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Abstract

We define arithmetic Chow and Grothendieck groups, in order to
prove a Grothendieck-Riemann-Roch theorem for these. The last sec-
tion contains a discussion about the absclute Riemann-Roch theorem
and analogues of the dimensions of the 0’s and first cohomology groups
in the arithmetic case.
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0.2 Prerequisites

We assume only elementary classical algebra. References to the Algebraische
Zahlentheorie of Neukirch ({15]) are given, for the results of algebraic number
theory that we shall need. For the very few propositions from classical alge-
braic K-theory and the theory of ideles, we give references to the Algebraic
Number Theory of Lang (cf. [12]) and the Algebraic K-theory of Milnor (cf.

[14]).

0.3 Standard notations

7|0 The embedding 7 extends the embedding o

Nirig The norm function for the K-algebra L

N(Z) The Norm (product of coordinates) of # € R™
T'r(Z) The Trace (sum of the coordinates) of # € R®

[.] Equivalence classes

p.t.d. Principal Ideal Domain

f-g. Finitely generated

v, The exponential valuation corresponding to the absolute value p ([15, p.
125))

Ix The idele group of the number field K ([15, p. 373])
s.e.s. Short Exact Sequence

rg(M) Rank of the module M (if it exists)

- Mo, M considered as an Og-module

AB The category of abelian groups

B* The polar body of a body B in some Euclidean space
#8S The cardinality of the set S




dg The discriminant of the number field K ([15, p. 15])

W+ The orthogonal complement of the subspace W

~ Asymptotically equivalent

Dy x The different ideal of the extension L|K of number fields ([15, Ch. III,
Par. 2])

6rjx The discriminant ideal of the extension L|K ([15, Ch. IIL, Par. 2])
N(I) The Norm of the ideal T

diam(S) The Diameter of the set $ C R™

1 Introduction

In this text, we shall develop the theory needed to formulate a Riemann-
Roch theorem of the Grothendieck type for arithmetic curves. Such a the-
orem is concerned with the naturality of a Chern-character mapping from
Grothendieck groups to Chow groups.

The term arithmetic means that our theorems hold for some schemes over
Z. This implies that the classical techniques of algebraic geometry have to
be supplemented, in order to provide analogues to the higher cohomology
groups, since the classical non-zero ones vanish over Z in the case of curves.
The original impulse for the development of such techniques came from Weil
(cf. the introduction of [3]), who had noticed strong analogies between the
field of rational functions of curves over an algebraically closed field and num-
ber fields (cf. [22]). This encouraged transfers of theorems from the classical
algebraic geometry of varieties to this case. Arakelov later (in 1974) provided
(cf. [1]) the construction necessary to implement this transfer fully. He initi-
ated thereby a whole program, which is concerned with the generalisation of
his ideas to larger classes of schemes over Z and with the transfer of classical
theorems. The main steps were carried through by Faltings (cf. [4]) and
Gillet-Soulé (cf. [19]).

In the case of curves, the basic idea of Arakelov consists in the following; thep-
rime ideals of the ring of integers of a number field correspond to discrete
valuations on the number field, so that the number field can be considered
as a field of functions on the spectrum of its ring of integers (as for the field
of rational functions on a curve); Arakelov extends the domain of these func-
tions to all the valuations (i.e. also the archimedean ones) of the number
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field. It is on this ”completed spectrum” that one has to carry through the
geometrical constructions.

This also means that the Minkowski geometry of numbers will enter into the
play; for instance, the fibers of an ideal of the ring of integers of a number
field will become complex lines on the archimedean valuations; specifying
hermitian metrics on these lines, the Riemann problem becomes "How many
elements of the ideal are within given bounded subsets of the direct sum of
the complex lines ?”. The image of the ideal in the direct sum of all the
complex lines being a lattice, this question is therefore strongly linked with
Minkowski’s theorem (see [15, p.22, 4.4], for instance).

