C, define

ch6l
µn

(E) :=
∑

k∈Z/nZ

ζk · ch6l(Ek) .

We can see from the definitions that ch6l
µn

induces a ring morphism

ch6l
µn

: Kµn
0 (W ) → CH6l(W )⊗OQ(µn)[

1

l!
] .

We shall now apply Theorem 4. Let us denote the morphism C → C by c and
its relative dimension by d. The automorphism ι defines a Z/nZ-action on C over C
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and using the isomorphism described above, we obtain a µn-equivariant structure
on C over C. The fixed point scheme cµn : Cµn → C (which coincides with the fixed
point scheme of ι) is then étale over C. To see this, notice that we have an exact
sequence of coherent sheaves

N∨ −→ ΩC/C |Cµn
−→ ΩCµn /C −→ 0 ,

where N is the normal bundle of the immersion Cµn ↪→ C and all the maps respect
the natural µn-actions on the sheaves. The two first sheaves in this sequence are
locally free, since C and Cµn are regular and the map c is smooth. Hence the first
morphism in the sequence is injective, because it is injective on the dense open
subset where cµn is étale. If we now consider the weight 0 part of the sequence,
we obtain an isomorphism (ΩC/C |Cµn

)0 → ΩCµn /C and thus ΩCµn /C is locally free
which in turn implies that ΩCµn /C = 0 since c is finite. Hence c is étale.

We now compute:

ch6l
µn

(
Rc∗(

d∑
k=0

(−1)k ∧k (ΩC/C))
)

(1)
= ch6l

µn

( 2d∑
k=0

(−1)k ∧k (H)
)

(2)
= ch6l

µn

(
Rcµn∗((λ−1(N

∨))−1λ−1(ΩC/C |Cµn
))

)
(3)
= ch6l

µn

(
Rcµn,∗(λ−1(ΩCµn /C))

)
(4)
= f0 ⊗ 1 ∈ CH0(C)⊗OQ(µn)[

1

n · l! ] .

Here f0 ∈ CH0(C) = Z is the degree of the finite morphism cµn . The equality (1) is
justified by the fact that the Hodge to de Rham spectral sequence of c degenerates
and the fact that there is a natural isomorphism Hr

dR(C/C) ' ∧r(H1
dR(C/C)) for

all r ∈ Z>0 (see [BBM, 2.5.2]). The equality (2) is provided by Theorem 4, applied
in the case where S = Spec D[ 1

n
], Z = C, h = c, the µn-equivariant structure on C

is the one described above and z = λ−1(ΩC/C). The equality (3) is justified by the
fact that cµn is étale and the multiplicativity of λ−1. The equality (4) derives from
the fact that ΩCµn /C = 0. We shall now rewrite the resulting equality

ch6l
µn

( 2d∑
k=0

(−1)k ∧k (H)
)

= f0 ⊗ 1 ∈ CH0(C)⊗OQ(µn)[
1

n · l! ] (5)

using the combinatorics of the first subsection.
By the splitting principle, we may suppose without restriction of generality that

H =
∑2d

k=1 hk in Kµn
0 (C), where hk is a line bundle which carries a homogenous

Z/nZ-grading. Write tk for the first Chern class c1(hk) of hk. Let w(hk) ∈ Z/nZ be
the weight of hk and let uk := ζw(hk). The equality (5) implies that

2d∏
k=1

(1− uk) = f0 .

In particular, uk 6= 1 for all k. We now have the following reformulation of (5):
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1

f0
ch6l

µn

( 2d∑
k=0

(−1)k ∧k (H)
)

=

2d∏
k=1

ch6l
µn

(1− hk)

(1− uk)

=

2d∏
k=1

1− uk · exp6l(tk)

1− uk
= 1 .

If we apply the log6l map to the members of the last string of equalities and use
the Lemma 4, we obtain

2d∑
k=1

log6l

(
1− uk · exp6l(tk)

1− uk

)
= −

2d∑
k=1

l∑
j=1

ζL(uk, 1− j)
tj
k

j!

