
COHOMOLOGY AND TORSION CYCLES OVER THE MAXIMAL
CYCLOTOMIC EXTENSION
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ABSTRACT. A classical theorem by K. Ribet asserts that an abelian variety defined over the
maximal cyclotomic extension K of a number field has only finitely many torsion points.
We show that this statement can be viewed as a particular case of a much more general
one, namely that the absolute Galois group of K acts with finitely many fixed points on
the étale cohomology with Q/Z-coefficients of a smooth proper K-variety defined over K.
We also present a conjectural generalization of Ribet’s theorem to torsion cycles of higher
codimension. We offer supporting evidence for the conjecture in codimension 2, as well as
an analogue in positive characteristic.

1. INTRODUCTION

The Mordell–Weil theorem asserts that the group of points of an abelian variety over a
number field is finitely generated. Since Mazur’s pioneering paper [22] there have been
speculations about extensions of this statement to certain infinite number fields. For the
cyclotomic Zp-extension of a number field the question is still open in general. However,
the Mordell–Weil rank of an abelian variety can be infinite over the maximal cyclotomic
extension of a number field obtained by adjoining all complex roots of unity (see e.g.
[26]). Therefore the following, by now classical, theorem of Ribet [25] is all the more
remarkable.

Theorem 1.1 (Ribet). Let k be a number field, and K the field obtained by adjoining all roots
of unity to k in a fixed algebraic closure. If A is an abelian variety defined over k, the torsion
subgroup of A(K) is finite.

Note that Ribet’s theorem is specific to the maximal cyclotomic extension of k. For in-
stance, finiteness of the torsion subgroup may fail if one works over the maximal abelian
extension. Indeed, for an abelian variety of CM type all algebraic torsion points are de-
fined over the maximal abelian extension of the number field. Conversely, Zarhin [34]
proved that for non-CM simple abelian varieties finiteness of the torsion subgroup holds
over the maximal abelian extension as well.
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In the present paper we offer two kinds of generalizations of Ribet’s theorem. The first
one is cohomological, the second is motivic (and largely conjectural). Let us start with
the cohomological statement.

Theorem 1.2. Let k and K be as in Theorem 1.1, and set G := Gal(k|K). Consider a smooth
proper geometrically connected variety X defined over k, and denote by X̄ its base change to the
algebraic closure k.

For all odd i and all j the groups H i
ét(X̄,Q/Z(j))G are finite.

Here, as usual, we denote by H i
ét(X̄,Q/Z(j))G the subgroup of G-invariants in the étale

cohomology group H i
ét(X̄,Q/Z(j)). The theorem is not true for even degree cohomology

(see Remark 3.6 below). In fact, the twist j does not really play a role in the statement
since G fixes all roots of unity.

Note that Theorem 1.1 is the special case i = j = 1 of the above statement. Indeed, if
we apply the theorem to the dual abelian variety A∗ of an abelian variety A defined over
k, the Kummer sequence in étale cohomology induces a Galois-equivariant isomorphism
between H1

ét(A
∗
,Q/Z(1)) and the torsion subgroup of H1

ét(A
∗
,Gm). But since the Néron–

Severi group of an abelian variety is torsion free, we may identify this torsion subgroup
with that of Pic0(A∗)(K) = A(K).

One may also view Ribet’s theorem as a finiteness result about the codimension 1
Chow group of smooth projective varieties. In this spirit we propose the following con-
jectural generalization.

Conjecture 1.3. Let k and K be as in Theorem 1.1, and let X be a smooth proper geometrically
connected variety defined over k. Denote by XK the base change of X to K.

For all i > 0 the codimension i Chow groups CH i(XK) have finite torsion subgroup.

Recall that for X itself the Chow groups CH i(X) are conjecturally finitely generated
(a consequence of the generalized Bass conjecture on the finite generation of motivic
cohomology groups of regular schemes of finite type over Z – see e.g. [20], 4.7.1).

As is customary with conjectures concerning algebraic cycles, evidence is for the mo-
ment scarce in codimension > 1. However, we have the following positive result.

Theorem 1.4. In the situation of Conjecture 1.3, assume moreover that the coherent cohomology
group H2

Zar(X,OX) vanishes. Then the torsion subgroup of CH2(X) has finite exponent. It is
finite if furthermore the ℓ-adic cohomology groups H3

ét(X̄,Zℓ) are torsion free for all ℓ.

All geometric assumptions of the theorem are satisfied, for instance, by smooth com-
plete intersections of dimension > 2 in projective space. Recall also that for a smooth
proper variety defined over a finite number field and satisfying H2

Zar(X,OX) = 0 the tor-
sion part of CH2(X) is known to be finite by a theorem first proven by Colliot-Thélène
and Raskind [6]. We shall adapt their methods to our situation.
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Motivated by Mazur’s program, one might also speculate about finite generation of
Chow groups over the cyclotomic Zp-extension of a number field. We do not pursue this
line of inquiry here.

We now turn to positive characteristic analogues of Ribet’s theorem. In the case where
k is the function field of a curve C defined over a finite field F, the role of the maximal
cyclotomic extension is played by the base extension kF. As the analogue of Theorem 1.1
is plainly false for an abelian variety that is already defined over F, we have to impose a
non-isotriviality condition.

Theorem 1.5 (Lang–Néron). Let k be the function field of a smooth proper geometrically con-
nected curve C defined over a finite field F, and set K := kF = F(C). If A is an abelian variety
defined over k whose base change AK has trivial K|F-trace , the torsion subgroup of A(K) is
finite.

This is a consequence of the Lang–Néron theorem ([21], Chapter 6, Theorem 2; see
also this reference for the definition of K|F-trace). In fact, under the assumptions of the
theorem the group A(K) is even finitely generated.

When seeking an analogue for higher degree cohomology, we have to find a replace-
ment for the non-isotriviality assumption incarnated in the vanishing of the K|F-trace.
We propose the following condition.