2 Foundations

In the sequel, we shall currently denote a number field by K and its ring
of integers by Ox. Spec Ok is written X and is our general model of an
arithmetic curve. If the underlying field is not K, we shall add a subscript
to X (e.g. X if the field is L). The set of all the field embeddings of K into
C will be denoted by X. The elements of X, are denoted by small greek
letters (7, ¢ etc.). We also make the following definition

Definition 2.1 N F is the category of all number fields. The category struc-
. ture is given by the data :

o Mor(K,L):={i}, f K C L, i: K — L being the inclusion

¢ Mor(K,L):=0,if K Z L

If 7 is in X, and M is an Og-module, M, will be M Qo C considered as a
complex vector space. If L : M — N is an Og-module homorphism, then we
define L, := I, oy, I d.: M, — N,. The subscript ¢ of the tensor product
. means that the Og action on Cis ¢(a).z (a € Ok, 2 € C). Note that we may
view (.), as an exact functor from the category of f.g. Ox-modules to the

category of finite-dimensional complex vector spaces. With these notations -

we now define our basic working environment.

Definition 2.2 Let M be a finitely generated projective Ox-module.
o (Conjugation) The conjugation is the isomorphism M, — Mz, given by
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t®2—>1Q7F, foreach o € X.

o (Metrized modules) We denote by M, M endowed with a conjugation-
invariant hermitian scalar product hy;, on M, for all 0 € X . M is then
called a metrized OK-module Orne writes M also as (M, (hM,)g)

o (Mor"phzsms } If N 18 another metrized Og-module, a morphism of metrized
modules I : M — N is an Ox-module homomorphism L : M — N.

With this settmg, the metrized Og-modules clearly form a category, that will
be denoted by PF(X).

M may be viewed as a locally free sheaf on X. In view of the conjugation
invariance requirement, we shall often have to consider X, modulo conju-
gation, i.e. with conjugate embeddings identified. This new set will then be
denoted by X[,. All the functions defined on X/ will be written as functions
on X, but will implicitly be submitted to the supplementary requirement
of conjugation invariance. The natural notion of exactness on PF(X) is the
following:

Definition 2.3 We say that an exact sequence of metrized Ox-modules

—— ﬁ: o~
M: 0—>M'—+M——>M"—>O

(for some M', M" ¢ PF(X)) splits orthogonally if the coresponding exact
sequence of inner product spaces

M:0— M %M, % e o
splits orthogonally, at each o € X

That is, we have d"(has,) = huyy and d7 (ha,) = hayy. In words: M.
embeds isometrically in M,, and M carries the quotient metric of M, and
Note that PF(X) is not an abelian category. In fact, there seems to be no
way to define morphisms which make it into one, because of the ”rigidity” of
isometries. Therefore, we shall define another stronger isomorphism property.

Definition 2.4 Let M, N be metrized Og-modules, We say that L: M —
N is an isometric isomorphism, if L : M — N is an isomorphism and
L, : M, — N, is an isometry (for all 0 € X,). We write MAN in that

case.




The symbol ™ will in the sequel appear in all instances of an arithmetic
analogon of a classical object.! Borrowing a term from sheaf theory, we shall
call metrized modules of rank 1 invertible metrized modules.

Example. Let I be a fractional ideal of Og. Then we can specifiy a metric
hj, for each ¢ € X[, by requiring the element ¢, @ z, € I, with o(¢,).2z, = 1
to be an orthonormal basis for the metric. The mapping ¢, ® z, = ¢(t0). 2,
is clearly an Og-isomorphism: it is well-defined, since it is bilinear; further-
more, it is injective, since C is a domain, and surjective since 2, can be chosen
freely. This metric is called the trivial metric of I. The just described basis
is called the standard basis of I at 4. Its only element is refered to as I,[1].
We shall often identify the metrics of metrized fra,ctzona.l ideals with their
coeflicients in that basis. :