= −
l∑

j=1

2d∑
k=1

ζL(uk, 1− j)
tj
k

j!

= −
l∑

j=1

∑
u∈µn(D)

ζL(u, 1− j)
chj

0(Hu)

j!

= 0 (6)

which implies the result.
We now turn to the proof of Theorem 1. We use the notation of Theorem 3.

We shall apply Theorem 4 to the situation where Z = X, h = f , n = 2, the action
of µ2 is given by the involution α which extends the action of the inversion on A
(notice that over D[ 1

2
] there is a unique isomorphism between µ2 and the constant

group scheme associated to Z/2Z) and z = λ−1(ΩX/B(log)). Let N be the dual of
the conormal sheaf of the immersion Xα = Xµ2 ↪→ X.

We compute

ch6l
µ2

(
Rf∗

( g∑
k=0

(−1)k ∧k (ΩX/B(log))
))

(1)
= ch6l

µ2

( 2g∑
k=0

(−1)k ∧k (Ẽ⊕ Ẽ∨)
)

(2)
= ch6l

µ2

(
Rfµ2∗((λ−1(N

∨))−1λ−1(ΩX/B(log)|Xµ2
))

)
(3)
= f0 ⊗ 1 ∈ CH(C)⊗ Z[

1

2 · l! ] .

Here f0 ∈ CH0(C) = Z is the degree of the finite morphism fµn
. The equality (1)

is justified by Theorem 3 (9). The equality (2) is provided by Theorem 4, applied in
the situation just described. The equality (3) is justified by Lemma 3. Let us define

H := Ẽ⊕ Ẽ∨. We can now repeat the computations from (5) to (6) verbatim, setting
n = 2. We obtain the equation

l∑
j=1

∑
u∈µ2(D)

ζL(u, 1− j)
chj

0(Hu)

j!
= 0
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in CH(B)⊗ Z[ 1
2·l! ]. In other words

l∑
j=1

ζL(−1, 1− j)
chj

0(H)

j!
= 2

l∑
j=1

ζL(−1, 1− j)
chj

0(Ẽ)

j!
= 0

in CH(B) ⊗ Z[ 1
2·l! ]). Now notice that ζL(−1, 1 − l) = −(2l − 1)Bl/l by Lemma

5. We have thus proven an analog of Theorem 1, where b∗E is replaced by Ẽ. To
deduce the Theorem 1 as stated from it, we shall make the following construction.
Let ∆ : Ag,n ↪→ Ãg,n ×B be the diagonal immersion and let Ã′

g,n → Zar(∆(Ag,n))
be a desingularisation of the Zariski closure of ∆(Ag,n). Let p1 (resp. p2) be the

map obtained by composing the natural map Ã′
g,n ↪→ Ãg,n ×B and the first (resp.

second) projection map Ãg,n × B → Ãg,n (resp. Ãg,n × B → B). Let b′ := b ◦ p1.
The map b′ is a also a desingularisation of Ag,n. By Proposition 1, we have an
isomorphism p∗2A ' b′

∗
G on Ã′

g,n. Hence

2

l∑
j=1

ζL(−1, 1− j)
chj

0(p
∗
2Ẽ)

j!
= 2

l∑
j=1

ζL(−1, 1− j)
chj

0(b
′∗E)

j!
= 0

in CH(Ã′
g,n)⊗ Z[ 1

2·l! ]. Now notice that

p1,∗

(
2

l∑
j=1

ζL(−1, 1− j)
chj

0(b
′∗E)

j!

)
= p1,∗p

∗
1

(
2

l∑
j=1

ζL(−1, 1− j)
chj

0(b
∗E)

j!

)

= p1,∗(1) · 2
l∑

j=1

ζL(−1, 1− j)
chj

0(b
∗E)

j!

in CH(Ãg,n) ⊗ Z[ 1
2·l! ]. We have used the projection formula for the last equality.