Definition 1.6. Let k = F(C) and K = F(C) be as in Theorem 1.5, and let ℓ be a prime
different from p = char(F). Consider a smooth proper geometrically connected variety
X defined over k, with base change X̄ to the separable closure k. We say that the coho-
mology group H i

ét(X̄,Qℓ(j)) has large variation if after finite extension of the base field
F there exists a proper flat morphism X → C of finite type with generic fibre X and
two F-rational points c1, c2 ∈ C such that the fibres Xc1 , Xc2 are smooth and the associ-
ated Frobenius elements Frobc1 ,Frobc2 act on H i

ét(X̄,Qℓ(j)) with coprime characteristic
polynomials.

Here, as usual, the action of the Frobcr (r = 1, 2) is to be understood as follows. We
pick a decomposition group Dr ⊂ Gal(k|k) attached to cr; it is defined only up to con-
jugacy but this does not affect the definition. The smoothness condition on Xcr implies
that the inertia subgroup Ir ⊂ Dr acts trivially on cohomology, hence we have an action
of Dr/Ir = ⟨Frobcr⟩ on H i

ét(X̄,Qℓ(j)). Furthermore, it is a consequence of the Weil conjec-
tures that the above definition is independent of the prime ℓ. For a relation with triviality
of the K|F-trace for abelian varieties, see Remarks 4.2.

Based on the above definition, we offer the following higher degree analogue of Theo-
rem 1.5.
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Proposition 1.7. Let k, K and X be as in the previous definition. Assume moreover that i > 0

and j ∈ Z are such that the cohomology group H i
ét(X̄,Qℓ(j)) has large variation.

Then the group H i
ét(X̄, (Q/Z)′(j))G is finite, where G = Gal(k|K) and

(Q/Z)′(j) =
⊕
ℓ ̸=p

Qℓ/Zℓ(j).

Building upon this finiteness statement, we propose the following positive character-
istic analogue of Conjecture 1.3.

Conjecture 1.8. Let k, K and X be as in Definition 1.6. Given i > 0, assume that the the
cohomology group H2i−1

ét (X̄,Qℓ(i)) has large variation for ℓ ̸= p, where p = char(k).
Then the prime-to-p torsion subgroup of CH i(XK) is finite.

We offer the following evidence for the conjecture:

Theorem 1.9. In the situation of Conjecture 1.8, assume moreover that X is a projective surface
which is liftable to characteristic 0 and for which the coherent cohomology group H2

Zar(X,OX)

vanishes. Under the large variation assumption for i = 2, the prime-to-p torsion subgroup of
CH2(XK) is finite.

The liftability assumption means that X arises as the special fibre of a smooth projec-
tive flat morphism X → S, where S is the spectrum of a complete discrete valuation
ring of characteristic 0 and residue field k. It holds for smooth complete intersections or
for surfaces satisfying the condition H2

Zar(X, TX/k) = 0 in addition to H2
Zar(X,OX), where

TX/k denotes the tangent sheaf (see [15], §6 or [18], §8.5). We have to restrict to dimension
2 in order to ensure the vanishing of H2

Zar(X,OX) for the lifting as well.

2. PRELIMINARIES IN ÉTALE COHOMOLOGY

This section is devoted to an auxiliary statement, presumably well known to some,
which will enable us to reduce the case of infinite torsion coefficients to those of p-adic
and mod p coefficients.

Proposition 2.1. Let X be a smooth proper variety over a field F of characteristic 0. Denote by X̄

its base change to the algebraic closure F , and set G := Gal(F |F ). Fix a pair (i, j) of nonnegative
integers, and assume the following two conditions hold.

(A) H i
ét(X̄,Qp(j))

G = 0 for all primes p.
(B) H i

ét(X̄,Z/pZ(j))G = 0 for all but finitely many primes p.

Then the group H i
ét(X̄,Q/Z(j))G is finite.

Remark 2.2. The proposition also holds over fields of positive characteristic if we re-
strict to primes different from the characteristic and replace Q/Z(j) by the product of all
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Qp/Zp(j) for primes different from the characteristic. The reader is invited to make the
straightforward modifications in the proofs to follow.

In the proof of the proposition and in later arguments we shall use the following basic
properties of étale cohomology.

Fact 2.3. The groups H i
ét(X̄,Z/prZ(j)) are finite for all r. Moreover, the Zp-modules

H i
ét(X̄,Zp(j)) are finitely generated ([23], Lemma V.1.11), and therefore their torsion sub-

group is finite. For fixed (i, j) this torsion subgroup is trivial for all but finitely many p

by a result of Gabber [14]; as also remarked in ([7], p. 782, Remarque 1), in characteristic
0 the statement follows from comparison with the complex case.

We also need a lemma on abelian groups.

Lemma 2.4. Let A be a finitely generated Zp-module equipped with the action of a group G. The
group (A⊗Qp/Zp)

G is infinite if and only if AG contains an element of infinite order.

Proof. First of all, the finite torsion subgroup T ⊂ A is a direct summand in A which is
also G-equivariant. Therefore after replacing A by A/T we may assume that A is a free
Zp-module. Then A ⊗Qp/Zp is the G-equivariant direct limit of the finite groups A/pnA

for all n, and each map A/pnA→ A⊗Qp/Zp is injective with image equal to the pn-torsion
part of A⊗Qp/Zp.

Now if AG contains an element of infinite order, the order of the groups (A/pnA)G is
unbounded as n goes to infinity, and hence their direct limit (A⊗Qp/Zp)

G is infinite.
Conversely, assume that (A ⊗Qp/Zp)

G is infinite. Associate a graph to (A ⊗Qp/Zp)
G

whose vertices correspond to elements a ∈ (A ⊗ Qp/Zp)
G and two vertices a and a′ are

joined by an edge if pa = a′ or pa′ = a. This graph is an infinite rooted tree in which each
vertex has finite degree. Therefore by König’s lemma (see e.g. [24], Theorem 3) it has an
infinite path beginning at the root (which is the vertex corresponding to the element 0).
This means that there exists an infinite sequence (an) ⊂ (A ⊗ Qp/Zp)

G such that a0 = 0

and pan = an−1 for all n > 0. In particular, an has exact order pn in (A⊗Qp/Zp)
G. As we

may identify each an with an element in (A/pnA)G, the sequence (an) defines an element
of infinite order in lim

←
(A/pnA)G = AG.