3 Operations in PF(X)

We can extend the usual module operations to 'P?(X ):
Let M N be metrized Og-modules and ¢ € X._.
Taking into account the canonical isomorphisms

o (Det(M))y ~ Detc(M,) (1)
o (MQN),~M,®N, (2)
o (M&N),~M, &N, (3)

o (M;)" ~(M"),
we define the operations
Definition 3.1
Deto, (M) := (Det(M),(Det(har,))s)

ﬂ Rox ﬁ = (M ®0K N,(hMa, ® hN.,)a)

1We finally decided not to use the more precise Gillet-Soulé notation, which makes a
distinction between ”endowed with a metric” (”-”) and arithmetic, by fear to overburden
the reader with symbols (since we already try to be quite exhaustive).




M @0, N := (M @o, N,(hy, ® hy,)s)
HG = (Mv’ (h:)a')

where for two metrics h, h' on given finite dimensional vector spaces we define
Det(h)(x1 A ... Azgyy1 Ao Aya) := Det((h(zi,y;5))i ;)

(h @A)z @y, u®v) = h(z,u).h(y,v)
(hOr Nz dy,udv):=h(z,u) + h(y,v)
hY(z,y) = h(zV,y")

for some vectors z,y,21...24,¥1...Y4,%, 0.

(the dual of an element is the image of that element under the mapping pro-
vided by the Riesz representation theorem)
We have now an arithmetic version of the structure theorem for finitely gen-
erated projective modules over Dedekind rings ([9, II, p.626, Th. 10.14]).
Recall that this theorem says that any such module is isomorphic to a finite
direct sum of fractional ideals and that this representation is unique up to
_reordering of the factors and multiplication of each factor with a principal
ideal.

Proposition 3.2 (An arithmetic Splitting Principle) For any metrized
Ox-module M there erists an invertible module I and a metrized module N
such that the following sequence splits orthogonally:

0—>ﬁ—-}ﬂ—>f-—+0

Proof: We know that we can find N, I so that the above sequence is alge-
braically exact. Endow N with the pull-back metric from M and I with the
- push-forward metric. &

Here is another arithmetic version of a classical theorem (cf. [11, p. 591, Pr.
9.2)).




Theorem 3.3 Let

0-M--M-M' -0
be an orthogonally splitting s.e.s. Then there is a canonical isometric iso-
morphism

Det(M)=Det(M') @ Det(M")

Proof: It is classical that for any splitting s : M" — M, the map (m] A
e AmE) @ (MY AL AME) = miA L AmY As(mY) AL A s(mi) is
an isomorphism (d',d,d" are the dimensions). The induced isomorphisms at
o € X won't change, if we replace s, by the orthogonal splitting s*. Now
let vi...vp,v{... v} be orthonormal bases for M!, MY; clearly (vi A ... A
< V) ® (v A...vY) is an orthonormal basis of M! @ M and we compute

hDet(m,) (Vi A .o v AsT(OYA LA ST (W) =

Det (hM;_('U;, 'U_;'))i'j 0 — 1
0 (hM;-’ ('”IL ”{’ )k,g

which ends the proof. &

After these preliminaries, we now come to the objects the arithmetic Grothendieck-
Riemann-Roch will be concerned with. '

4 Arithmetic Chow groups

4.1 Definitions

For the spectra of Dedekind rings, the algebraic 0-cycles correspond to the
fractional ideals and the principal cycles are the principal ones. The first
‘Chow group is then the idealclass group. The arithmetic analogs to these
objects are the following:

Definition 4.1 The group of {arithmetic) 0-cycles is defined as
ZY(X):= Z{X)®R®>
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Z' denoting the multiplicative group of fractional ideals of Ox.
The group R'(X) of principal cycles form the image of the homomorphism

div : K* — ZY(X)
defined by
div(a) := (a) ® (—2.log(|o(2)|))s
((a) == Ox.a)