Since p1 is birational, we have p1,∗(1) = 1 and we have thus completely proven
Theorem 1.

4 Consequences and Conjectures

4.1 A Corollary of Theorem 2

Let c : C → C be a polarized abelian scheme, where C is a regular and quasi-
projective variety over C. Let K be a finite abelian extension of Q. Suppose that
there is an embedding of rings OK ↪→ EndC(C). Let H := H1

dR(C/C). The coherent
sheaf H carries a ring action of K. Choose an element k0 ∈ K such that K = Q(k0)
(a simple element of K over Q). For each σ ∈ Hom(K, C), define

Hσ := Ker
(
k0 − σ(k0) · Id

)
The natural morphism ⊕σ∈Hom(K,C)Hσ → H is an isomorphism, as can be seen by
considering its restriction to closed points of C. Furthermore, the sheaves Hσ do not
depend on the choice of k0.

Now let χ : Gal(K|Q) → S1 be a one-dimensional character of K. We shall show
that the following Proposition is a consequence of Theorem 2.
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Proposition 3. The equality∑
σ∈Hom(K,C)

χ(σ)ch(Hσ) =
∑

σ∈Hom(K,C)

χ(σ)rk(Hσ)

holds in CH(C)⊗Q.

Notice that there is a non-canonical isomorphism Hom(K, C) ' Gal(K|Q). The
equality in the proposition is true for any choice of such an isomorphism.

In the following, the use of Hom(·, C) instead of Gal(·) always implies that
the corresponding statement is independent of the choice of an identification of
Hom(·, C) and Gal(·).

Corollary 1. The equality ch(Hσ) = rk(Hσ) in CH(C) ⊗ Q is true for all σ ∈
Hom(K, C).

Proof of corollary 1. The content of Proposition 3 is that as functions of σ, all the
Fourier coefficients of ch(Hσ) and rk(Hσ) coincide. Hence the conclusion follows
from the uniqueness of the Fourier decomposition. ut

Before coming to the full proof of Proposition 3, we shall prove the following
weaker statement:

Proposition 4. Proposition 3 holds for K = Q(µn) for some n > 2.

In the proof of Proposition 4, we shall need the following lemma, which is surprisingly
difficult to prove. The hypotheses and the terminology of Proposition 4 are in force.

Lemma 9. Let u0 := exp(2iπ/n) and let l > 1 be an integer.

(1) The following equalities of meromorphic functions of s ∈ C hold. If χ is an even
character then∑

σ∈Hom(Q(µn),C)

χ(σ)ζL(σ(u0), s) = n1−sπs−1/2 Γ ((1− s)/2)

Γ (s/2)
L(χ, 1− s) ,

while if χ is an odd character then∑
σ∈Hom(Q(µn),C)

χ(σ)ζL(σ(u0), s) = i · n1−sπs−1/2 Γ (1− s/2)

Γ ((s + 1)/2)
L(χ, 1− s) .

(2) We have ∑
σ∈Hom(K,C)

χ(σ)ζL

(
σ(u0), 1− l

)
6= 0

when either (a) χ is an even character and l is an even integer, or (b) χ is an
odd character and l is an odd integer.

Recall that a character χ as above is odd (resp. even) if the image of complex
conjugation under χ is −1 (resp. 1). The symbol L(χ, s) refers to the meromorphic
function of s ∈ C which is defined by the formula

L(χ, s) :=

∞∑
k=1

χ(k)

ks

for <(s) > 1. Notice that the character χ may be non-primitive. If the character
χ is primitive, the equalities in (1) are consequences of the functional equation of
Dirichlet L-functions.
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Proof of lemma 9. The second equality in (1) is the content of [KR2, Lemma 5.2].
The proof of the first equality is similar and we shall omit it. Before beginning
with the proof of (2) we recall that the function 1/Γ (s) has zeros at the points
0,−1,−2, . . . and is 6= 0 for all the other values of s. Recall also that L(χ, s) has an
Euler product expansion when <(s) > 1 and thus L(χ, s) 6= 0 when <(s) > 1. To
prove (2), (a), we compute (with χ and l even)∑

σ∈Hom(K,C)

χ(σ)ζL

(
σ(u0), 1− l

)
= nlπ1/2−l Γ (l/2)

Γ ((1− l)/2)
L(χ, l) .