Remark 2.5. As Wayne Raskind reminds us, it is possible to give a more traditional
proof of the lemma, under the further assumption that G is a topological group act-
ing continuously on A as above (which will be the case in our application). Indeed,
since (A ⊗Zp Qp/Zp)

G is a Zp-module of finite cotype, its quotient modulo the maxi-
mal divisible subgroup D is finite. Therefore we have to prove that D is trivial if and
only if AG is torsion. The latter condition is equivalent to the vanishing of the group
AG ⊗Zp Qp = (A⊗Zp Qp)

G. By ([33], Proposition 2.3), D equals the image of the last map
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in the exact sequence of Zp-modules

0→ AG → (A⊗Zp Qp)
G → (A⊗Zp Qp/Zp)

G.

Thus D = 0 if and only if the map AG → (A ⊗Zp Qp)
G is surjective, which holds if and

only if (A⊗Zp Qp)
G = 0.

Proof of Proposition 2.1. The finiteness of H i
ét(X̄,Q/Z(j))G is equivalent to the conjunction

of the following two statements:

(A’) H i
ét(X̄,Qp/Zp(j))

G is finite for all primes p.
(B’) H i

ét(X̄,Qp/Zp(j))
G = 0 for all but finitely many primes p.

We first prove (A)⇔ (A’). Consider the exact sequence of Galois modules

(1) 0→ H i
ét(X̄,Zp(j))/p

n → H i
ét(X̄,Z/pnZ(j))→ pnH

i+1
ét (X̄,Zp(j))→ 0

coming from the long exact sequence associated with the multiplication-by pn map on
Zp(j); here pnA denotes the pn-torsion part of an abelian group A. By passing to the direct
limit over all n, we obtain an exact sequence of G-modules

0→ H i
ét(X̄,Zp(j))⊗Qp/Zp → H i

ét(X̄,Qp/Zp(j))→ H i+1
ét (X̄,Zp(j))tors → 0.

As recalled above, the third group in this sequence is finite. By taking G-invariants we
therefore see that (A’) is equivalent to (H i

ét(X̄,Zp(j)) ⊗Qp/Zp)
G being finite for all p. By

Lemma 2.4 this is equivalent to H i
ét(X̄,Zp(j)

G being torsion for all p, which is the same
as (A).

To finish the proof of the proposition, we prove (B)⇒ (B’). We may assume using Fact
2.3 that the groups H i

ét(X̄,Zp(j)) and H i+1
ét (X̄,Zp(j)) are torsion free. Then exact sequence

(1) yields isomorphisms

H i
ét(X̄,Zp(j))/p

n ∼= H i
ét(X̄,Z/pnZ(j))

for all n. Therefore we obtain exact sequences

(2) 0→ H i
ét(X̄,Z/pn−1Z(j))→ H i

ét(X̄,Z/pnZ(j))→ H i
ét(X̄,Z/pZ(j))→ 0

from tensoring the exact sequence

0→ Z/pn−1Z→ Z/pnZ→ Z/pZ→ 0

by the group H i
ét(X̄,Zp(j)) which was also assumed to be torsion free. The sequences (2)

are G-equivariant, so after taking G-invariants a straightforward induction on n shows
that H i(X̄,Z/pnZ(j))G vanishes for all n provided it vanishes for n = 1.



COHOMOLOGY AND TORSION CYCLES OVER THE MAXIMAL CYCLOTOMIC EXTENSION 7

3. THE ODDITY OF COHOMOLOGY

In this section we prove Theorem 1.2, of which we take up the notation. We have to
verify conditions (A) and (B) of Proposition 2.1 in our situation. For condition (A) we
prove a vanishing result that generalizes ([25], Theorem 3).

Proposition 3.1. If i is odd, we have H i
ét(X̄,Qp(j))

G = 0 for all primes p.

We adapt the proof of [25] (itself based upon arguments of Imai [19] and Serre). It uses
the following fact from algebraic number theory:

Lemma 3.2. For every p the largest subextension of K|k unramified outside the primes divid-
ing p and infinity is obtained as the composite of k(µp∞) with the largest subextension of K|k
unramified at all finite primes (which is a finite extension).

Proof. This is the Lemma on p. 316 of [25].

We also need the following consequence of the local monodromy theorem.

Lemma 3.3.
a) (Weak form) Fix i, j and p. There is a finite extension k′|k such that every inertia subgroup in
Gal(k|k′) associated with a prime not lying above p acts unipotently on H i

ét(X̄,Qp(j)).
b) (Strong form) Fix i and j. There is a finite extension k′|k such that for all primes p, ev-
ery inertia subgroup in Gal(k|k′) associated with a prime not lying above p acts unipotently on
H i

ét(X̄,Qp(j)).

Proof. Since X extends to a smooth proper scheme over an open subscheme of the ring
of integers of k, there are only finitely many conjugacy classes of inertia subgroups in
Gal(k|k) that act nontrivially on the étale cohomology of X .

Fix first a prime p. By Grothendieck’s local monodromy theorem ([31], Appendix) all
inertia subgroups in Gal(k|k) not associated with primes above p act quasi-unipotently
on H i

ét(X̄,Qp(j)). Since up to conjugacy there are only finitely many that act nontrivially,
their action becomes unipotent after replacing k by a suitable finite extension. This yields
a).