The homomorphy of div is clear from the equations div(a.b) = (a.b) ®

(—2.log(jo(.b)]))o " ((a) ®(—2.1og(|o(a)]))s) +((6) & (—2. Iog(lo(B)]))o) =
div(a) + div(b).
With this setting

Definition 4.2 The first Chow group is defined as
CH'(X) = 2'(X)/B(X)
With these prescriptions the group
CH(X)=Z & CH (X)

(Z corresponds to the free group generated by the unique 1-cycle) can be
endowed with a ring structure ®, described by

(r1 @ cl) ® (ry @ cly) := (r1.72) @ (r1.¢l2 + ra.cly)

. where 71,73 € Z, and cly, cly € GH'. This ring structure may be interpreted
as an arithmetic intersection pairing. This accounts for the fact that the
product vanishes on two elements of CH 1(X ), since the higher arithmetic
Chow groups vanish.

4.2 Pic and the first Chern class

In this paragraph, we show that the isomorphy between the Picard group and
the first Chow group, valid on any compact complex manifold, also holds in
our arithmetic context.



Definition 4.3 The (arithmetic) Picard group .ﬁ;E(X ) of Ok is the set of
1sometric isomorphism classes of invertible metrized modules. A group struc-
ture on 13;7:()( ) is given by the tensor product @. The neutral element is Ok
endowed with the trivial metric,

- The inverses are easily seen to be the metrized duals. The fact that (Ox, (1),)
1s neutral may be checked directly, but is also an immediate consequence of
the next theorem:

Theorem 4.4 (Structure Theorem for Pic) There is an isomorphism
et ]3;hc(X) — CTFII(X)

er([(Mlg) == (M) & (—log(|ho))oexs, | 3t

where I(M) is a fractional ideal isomorphic to M. The metric h, of I W)
18 the one induced by the isomorphism.

I(M) exists by the structure theorem. ¢; is called the first Chern class.

Proof: Part of the proof is the well-definedness of ¢;. The structure theorem
tells us that the only variation allowed on I(}/) is multiplication by a € K*.
So if we inverse on both sides, we are reduced to prove the equation

H(M) & (log([ks |))rexs )zt =

[a.1(31) & (Log(|Ae.ran). )oexs.] g

We compute Ao 1(ar)), = |1/0(a)?|.krary,- Indeed, if t ® z (« € I(M),z € C)
is the standard basis of I(M),, then (a @ Identity)(: ® z) = (a.t) @ z, so
that the standard basis of (a.I(M)), is ﬁ((a.a) ® z), by the definition of
the action. From this it should be clear that the difference between the two
members of the last equation is [div(a)] 1 = 0.

The homomorphy of ¢; is evident. ¢; is clearly injective and surjective, so it
is an isomorphism. &
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4.3 Functoriality

We now turn to the functoriality of Chow groups.
Definition 4.5 Let i : K C L be an inclusion of number fields. The pull-
- back function is defined by
iz~ : OH(Xx) — CH(Xy)
izz(r® [l ® (90)0153‘,-‘) =r[L:K]|®[Op]® i*(g)]gy
where i*(g) 1= grx for T € Xgl,.
We have of course to show that ¢%-. is well-defined.
¢ Proof of the well-definedness of :%-..

The above definition is clearly additive in all its arguments. Therefore, con-
sidering for a moment that %~ is defined from Z'(Xx) to Z'(Xy) instead,

we only have to settle that i%- (RI(X x)) € BY(Xy) (there is no ambiguity
on Z). Now the following st:ra.lghtforwa,rd computation

177 ((¢)o®(—2.Iog(|o(a)]))rexs,) = ((a)o, ©(—2.10g([0(a))riorexst, oexl,) =
. ((2)o, ® (—2.10g(|7(a)[))rex,s,) = divo,(a)
(a € K*) shows that this holds. Now we have the two expected results.

Theorem 4.6 CH becomes a covariant functor NF — AB, if an inclu-
sion t : K — L of number fields is mapped on the homomorphism i 35}; :

CH(Xx) — CH(Xy).