Using the remarks made before the computation, we can conclude the proof of (2),
(a). For the proof of (2), (b), we make a similar computation:∑

σ∈Hom(K,C)

χ(σ)ζL(σ(u0), 1− l)

= nlπ1/2−li
Γ (1/2 + l/2)

Γ (1− l/2)
L(χ, l)

= nlπ1/2−li
Γ (1/2 + l/2)

Γ (1− l/2)
L(χprim, l)

∏
p|n

(1− χprim(p)p−l) .

Here χprim is the primitive Dirichlet character associated to χ. It is shown in [W,
chap. 4, Cor. 4.4]) that L(χprim, 1) 6= 0 (it is only to treat the case l = 1 that we
introduced χprim). Using this fact and again the remarks made before the proof of
(2), (a), we can conclude. ut

Proof of proposition 4. Let u0 := exp(2iπ/n). Let τ ∈ Gal(Q(µn)|Q); the root of
unity τ(u0) acts on C as an automorphism of finite order n over C. The fixed point
scheme of τ(u0) on C can be shown to be finite and flat in this situation. We leave
this as an exercise to the reader. Applying Theorem 2 to this situation (with similar
notations and ι given by τ(u0)), we obtain the equation∑

σ∈Hom(Q(µn),C)

ζL

(
σ(τ(u0)), 1− l

)
chl(Hσ) = 0 (7)

in CHl(C) ⊗ Q, for any l > 1. We now identify Hom(Q(µn), C) and Gal(Q(µn)|Q)
via the natural embedding Q(µn) ↪→ C and we evaluate at χ = χ−1 the Fourier
transform of the left side of (7) for the variable τ ∈ Gal(Q(µn)|Q). We obtain∑

τ∈Gal(Q(µn)|Q)

χ(τ)
[ ∑

σ∈Gal(Q(µn)|Q)

ζL

(
σ(τ(u0)), 1− l

)
chl(Hσ)

]
=

∑
τ

χ(τ)
[ ∑

σ

ζL

(
σ(u0), 1− l

)
chl(Hστ )

]
=

∑
τ

χ(τ)
[ ∑

σ

ζL

(
(στ−1)(u0), 1− l

)
chl(Hσ)

]
=

∑
σ

( ∑
τ

χ(τ)ζL

(
(στ−1)(u0), 1− l

))
chl(Hσ)

=
( ∑

τ

χ(τ)ζL

(
τ(u0), 1− l

))( ∑
σ

χ(σ)chl(Hσ)
)

= 0 .
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Now suppose that l is an even integer (resp. odd integer) and that χ is an even
character (resp. odd character). Then, using Lemma 9, we deduce that∑

σ

χ(σ)chl(Hσ) = 0

which is the equality to be proven. If l is even (resp. odd) and χ is odd (resp. even)
then chl(Hσ) is an even function of σ (resp. odd function of σ), which again implies
that ∑

σ

χ(σ)chl(Hσ) = 0 .

Indeed, the change of variables σ 7→ σ−1 then changes the sign of the expression∑
σ∈Gal(Q(µn)|Q) χ(σ)chl(Hσ). The fact that chl(Hσ) is an even function of σ (resp.

odd function of σ) when l is even (resp. odd) follows from the fact that there is a
u0-equivariant isomorphism H ' H∨. This in turn follows from relative Lefschetz
and Poincaré duality and the fact that there exists an ample invertible sheaf L on
C, which carries a u0-equivariant structure. To obtain such a sheaf, start with an
ample invertible sheaf L′ on C and let L := ⊗n−1

n=0(u
k
0)∗L′. The sheaf L carries a

natural u0-equivariant structure.
Combining the two last equations, we can conclude the proof. ut

We shall need the following lemma in the proof of Proposition 3.