The proof of b) is similar, except that we use the strong version of the local monodromy
theorem that yields an open subgroup of inertia acting unipotently on all H i

ét(X̄,Qp(j))

for p different from the residue characteristic. It is a consequence of de Jong’s alteration
theorem and the vanishing cycle spectral sequence ([1], Proposition 6.3.2).

Proof of Proposition 3.1. The first step is, roughly, to replace K by k(µp∞). This is achieved
as follows. Assume p is such that H i

ét(X̄,Qp(j))
G ̸= 0. By enlarging k if necessary, we

may assume µp ⊂ k. The Galois group Γ := Gal(k|k) acts on H i
ét(X̄,Qp(j))

G via its
quotient Γ/G. Choose a simple nonzero Γ-submodule W of H i

ét(X̄,Qp(j))
G. As Γ/G is
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abelian and W is simple, the elements of Γ act semisimply on W . Therefore Lemma 3.3 a)

implies that up to replacing k by a finite extension we may assume that the action of Γ on
W is unramified at all primes not dividing p. Then Lemma 3.2 implies that, again up to
replacing k by a finite extension, the action of Γ on W factors through Γp := Gal(k(µp∞)|k).

Let Dv ⊂ Γ be a decomposition group of a prime v of k dividing p. Since v is to-
tally ramified in the extension k(µp∞)|k, the image of Dv by the surjection Γ � Γp is the
whole of Γp. On the other hand, the abelian semisimple representation W of Γ restricts
to a Hodge–Tate representation of Dv, by Hodge–Tate decomposition [11] of the étale
cohomology group H i

ét(X̄,Qp(j)). Therefore, by a theorem of Tate ([30], III, Appendix,
Theorem 2), some open subgroup of Dv, and hence of Γ, acts on W via the direct sum
of integral powers of the p-adic cyclotomic character χp. Replacing k by a finite exten-
sion for the last time, we may assume that the whole of Γ acts in this way. A Frobenius
element Fw at a prime w of good reduction thus acts with eigenvalues that are integral
powers of χp(Fw) = Nw (the cardinality of the residue field of w). But by the Weil con-
jectures as proven by Deligne, these eigenvalues should have absolute value (Nw)i/2−j , a
contradiction for odd i.

In order to verify condition (B) of Proposition 2.1, we prove:

Proposition 3.4. If i is odd, we have H i
ét(X̄,Z/pZ(j))G = 0 for all but finitely many primes p.

Proof. As in the proof of Proposition 3.1, we are allowed to replace k by a finite extension
throughout the proof. First we replace k by the finite extension k′|k given by Lemma
3.3 b) (this involves changing K as well). Next, we replace k by its maximal extension
contained in K in which no finite prime ramifies.

For all but finitely many p the following conditions are all satisfied:

(1) p is unramified in k.
(2) µp ̸⊂ k.
(3) X has good reduction at the primes dividing p.
(4) The groups H i

ét(X̄,Zp(j)) and H i+1
ét (X̄,Zp(j)) are torsion free (see Fact 2.3).

Assume now that there exist infinitely may primes p satisfying the conditions above
for which H i

ét(X̄,Z/pZ(j))G ̸= 0. We shall derive a contradiction.
For each such p the nontrivial group H i

ét(X̄,Z/pZ(j))G carries an action of Γ via the
quotient Γ/G. The first step is to show that the restriction of this action to a simple Γ-
submodule Wp of H i

ét(X̄,Z/pZ(j))G factors Gal(k(µp)|k). Here we are following Ribet’s
argument in the proof of his Theorem 2 closely. The image of the map Γ → EndFp(Wp)

giving the action of Γ lies in EndΓ(Wp) as the action of Γ on Wp factors through its abelian
quotient Γ/G. By Schur’s lemma EndΓ(Wp) is a finite-dimensional division algebra over
the finite field Fp, hence a finite field F by Wedderburn’s theorem. Thus the action of Γ on
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Wp is given by a character Γ→ F×; in particular, it is semisimple. Since we have extended
k so that the conclusion of Lemma 3.3 b) holds, we know that every inertia group I ⊂ Γ

associated with a prime not dividing p acts unipotently on H i
ét(X̄,Zp(j)). Furthermore,

condition (4) implies that we have an isomorphism H i
ét(X̄,Z/pZ(j)) ∼= H i

ét(X̄,Zp(j)) ⊗
Z/pZ as in the proof of Proposition 2.1. Therefore I acts on H i

ét(X̄,Z/pZ(j)) with eigen-
values congruent to 1 modulo p. In particular this applies to its action on Wp which
is semisimple, and therefore it must be trivial. Hence the action of Γ/G on Wp factors
through its largest prime-to-p quotient unramified outside infinity and the primes divid-
ing p. By Lemma 3.2, our assumption on k implies that this quotient is Gal(k(µp)|k). As
we assumed µp ̸⊂ k, this is a nontrivial group isomorphic to F×p . Since Wp is simple for
the action of Γ, it must be 1-dimensional over Fp, with Γ acting by a power χ̄n(p)

p of the
mod p cyclotomic character χ̄p.

Now by Serre’s tame inertia conjecture (proven in [2], Theorem 5.3.1 – in fact we only
need the good reduction case which already follows from the work done in [12] and
[13]), there exists a bound N independent of p such that the integer n(p) appearing in the
above action satisfies n(p) ≤ N . [In fact, Serre’s conjecture concerns powers not of χ̄p,
but rather of the fundamental character denoted by θp−1 in ([29], §1). This character is
associated with the Galois action on a (p − 1)-st root of a uniformizer of a valuation of k
dividing p. However, by loc. cit., Corollary to Proposition 8, we have χ̄p = θp−1 in case p

is unramified in k, which we assumed.]
Now choose a place w of k not dividing p where X has good reduction, and let Nw be

the cardinality of its residue field. Under the isomorphism Gal(k(µp)|k)
∼→ F×p induced by