Proof: The fact that ¢%-. is a group homomorphism is clear from the above
‘mentionned additivity. The functoriality is clear, if one remembers that

[L: K|.[K:J]=[L:J]for three number fields LC K CJ. &
We can also define a push-forward for Chow groups.

Definition 4.7 The push-forward function is defined by
ey CH(XL) — C’H(XK)
ol @ (18 (9)rexst )y =7  [(Noix(1) @ ia(9)] g
where z."‘(9)(‘7) = E‘r]a‘ g(T) (0' € oo)'
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Again, we have to check well-definedness.
¢ Proof of the well-definedness of i, &
- Consider for a moment that i,z is defined from Z'(Xy) to Z*(Xx). in gy 18
clearly additive, therefore, as before, we have to check that i, &(ﬁl (X)) C
R'(Xx). The following computation

iz (@) ® (~2.1og(Im(@) Nrexys,)

(Npix(a)) @ (ZI —2.log(|m(a)]))oext, =

(Noixe(@)) @ (~2.og(| [ r(a)))s =

Tl
(Nyix(a)) @ (=2.log(|lo(Nrjx(a))])-
(a € L*)
settles the matter. For the last equation, remember that the norm of a
appears as the constant coefficient of its characteristic polynomial over Q

(cf. [9, p. 611, Pr. 10.8]).
Again we have

Theorem 4.8 CH becomes a contravariant functor NF — AB, if an in-
clusion i : K — L of number fields is mapped on the homomorphism gy -

CH(X1) — CH(Xk).
Proof: Clear, if one remembers that Ny o Npx = Ny for three number
fields L € K C J (cf. [15, p. 10, Kor. 2.7]). &

One can even show that the pull-back is a ring homomorphism, which shows
that © obeys the right axioms (cf. [7, Appendix IJ).

4.4 The degree mapping

It is possible in classical algebraic geometry to calculate the degree of an
invertible sheaf on a suitable scheme, via a morphism to a smooth projective
variety (cf. [3, p. 9]). In the same fashion, we shall define the degree

of an element of CH 1(X ) as the degree of its push-forward to CH 1(XQ).
Therefore, we first need to compute CH 1(X@).
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Lemma 4.9 CTI?I(Xq) LR
where T : [(g) ® (9)] 532 — 3(9 +2.1og(la]))
(q€ Q)

(the 7 factor is irrelevant in the computation; it has only been introduced
to allow the elements of R to be interpreted as the norms - and not as the
metrics)

Proof: First, we have to prove that T is well-defined. It is clearly well-
defined and a homomorphism on Z'(Xg), since all fractional ideals are prin-
cipal and their generators are only ambiguous up to sign. Next, its kernal in
ZY(Xg) is by definition exactly B'(Xg). Since it is clearly surjective, we are
done. &

Now we can proceed with the

Definition 4.10 The degree homomorphism is
deg: CH 1(X )— R

deg(z) = T'(iug5(z))
“where:: Q — K.

From now on, we shall even extend the domain of definition of deg to any
metrized module, by the formula deg o ¢; o Det(.). Looking back on the
- definition of 7, g3, We see that an explicit formula for deg((Z, (hs),)) is given
by
1
~log(N (D) - 1 3 log(ho)

reX w0
(W) = lal i (g) = Nyyq(D); see [15, p. 37]) |
Note that we sum over all of X,. deg will appear again in the absolute
Riemann-Roch theorem.

5 Arithmetic Grothendieck groups

The first section will describe a 0-dimensional specialisation of Bott-Chern
forms.
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5.1 0-dimensional Bott-Chern forms
We define

Definition 5.1 Let
Vi0o—-V VoV =0

be an ezact sequence of finite dimensional Euclidean spaces, with metrics
h',h,h". The Bott-Chern form of V is defined as

ch(V) := —log(|det(k)/det(h' & k"))
where the direct sum is taken under the natural orthogonal splitting.