Lemma 10. Let L′|L be a finite extension of number fields such that OL′ is free
over OL and that L′ is abelian over Q. Let χL be a one-dimensional character of L.
If Proposition 3 holds for K = L′ and χ = IndL′

L (χL) then it holds also for K = L
and χ = χL.

Recall that by definition IndL′
L (χL) is a one-dimensional character of L′ such that

IndL′
L (χL)(σL′) = χ(σL′ |L) for all σL′ ∈ Gal(L′|Q).

Proof. Let r := [L′ : L] and let x1, . . . , xr be a basis of OL′ over OL. The mapping
ϕ : OL′ → Mr(OL) of OL′ into the r × r-matrices with entries in OL which maps
an element of OL′ to the matrix representation in this basis of the corresponding
OL linear map OL′ → OL′ , is an embedding of rings. Via the map ϕ, we obtain an
embedding of rings OL′ ↪→ EndC(Cr). There is a natural isomorphism of coherent
sheaves

r⊕
j=1

H1
dR(C/C) ' H1

dR(Cr/C)

and under this isomorphism, there is a decomposition

r⊕
j=1

H1
dR(C/C)σL '

⊕
σL′ |L=σL

H1
dR(Cr/C)σL′

for any σL ∈ Gal(L|Q). Now choose an embedding L′ ↪→ C to identify Hom(L′, C)
and Gal(L′|Q). We compute
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σL′

ch
(
H1

dR(Cr/C)σL′

)
IndL′

L (χ)(σL′)

=
∑
σL

χ(σL)
∑

σL′ |L=σL

ch
(
H1

dR(Cr/C)σL′

)
=

∑
σL

χ(σL)

r∑
j=1

ch
(
H1

dR(C/C)σL

)
= r ·

∑
σL

ch
(
H1

dR(C/C)σL

)
χ(σL) ,

from which the conclusion follows. ut

Proof of proposition 3. Class field theory implies that K can be embedded in Q(µn)
for some n > 2. We claim that OQ(µn) is free over OK . To see this, let u0 ∈ OQ(µn)

be a primitive n-th root of 1 and let k be the degree of the minimal polynomial of u0

over K. The elements 1, . . . , uk−1
0 are then linearly independent over K, hence over

OK . The minimal polynomial of u0 over K is of the form a0+a1t+· · ·+ak−1t
k−1+tk,

where {a0, . . . , ak} ⊆ OK . Hence uk+s
0 = −a0u

s
0 − a1u

s+1
0 − · · · − ak−1u

k−1+s
0 for all

integers s > 0. Applying induction over s, we see that all the elements 1, . . . , un−1
0 are

contained in theOK module generated by 1, . . . , uk−1
0 . Since the elements 1, . . . , un−1

0

generate OQ(µn) as an OK-module, we see that the elements 1, . . . , uk−1
0 generate

OQ(µn) as an OK-module and thus form a basis of OQ(µn) as an OK-module.
Now using Lemma 10, we see that we may assume without restriction of gener-

ality that K = Q(µn). In that case, Proposition 4 is equivalent to Proposition 3 and
this concludes the proof. ut

4.2 Conjectures and Speculations

Let C be a smooth quasi-projective scheme over C. Let furthermore C → C be a
polarized semi-abelian scheme and let K be a number field which is Galois over Q.
Suppose that there is an embedding K ↪→ EndC(C)⊗Q. Let H := e∗ΩC/C ⊕e∗Ω∨

C/C

where e : C → C is the zero section. The coherent sheaf H carries a ring action of K.
Choose an element k0 ∈ K such that K = Q(k0). For each σ ∈ Hom(K, C), define

Hσ := Ker(k0 − σ(k0) · Id) .