χ̄p the Frobenius element F̄w of w in Gal(k(µp)|k) corresponds to the class of Nw modulo
p. Therefore its action on Wp is given by multiplication by (Nw)n(p), where n(p) is the inte-
ger of the previous paragraph. Now lift F̄w to a Frobenius element Fw of w in Γ, and let Q
be the characteristic polynomial of its action on H i

ét(X̄,Qp(j)); it is known that Q has inte-
gral coefficients. Moreover, by the Cayley–Hamilton theorem the minimal polynomial of
Fw acting on H i

ét(X̄,Z/pZ(j)) ∼= H i
ét(X̄,Zp(j))⊗Z/pZ divides the reduction of Q modulo

p, since H i
ét(X̄,Zp(j)) is torsion free by our assumption (4). By the first part of the proof,

the restriction of this action to a nonzero simple Γ-submodule Wp ⊂ H i
ét(X̄,Zp(j))

G fac-
tors through Gal(k(µp)|k) and corresponds to multiplication by (Nw)n(p) for some integer
n(p), so we conclude Q((Nw)n(p)) ≡ 0 modulo p. By the previous paragraph, this con-
gruence holds for infinitely many p but with n(p) varying between 0 and a fixed bound
N . Hence for some integer 0 ≤ n(p) ≤ N we must have Q((Nw)n(p)) = 0. But by the
Weil conjectures proven by Deligne, we must then have (Nw)n(p) = (Nw)i/2−j , which is
impossible for odd i. This gives are desired contradiction, so we finally conclude that
H i

ét(X̄,Z/pZ(j))G vanishes for all but finitely many p.
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Remarks 3.5.

1. In his proof of ([25], Theorem 2) which corresponds to the case i = j = 1 here, Ribet
used the Oort–Tate classification of finite group schemes at the point where we invoked
Serre’s tame inertia conjecture. On the other hand, instead of our final weight argument
(which nicely parallels the proof of Proposition 3.1) he exploited the finiteness of global
torsion on abelian varieties over k. In the general case we do not have such deep global
information at our disposal.

2. Although the two statements are different in nature, there are remarkable similari-
ties between the above proof and that of Faltings [10] for his theorem that the height of
abelian varieties over number fields is bounded in an isogeny class. Compare especially
with the rendition by Deligne ([9], Theorem 2.4).

As already remarked, Theorem 1.2 is an immediate consequence of Propositions 3.1
and 3.4 in view of Proposition 2.1.

Remark 3.6. Theorem 1.2 does not hold for even degree cohomology. In fact, for pro-
jective space Pn

k over k we have an isomorphism of Galois modules H2i
ét(P

n
k
,Q/Z(j)) ∼=

Q/Z(j − i) for all 0 ≤ i ≤ n (see e.g. [23], VI.5.6). As our K contains all roots of unity
by assumption, G acts trivially on all Q/Z(j − i) and therefore its invariants are infinite.
However, the odd degree cohomology of projective space is trivial.

To obtain geometrically more complicated examples, one may consider smooth com-
plete intersections of dimension n in projective space. Their cohomology agrees with that
of Pn in degrees ̸= n and contains that of Pn as a Galois-equivariant direct summand in
degree n (see [8], 1.6). Thus the conclusions of the previous paragraph hold for them as
well.

4. LARGE VARIATION AND FINITENESS OF COHOMOLOGY IN POSITIVE

CHARACTERISTIC

This section is devoted to the large variation condition of Definition 1.6.

We begin with the proof of Proposition 1.7. Consider a base field k = F(C) of positive
characteristic and a proper smooth k-variety X . Our task is to show the finiteness of the
group H i

ét(X̄, (Q/Z)′(j))G, where G = Gal(k|kF). For this we are allowed to take finite
extensions of F, and therefore to find a proper flat model X of X over C for which there
are rational points c1, c2 ∈ C satisfying the property in Definition 1.6.

By Proposition 2.1 and Remark 2.2 it will suffice to prove:

(A) H i
ét(X̄,Qℓ(j))

G = 0 for all primes ℓ ̸= p.
(B) H i

ét(X̄,Z/ℓZ(j))G = 0 for all but finitely many primes ℓ ̸= p.
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To show (A), notice that by the exact sequence

1→ G→ Gal(k̄|k)→ Gal(F|F)→ 1

the action of Gal(k̄|k) on H i
ét(X̄,Qℓ(j))

G factors through Gal(F̄|F), and hence the restric-
tions of the endomorphisms Frobc1 ,Frobc2 ∈ End(H i

ét(X̄,Qℓ(j))) to H i
ét(X̄,Qℓ(j))

G co-
incide by F-rationality of the points c1 and c2. But by the large variation assumption
the Frobcr (r = 1, 2) have coprime characteristic polynomials, so this is only possible if
H i

ét(X̄,Qℓ(j))
G = 0.

To prove (B), notice first that the elements Frobcr already act on the groups H i
ét(X̄,Zℓ(j))

and the latter groups are torsion free for ℓ large enough (see Fact 2.3). In this case we may
speak of the characteristic polynomials of the Frobcr on H i

ét(X̄,Zℓ(j)). They are the same
as on H i

ét(X̄,Qℓ(j)) and are independent of ℓ. As by assumption the characteristic poly-
nomials of the Frobcr on H i

ét(X̄,Qℓ(j)) are coprime, the same holds for their characteristic
polynomials on H i

ét(X̄,Z/ℓZ(j)) for ℓ large enough. Indeed, the eigenvalues of the Frobcr

on H i
ét(X̄,Zℓ(j)) are algebraic integers, so different eigenvalues can coincide modulo ℓ

for only finitely many ℓ. The end of the proof of statement (B) is then the same as that of
(A).

Remark 4.1. The above argument, though much more elementary, is quite similar to
the proof of Theorem 1.2: we are comparing eigenvalues of two different Frobenius ele-
ments. The different nature of ℓ-adic and p-adic weights guarantees ‘large variation’ in
the arithmetic setting.

Remarks 4.2.