By convention, the determinant of the metric of a 0-dimensional space will

be 1.

The definition of ck is independant of the basis of V chosen to compute the
determinants, since any basis change would induce a multiplication with the
same factor in the numerator and in the denominator. It is clear from the
definition that JL(V) = 0 if V splits orthogonally. On a compact Riemann
surface, the Bott-Chern form of an exact sequence of vector bundles is the
first Chern form of the middle term minus the first Chern forms of the first
and final term. We have an analogous formula here. Let

M: O M > M—->M' >0
be an algebraically exact sequence of metrized modules and
My:0— M, - M, - M!' >0
the corresponding sequence at ¢ € X! . We compute
c1(Det(M)) — er(Det(M7)) + co( Det(M")) =
ci(Det(M) @ (Det(M @ M"))¥)

[Ok @ (—log(|det(hy,)/det(har, & hary)|))o] o2
The Bott-Chern form has the following symmetry:
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Proposition 5.2 Let

vV 4 A

0 0 0

! l !
Vi: 0 - V| - Vi —- V' =0

d ! l
Vo: 0 = V) — V, — V' -0

! ! l
Vi: 0 = Vi — V3 = V —0

P! l !

0 0 0

be an s.e.s. of complexes of finite dimensional Euclidean spaces. Then

ch(V') = ch(V) + ch(V") = ch(V1) — ch(V2) + ch(Vs)

Proof: In view of the fact that the logarithm swaps products and sums, this
statement is in fact equivalent to this other one:

Det(hvl )/(Det(hvrl ).Det(hvnl )) .(Det(hvé )/(Det(hvfz )

Det(}bvnz )))_1 .Det(hva)/(Det(hvrS ) .Det(hvr13 )) =
Det(hvr1 )/(Det(hvr2 ).Det(hvrs )) .(Det(hvl )/(.Det(hv2 )
Det(hva)))_l .Det(hvna )/(Det(hvua ).Det(hvns ))

(choosing arbitrary bases for the Euclidean spaces to compute the determi-
nants)
But this is obvious, if one reorders the factors. &

As a corollary, the Bott-Chern forms are additive on short exact sequences
of complexes of euclidean spaces. '
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5.2 Definitions

Next, we have to define Grothendieck groups, i.e. groups that are universal
with respect to short exact sequences. Here two options are open. The first
one consists in simply taking the quotient of all the orthogenally splitting
s.e.s., as one does classically; the second one appears, when one tries to
conserve as much as possible of the old category of f.g. projective modules;
in this case, one takes the quotient of all the algebraic s.e.s and a Bott-Chern
form. The two approaches turn out to yield isomorphic groups. We define

Definition 5.3 The categorical Grothendieck group Ko(X) is the group de-
scribed by the following data:

e Group: Free Z-module generated by all the objects of ﬁ(X )

e Relations: [/] Be = [ 7.t [ &, for any orthogonally splitting s.e.s.

0= M M- M -0

More explicitly, this notation means that Eg(X ) is the quotient of the men-
tioned free group by the subgroup generated by the relations. K¢(X) also
has a natural unitary ring structure under the tensor product ® of represen-
tants, [(Ox, (1),)] %, Playing the role of the unit. It is well-defined because
@ is biadditive (universality of the group). We shall denote that product
simply by .. Nevertheless we shall always refer to EC(X ) as a group, unless
we explicitly state the contrary. Since Det and rg are additive (see 3.3 for
the former), they factor through K¢(X) to become homomorphisms on this
group, by universality. This universality removes any danger in denoting Det
and rg as defined on K¢ (X) by the same symbols. We shall apply this con-
vention from now on and extend it without notice to any additive map.
Also, since the image of Det consists only of invertible modules, we may
identify Det(M) and [Det(M)] n € Pic(X). Conversely, there is a mapping
Pie(X) — Ko(X) given by [M len [M] %, This mapping is well-defined,
since isometrically isomorphic metrized modules 37, M’ have identical images
in K¢(X), as the orthogonally splitting s.e.s 0 — M ™2™ A’ — 0 should
- make clear. Since Det is clearly an inverse to this last mapping, this means
that Pic(X) may be viewed as embedded in Ko(X). Next
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Definition 5.4 The Gillet-Soulé Grothendieck group Kgs(X) is the group
described by the following data:
» Group: {Free Z-module generated by all the objects of 'ﬁ?’(X )} R*
* Relations: [M]g__+ (ch(M,)), = [M']g__+[M")__
where
M:0>M M- M -0