The natural morphism ⊕σ∈Hom(K,C)Hσ → H is then an isomorphism, as before and
the sheaves Hσ do not depend on the choice of k0.

Let now χ : Hom(K, C) → C be a simple Artin character of K. We make the
following conjecture.

Conjecture 1. The equality∑
σ∈Hom(K,C)

χ(σ)ch(Hσ) =
∑

σ∈Hom(K,C)

χ(σ)rk(Hσ)

holds in CH(C)⊗Q.

An even stronger conjecture is
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Conjecture 2. The equality ch(Hσ) = rk(Hσ) holds for all σ ∈ Hom(K, C).

Notice that unlike in the case where K is an abelian extension of Q, Conjecture
2 is not a consequence of Conjecture 1.

The Conjecture 1 is a consequence of the Conjecture 2.1 in [MR1], which can be
considered as a “lifting” of Conjecture 1 to Arakelov geometry.

We would also like to point out a general conjecture on Gauss-Manin bundles,
which overlaps with Conjecture 1 and is a consequence of Conjecture 3.1 in [MR1].

Conjecture 3. Let X and Y be smooth quasi-projective varieties over C. Let f : X →
Y be a smooth and projective morphism. Then ch(Hl

dR(X/Y )) = rk(Hl
dR(X/Y )) in

CHl(Y )⊗Q, for all l > 1.

The Conjecture 3 can be related to a conjecture of Bloch and Beilinson.
Suppose that Y is projective over C and has a model Y0 over a number field. Let

CH(Y0)0 be the subgroup of CH(Y0) ⊗ Q consisting of homologically trivial cycles.
Recall that there is a map from CH(Y0)0 to the product of the intermediate Jacobians
of Y (C), called the Abel-Jacobi map. The conjecture of Bloch and Beilinson is that
the Abel-Jacobi map is injective in this situation (see [BB, after lemma 5.6]).

Suppose now furthermore that there is a morphism X0 → Y0, such that the mor-
phism obtained after a field extension to C coincides with f . Notice that the classes
ch(Hl

dR(X0/Y0))−rk(Hl
dR(X0/Y0)) lie in CH(Y0)0, because the bundles Hl

dR(X0/Y0)
carry an algebraic connection, the Gauss-Manin connection. The Abel-Jacobi map
can be described using Cheeger-Simons characteristic classes (see [S, Prop. 2]) and it
has been shown by Corlette and Esnault (see [CE]) that the Cheeger-Simons classes
of Gauss-Manin bundles vanish. All in all, this implies that the image of the classes
ch(Hl

dR(X0/Y0)) − rk(Hl
dR(X0/Y0)) under the Abel-Jacobi map vanish and thus

Conjecture 3 is implied by the conjecture of Bloch and Beilinson in this situation.
The result of Corlette and Esnault could also have been replaced by a general result
of Reznikov (see [R]) in this setup.

Finally, we shall indicate how Theorem 2 overlaps with Stickelberger’s theorem.
Let K ⊆ Q be an abelian extension of Q and suppose that the conductor of K is
n. Let G := Gal(Q(µn)|Q) ' (Z/nZ)×. By class field theory, we have an inclusion
K ⊆ Q(µn) and the group G thus acts on K by restriction. Via this action, we
obtain a Z[G]-module structure on the multiplicative group of the ideals of OK . If
A is an ideal in OK and υ ∈ Z[G], we write Aυ for the image of A under υ. We write

θ(K) = θ :=
∑

a∈(Z/nZ)×

{ a

n
}σ−1

a ∈ Q[G] ,

where {·} denotes the fractional part of a real number. The element θ(K) is called
the Stickelberger element. Let β ∈ Q[G] and suppose that β ·θ ∈ Z[G]. Stickelberger’s
theorem asserts that if A is an ideal of OK , then Aβθ is a principal ideal. In particular
Anθ is principal. Let now χ : G → S1 be an odd primitive Dirichlet character and
let

εχ :=
∑
σ∈G

χ(σ)σ−1 ∈ Zab[G] .