1. In the case where X is an abelian variety and X its Néron model over C, the large
variation assumption with respect to the model X has the following geometric reformu-
lation: there exist two closed points c1, c2 ∈ C whose associated geometric fibres are
abelian varieties over F having no common simple isogeny factor. Indeed, if such a com-
mon isogeny factor exists, then by the Künneth formula its étale cohomology is a direct
summand in the cohomology of the whole fibres. After extending the base field the in-
clusion of this direct summand becomes compatible with Frobenius, and therefore the
characteristic polynomials of Frobenius have a common factor. Conversely, if we know
that the group H1(X̄,Qℓ(1)) does not have large variation, then we can identify a com-
mon nonzero Galois-invariant subspace in H1(Xc̄1 ,Qℓ(1)) and H1(Xc̄2 ,Qℓ(1)) after finite
extension of F. By semisimplicity of Frobenius we may extend the identification of the
common subspaces to a Galois-equivariant morphism H1(Xc̄1 ,Qℓ(1)) → H1(Xc̄2 ,Qℓ(1)).
But by the Tate conjecture for abelian varieties over finite fields such a morphism comes,
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up to tensoring with Qℓ, from a map Xc̄1 → Xc̄2 of abelian varieties which can only be
nonzero if source and target have a common simple isogeny factor.

2. If the k|F-trace of X is nontrivial, it is not hard to check that all geometric fibres must
have a common simple isogeny factor. It would be nice to know whether the converse
holds.

3. In any case, under the large variation assumption we obtain a purely cohomological
proof of the prime-to-p torsion part of Theorem 1.5 that does not use the Lang-Néron
theorem.

5. PROOFS OF THE RESULTS ON CYCLES

In this section we prove Theorems 1.4 and 1.9. We shall mostly adapt arguments used
in the study of codimension 2 cycles on varieties over number fields, for which our main
reference is [4]. There are two notable differences: our fields K are of cohomological
dimension 1, not 2 (which simplifies matters), whereas in characteristic 0 the étale coho-
mology groups with finite coefficients of the ring of integers of K are not all finite (which
complicates matters).

We begin with the proof of Theorem 1.4. Denote the torsion subgroup of an abelian group
A by Ators. Over the algebraic closure k we have Bloch’s Abel–Jacobi map

CH i(X̄)tors → H2i−1(X̄,Q/Z(i))

which is injective for i = 2 ([4], théorème 4.3). It is moreover functorial in X̄ , hence
Galois-equivariant. So for G = Gal(k|K) we have an injection

CH2(X̄)Gtors ↪→ H3(X̄,Q/Z(2))G

where the group on the right hand side is finite by Theorem 1.2. It therefore suffices
to show that the group ker(CH2(XK) → CH2(X̄)) (which is torsion by the standard
restriction-corestriction argument) has finite exponent and in fact trivial under the addi-
tional assumption on H3

ét(X̄,Zℓ). This we do by a slight improvement of arguments of
Colliot-Thélène and Raskind [5].

By ([5], Proposition 3.6) we have an exact sequence

(3) H1(K,K2(k(X̄))/H0
Zar(X̄,K2))→ ker(CH2(XK)→ CH2(X̄))→ H1(K,H1

Zar(X̄,K2)).
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This exact sequence is obtained, following Bloch, by analyzing the commutative diagram
of Gersten complexes

K2(K(XK)) −−−→
⊕
x∈X1

K

K(x)× −−−→
⊕
x∈X2

K

Z

y y y
K2(k(X̄))G −−−→

(⊕
x∈X̄1

k(x)×

)G

−−−→

(⊕
x∈X̄2

Z

)G

and using the fundamental fact proven by Quillen that the Gersten complexes compute
the Zariski cohomology of the sheafK2 (with H2

Zar(X,K2) ∼= CH2(X) according to Bloch).
We now show that H1(K,K2(k(X̄))/H0

Zar(X̄,K2)) = 0. A key point is that our field
K has cohomological dimension 1. Indeed, K is the maximal cyclotomic extension of a
number field, hence satisfies the assumptions of ([28], II.3.3, Proposition 9). Now con-
sider the exact sequence of G-modules

(4) 0→ H0
Zar(X̄,K2)→ K2(k(X̄))→ K2(k(X̄))/H0

Zar(X̄,K2)→ 0.

By ([5], Theorem 1.8) there is an exact sequence of Galois modules

0→ T → H0
Zar(X̄,K2)→ S → 0,

where T is divisible as an abelian group and S is a finite group which is the direct sum
of the torsion subgroups in H2(X̄,Zℓ(2)) for all ℓ. In particular, H2(K,S) = 0 since K has
cohomological dimension 1. For a similar reason we have H2(K,T ) = 0, as T sits in an
exact sequence of Galois modules

0→ Ttors → T → Q→ 0

with Q uniquely divisible. Therefore we obtain H2(K,H0
Zar(X̄,K2)) = 0. On the other

hand, cd(K) ≤ 1 also implies H1(K,K2(k(X̄))) = 0 in view of ([3], Corollary 1, p. 11).
Thus the vanishing of H1(K,K2(k(X̄))/H0(X̄,K2)) follows from the long exact cohomol-
ogy sequence of (4).

Finally, the group H1(K,H1
Zar(X̄,K2)) is of finite exponent when H2(X,OX) = 0 and

trivial under the additional assumption that H3
ét(X̄,Zℓ) is torsion free for all ℓ ([5], Propo-

sition 3.9 b) and d)). The theorem thus results from exact sequence (3).

Remark 5.1. Though the group H1(K,H1
Zar(X̄,K2)) has finite exponent as recalled above,

it is in general infinite over our field K. However, this does not contradict the conjectured
finiteness of CH2(XK)tors. Indeed, by analyzing the diagram of Gersten complexes in the
above proof further, one may continue exact sequence (3) as

ker(CH2(XK)→ CH2(X̄))→ H1(K,H1
Zar(X̄,K2))→ H2(K,K2(k(X̄))/H0

Zar(X̄,K2))
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(see [5], Proposition 3.6). By similar arguments as above, we have

H2(K,K2(k(X̄))/H0
Zar(X̄,K2)) ∼= H2(K,K2(k(X̄))).