is an algebraically eract sequence for some M', M, M" € ﬁ(X ).

For simplicity of notation, we shall from now on often write Efz(./a) for
(h(H,))e-

Both of these groups can be defined on the level of all f.g. Og-modules
without change (i.e. one obtains isomorphic groups under the natural inclu-
sion mapping). This not entirely trivial topic is treated in the Appendix A.
We shall sometimes use these seemingly larger groups in the sequel. They
will be refered to as R:c(X ) (for the categorical one) and fgs(X )’ (for the
"Gillet-Soulé” one).

5.3 Comparison of the groups

~ There are two natural questions arising now. What is the relation of our
Grothendieck groups to the classical one 7 What is the relation of our
Grothendieck groups between them ? We shall bring these questions together
in one diagram. Before coming to the diagram, we prove non-canonical struc-
ture theorems for the two groups. We need a lemma

Lemma 5.5 Let I,J be metrized fractional ideals. Then [I ® J,(h;, ®
hJa’)U]fc = [I @ J: (h.fa & hIa-)a']EC-

Proof: As usual, we work at ¢. Consider the s.e.s.

0 — (Lyya) = (I & Jpy Hy) = (Jor B — 2222) 0
o,

o

(with the obvious maps, where a,, 8, € R3})

& o

where H, is the matrix (CE %) defining a metric of I, @ J, in the stan-
dard basis. We contend that this s.e.s. splits orthogonally. Indeed, the
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orthogonal complement of I, in I, @ J,, is described by the equation in a,b
Hz,0)H,(a,b) = ay.z.a + ¥,.2.b = 0 for all z € I,, i.e. it consists of the
elements (—v,/a,).b,b) for all b € J,. Then the simple computation

Yo/ g b, BYHy (— 0/ 0p B, B) = (B — 2222 00"

Xa

(b, € 1)

demonstrates our contention.

Going through exactly the same reasoning on the first term, we see that the
following s.e.s. also splits:

0= (Ja,ﬁa) - (Ia ® J""HV) - (Iznaﬂ - 7;70) — 0

o

By the definition of the Ko(X), this means that [(1® J,(H,),)]z, = (1 ®
J(ar)s ® (Br — %)“]I?c =[I®J(a ~ 3’7;%—'_"), sy (ﬁ“)“)]f?c' Now choose
o = hy,, B = a, and 4,7, = o2 — hj,.a, to read off our claim. &

Proposition 5.6 Let T' be the lattice —2.1og(|Ok*|) C R¥% )2, Let Ko(X)
be the classical Grothendieck group of X. The following sequence is ezact

0 - R¥/T X Bo(x) L Ko(X) = 0

where f is the natural forgetful mapping (i.e. F([M] &) = [M]x;) and kf
s defined by

kf(lglgxt p) = [(Ox, (exp(95))0 )z, — (O, (1)0)]z, (4)

Put I = J = Ok, a, = exp(g,). exp(g.), Br = exp(g.), (8- — 1).ar = |1-]%,
at the end of the last proof, to see that kf is a homomorphism.