Here Zab is the integral closure of Z in Qab, the subfield of Q generated by all
the roots of unity. Let L(χ, s) be the L-function of χ, which is a meromorphic
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function of s ∈ C (see subsection 4.1 or [W, chap. 4] for the definition). We have
L(χ, 1) = −B1,χ := −

∑
a∈(Z/nZ)×{

a
n
}χ(a). We compute

εχθ =
∑

a∈(Z/nZ)×

{ a

n
}εχσ−1

a =
[ ∑

a∈(Z/nZ)×

{ a

n
}χ(σa)

]
εχ = B1,χ εχ .

Now identify CH1(OK) with the class group of OK . The last computation shows that
Stickelberger’s theorem implies that nB1,χεχ annihilates any element of CH1(OK)⊗
Zab.

On the other hand consider the situation of Theorem 2. With u0 := exp(2iπ/n)
Theorem 2 says in particular that∑

a∈Z/nZ

ζL(ua
0 , 0) c1(Hua

0
) = 0

in CH1(C) ⊗ Zab[ 1
n
]. More generally, let b ∈ (Z/nZ)× and apply Theorem 2 again,

with ι−b in place of ι. We obtain the identity∑
a∈Z/nZ

ζL(uab
0 , 0) c1(Hua

0
) = 0 (8)

in CH1(C)⊗ Zab[ 1
n
].

Define the Gauss sum
τ(χ) :=

∑
a∈Z/nZ

χ(a)ua
0 .

It is shown in [W, chap. 4, lemma 4.7] that
∑

a∈Z/nZ χ(a)uab
0 = τ(χ)χ(b) holds for

any b ∈ Z. This implies that∑
b∈Z/nZ

χ(b)ζL(uab
0 , 0) = χ(a)τ(χ)L(χ, 0) .

We shall now exploit (8). We compute∑
b∈Z/nZ

χ(b)
( ∑

a∈Z/nZ

ζL(uab
0 , 0) c1(Hua

0
)
)

=
∑

a∈Z/nZ

∑
b∈Z/nZ

χ(b) ζL(uab
0 , 0) c1(Hua

0
)

= τ(χ)L(χ, 0)
∑

a∈Z/nZ

χ(a) c1(Hua
0
)

in CH1(C) ⊗ Zab[ 1
n
]. Since τ(χ)τ(χ) = |τ(χ)|2 = n (see [W, chap. 4, lemma 4.8]),

τ(χ) is a unit in Zab[ 1
n
]. Hence

−L(χ, 0)
∑

a∈Z/nZ

χ(a) c1(Hua
0
) = B1,χ

∑
a∈Z/nZ

χ(a) c1(Hua
0
) = 0

in CH1(C) ⊗ Zab[ 1
n
]. Now suppose furthermore that D = OQ(µn) and that the

fibration C → C and the automorphism ι have models over Z[ 1
n
]. Fix such models.

We then obtain
B1,χεχ c1(Hu0) = 0

where CH1(C)⊗ Zab[ 1
n
] is considered as Gal(Q(µn)|Q)-module via the given model

of C.
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Stickelberger’s theorem and Theorem 2 thus lead to similar annihilation state-
ments. It is even possible to construct a geometrical situation where Theorem 2 is
implied by Stickelberger’s theorem. This is left as an exercise to the reader.

One is thus led to speculate whether (the Fourier transform of) Theorem 2 is
not a special case of a theorem generalising Stickelberger’s theorem to the Chow
groups of the various Shimura varieties classifying abelian varieties with complex
multiplications.
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