Here the group on the right hand side is usually large. In fact, by similar reduction
arguments as in the proof of ([3], Theorem B) one reduces its study to that of the group
H2(Gal(L|K), K2(L(XL))) for a finite cyclic extension L|K. By periodicity of the cohomol-
ogy of cyclic groups, this group is related to the cokernel of the norm map K2(L(XL))→
K2(K(X)) which is large for a field of cohomological dimension > 2 such as K(X). On
the other hand, it seems difficult to analyze the kernel of the map H1(K,H1

Zar(X̄,K2))→
H2(K,K2(k(X̄)).

We now begin the proof of Theorem 1.9. The first point is:

Proposition 5.2. Under the assumptions of Theorem 1.9 the prime-to-p torsion subgroup of
CH2(XK) has finite exponent.

The proof hinges on the following lemma.

Lemma 5.3. Let Y be a smooth projective surface over an algebraically closed field F of charac-
teristic p > 0 that is liftable to characteristic 0. If moreover H2

Zar(Y,OY ) = 0, the cokernel of the
Chern class map

Pic(Y )⊗Qℓ/Zℓ
cY−→ H2

ét(Y,Qℓ/Zℓ(1))

is finite for all ℓ ̸= p, and zero for all but finitely many ℓ .

Another way of phrasing the conclusion of the lemma is that the prime-to-p torsion
part of the Brauer group Br(Y ) is finite (cp. [16], Theorem 3.1).

Proof. By the liftability assumption Y arises as the special fibre of a smooth projective flat
morphism Y → S of relative dimension 2, where S is the spectrum of a complete discrete
valuation ring of characteristic 0 and residue field F . If η̄ denotes a geometric point over
the generic point η of S, we have a commutative diagram

(5)

Pic(Yη̄) ←−−− Pic(Y) −−−→ Pic(Y )ycYη̄

ycY

ycY

H2
ét(Yη̄,Qℓ/Zℓ(1))

∼=←−−− H2
ét(Y ,Qℓ/Zℓ(1))

∼=−−−→ H2
ét(Y,Qℓ/Zℓ(1))

where the horizontal maps are pullbacks and the lower horizontal maps are isomor-
phisms by the proper and smooth base change theorems.

Notice that thanks to the assumption H2
Zar(Y,OY ) = 0 we also have H2

Zar(Yη,OYη) = 0

and hence H2
Zar(Yη̄,OYη̄) = 0. Indeed, since the map Y → S has relative dimension

2, its fibres have trivial third coherent cohomology, and hence we may apply Grauert’s
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base change theorem ([17], Corollary III.2.9). Since κ(η̄) has characteristic 0, under the
assumption H2

Zar(Yη̄,OYη̄) = 0 the cokernel of the map

Pic(Yη̄)⊗Qℓ/Zℓ → H2
ét(Yη̄,Qℓ/Zℓ(1))

is finite for all ℓ ̸= p and zero for almost all ℓ (see e.g. [5], Proposition 2.11). Thus if we
show that, after identifying the groups H2

ét(Yη̄,Qℓ/Zℓ(1)) and H2
ét(Y,Qℓ/Zℓ(1)) by means

of the the base change isomorphisms in the diagram, we have Im (cY ) ⊃ Im (cYη̄), the
proposition will follow.

To verify this claim, pick a class ᾱ ∈ Pic(Yη̄). There is a finite extension L|κ(η) and
a class αL ∈ Pic(YL) mapping to ᾱ under the pullback map Pic(YL) → Pic(Yη̄), where
YL := Y ×S Spec (L). Denote by S ′ the normalization of S in L and by Y ′ the base change
Y ×S S ′. Since the map S ′ → S comes from a totally ramified extension of complete
discrete valuation rings, the special fibre of Y ′ is still isomorphic to Y . As YL identifies
with an open subscheme of Y ′, the pullback map Pic(Y ′) → Pic(YL) is surjective, and
hence αL comes from a class α′ ∈ Pic(Y ′). This class in turn pulls back to αY ∈ Pic(Y )

on the special fibre. By construction, cY (αY ) corresponds to cYη̄(ᾱ) under the base change
isomorphism H2

ét(Yη̄,Qℓ/Zℓ(1)) ∼= H2
ét(Y,Qℓ/Zℓ(1)) coming from Yη̄ = Y ′η̄ → Y ′ ← Y .

But then these classes also correspond under the base change isomorphism coming from
Yη̄ → Y ← Y , in view of the commutative diagram

H2
ét(Yη̄,Qℓ/Zℓ(1))

∼=←−−− H2
ét(Y ,Qℓ/Zℓ(1))

∼=−−−→ H2
ét(Y,Qℓ/Zℓ(1))yid

y yid

H2
ét(Yη̄,Qℓ/Zℓ(1))

∼=←−−− H2
ét(Y ′,Qℓ/Zℓ(1))

∼=−−−→ H2
ét(Y,Qℓ/Zℓ(1)).

Remark 5.4. The inclusion Im (cY ) ⊃ Im (cYη̄) in the above proof is in fact an equal-
ity. The reverse inclusion follows from the commutative diagram (5) above, together
with the surjectivity of the pullback map Pic(Y) → Pic(Y ). This surjectivity is one of
Grothendieck’s deformation results exposed in ([15], §6) or ([18], §8.5); it uses the as-
sumption H2

Zar(Y,OY ) = 0.

Proof of Proposition 5.2. Given the lemma above, the proof is a minor modification of that
of Theorem 1.4. We review the main steps. As in the cited proof, but using the large
variation assumption and Proposition 1.7 instead of Theorem 1.2, we reduce to proving
that the prime-to-p torsion in ker(CH2(XK) → CH2(X̄)) has finite exponent. This we
again do using exact sequence (3). In exactly the same way as above, we obtain that the
group H2(K,H0

Zar(X̄,K2)) has no prime-to-p torsion, the only difference in the argument
being that when applying ([5], Theorem 1.8) we only obtain prime-to-p divisibility of the
group T . Next, we also get that H1(K,K2(k(X̄))) has no prime-to-p torsion by applying
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([3], Corollary 1). (Note that the result is only stated there in characteristic 0 because
the proof relies on a result of Bloch, cited as B6 in [3], that was only known in charac-
teristic 0 at the time. However, shortly afterwards Suslin extended Bloch’s statement to
arbitrary characteristic in [32], Theorem 3.5.) From these facts we conclude as above that
H1(K,K2(k(X̄))/H0(X̄,K2)) has no prime-to-p torsion.

It remains to show that the prime-to-p torsion in H1(K,H1
Zar(X̄,K2)) is of finite ex-

ponent under our assumptions. For this we have to extend ([5], Proposition 3.9 b)) to
positive characteristic. The cited result is an immediate consequence of ([5], Theorem
2.12) which is again only stated in characteristic 0. However, by ([5], Remark 2.14) the
prime-to-p version of the said theorem holds in positive characteristic if one knows that
the prime-to-p torsion part of the Brauer group Br(Y ) is finite. This is the content of the
lemma above.

Proposition 5.5. Let K = F(C) be as in Theorem 1.5, and let ℓ be a prime different from the
characteristic p. For every smooth proper K-variety XK satisfying H2

Zar(XK ,OXK
) = 0 the

ℓ-primary torsion subgroup CH2(XK){ℓ} is of finite cotype.

Recall that an ℓ-primary torsion abelian group A is of finite cotype if for all i > 0 the
multiplication-by-ℓi map on A has finite kernel. This is equivalent to the Qℓ/Zℓ-dual
being a finitely generated Zℓ-module.

Proof. We adapt an argument that is at the very end of both [4] and [27]. We may find
a smooth affine F-curve U ⊂ CF so that XK → SpecK extends to a smooth proper flat
morphism X → U .

We first prove that the restriction map on torsion subgroups CH2(X )tors → CH2(XK)tors
is surjective. Localization in Gersten theory gives an exact sequence

(6) H1
Zar(XK ,K2)

∂→
⊕
P∈U0

Pic(XP )→ CH2(X )→ CH2(XK)→ 0.

Since Q is flat over Z, the sequence remains exact after tensoring with Q, so it will suffice
to prove that the map CH2(X ) ⊗ Q → CH2(XK) ⊗ Q is an isomorphism, or equiva-
lently that the map ∂ ⊗ Q is surjective. By a norm argument we may check the lat-
ter statement after passing to a finite extension L|K (which entails the replacement of
U by a finite cover). Thus we may assume that XK(K) ̸= ∅ and the composite map
Pic(XK) → Pic(XK) → NS(XK) is surjective, where NS denotes, as usual, the Néron–
Severi group. Furthermore, by shrinking U if necessary we may assume using semi-
continuity of coherent cohomology ([17], Theorem III.12.8) that H2

Zar(XP ,OXP
) = 0 for

each closed point P ∈ U0. In this situation, and under the further assumption that
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Pic(U) = 0, the composite map

(7) H1
Zar(XK ,K2)

∂→
⊕
P∈U0

Pic(XP )→
⊕
P∈U0

NS(XP )

is surjective according to Lemma 3.2 of [6] (there is also a characteristic zero assumption
in the cited lemma but it is not used). In our case the assumption Pic(U) = 0 is not
satisfied, but at least Pic(U) is torsion since U is a smooth affine curve over F. Under this
weaker assumption the proof of ([6], Lemma 3.2) yields that the composite map (7) has
torsion cokernel (only the last three lines have to be modified in a straightforward way).
Thus the composite map

H1
Zar(XK ,K2)⊗Q

∂⊗Q−→
⊕
P∈U0

Pic(XP )⊗Q→
⊕
P∈U0

NS(XP )⊗Q

is surjective. But here the second map is an isomorphism because the groups Pic0(XP )

are torsion as well. This shows the surjectivity of the map ∂ ⊗ Q, and hence the surjec-
tivity of the map CH2(X )tors → CH2(XK)tors. In particular, we have a surjective map
CH2(X ){ℓ} → CH2(XK){ℓ} on ℓ-primary torsion.

Therefore to finish the proof it will suffice to prove that the group CH2(X ){ℓ} is of finite
cotype. By Bloch–Ogus theory and the Merkurjev–Suslin theorem we have a surjection

H1
Zar(X ,R2π∗Qℓ/Zℓ(2)) � CH2(X ){ℓ}

as well as an injection

H1
Zar(X ,R2π∗Qℓ/Zℓ(2)) ↪→ H3

ét(X ,Qℓ/Zℓ(2))

where π : Xét → XZar is the change-of-sites map (see e.g. [4], §3.2). Here X is a smooth
variety over the algebraically closed field F, and therefore the groups H i

ét(X ,Qℓ/Zℓ(j))

are of finite cotype for all i, j.

Proof of Theorem 1.9. We have to prove that for all ℓ ̸= p the ℓ-primary torsion subgroups
CH2(XK){ℓ} are finite and that they are trivial for all but finitely many ℓ. The latter
statement follows from the fact that the whole prime-to-p torsion subgroup in CH2(XK)

has finite exponent (Proposition 5.2). Now Propositions 5.2 and 5.5 together imply that
for each fixed ℓ ̸= p the group CH2(XK){ℓ} is finite.

Remark 5.6. The above proofs show that the conclusion of Theorem 1.9 also holds for the
prime-to-p torsion in CH2(X) instead of CH2(XK), even without assuming large varia-
tion. One only has to replace the application of Proposition 1.7 by a weight argument.
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