Proof: To demonstrate exactness in the middle, we have to compute the
kernel of f. Recall that [M]g, = [N]k, iff M ~ N, for f.g. projective
Ox-modules N, M (see [14, p.4]). Now suppose that

F(na 3 + no 34, .. .nkﬁ'/ﬁ]gc) = My + naMy ... np Mg, =0

20k™ is embedded by ¢ at the component o.

18




(n1... € Z,M; ... € PF(X))in Ks(X). Choose fractional ideals I{", . .. J{re(41),

Igl), . I,ETQ(M")) such that

rg(M,
P 5’
i=1
(1<j<k)
Then we see that
ro(M;) k rg(M;)
[niMyitnsMy .. .0 Mylg, = [@ D D k-lD D D ke
J=lngng >0 i=1 j=1-nzin; <0 i=1

which shows that all the ideals I}i) with n; > 0 must be pairwise isomorphic

to the ideals I} ) with n; < 0. Therefore the kernel of f is generated by
expressions of the form [(I, (k1)) [(I (A1) )z, = (I, (k1) )lg, —
(1, (Delg,) — (T, (B, )z, ~ LT, f) ). Comparing the definition of &f
with the bracketed expressmns we see that exactness in the middle amounts
to the statement

(O & I, (hs, ® 1)o)lz, = (Ox & 1,(1® s, ). )lg,

The lemma above just tells us that this isomorphy holds, i.e. that we can
swap hz, and 1.

The surjectivity on the right is obvious. The injectivity on the left amounts
to the statement (Ok, (ezp((9-)-)2(Ok,(1)s) iff (g:)e = (—2.1og(|e(a)]))s
(e € Ox™). Now it is clear from the structure theorem for projective modules,
that the only automorphisms of Ok are multiplications by elements a € Og™;
the metric (ezp(g,))e = (1/lo(a)|?), is just the push-forward of the trivial
metric by such an automorphism, which yields our claim. &

Note. Exactness in the middle could also have been easily proved using the
isomorphism K¢(X) ~ Ko(X)'. Just use the orthogonally splitting sequence

0—>f—+5;(_>0}71—>0

Note 2. This proposition already gives us full information on the structure
of Ko(X). As for the Chow groups, the injectivity of R¥=/T" yields the non-
canonical isomorphy R¥=/T' @ K¢ (X) ~ EC(X ). In two sections, we shall
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determine an isomorphism explicitly.

Before we proceed, note that ¢; is well-defined on EGS(X ). Define it as
usual on the metrized modules and as (Ox & (g, ),) for (g, )s € R¥>; extend
it then by linearity. Our computation (5.1) shows that the kernal contains
the group of relations of Kgs(X). Now the analogon of the last theorem for
the Gillet-Soulé Grothendieck group is

Proposition 5.7 The following sequence is exact

’

0 — R¥=/T ¥ Beo(X) & Ko(X) — 0
where f' is the natural forgetful mapping (i.e. f’([ﬁ]EGs) = [M]g, and
F(lglg,,) =0 for M € PF(X),g € R¥>). kf' is defined by

kf'(lglpxsr) = 9] g5 (3)

Proof: The surjectivity on the right is obvious. To prove exactness in the
middle, we have again to determine the kernel of f'. Suppose that

[n1M1 -+ ngMg +.. .nkMk]Kc =0 (6)

for some metrized modules ﬂj (1 £ j <k). Then the definition of EGS(X )
gives .
[n1 My +ny M + .. e Milp +glg, =0

(for some g € R¥X=)

which proves our claim. To prove injectivity on the left amounts to the state-
ment [g]z = 0iffgeT.

For the sufficiency of the condition g € I', simply consider the two sequences

81:0 = (Ox,(1)s) 5 (Ok,(1),) = 0

- 1

S2:0— (Ok,(1)s) = (Ok,(1)s) = 0

‘where € € Og™. There are clearly exact. One readily computes that (EFL(Sz,))g—
(eh(S14))e = (ch(Ss,))s = (—2.10g(|o(€)|))s, which implies that [(—2.10g(|0(e)]),]§Gs =
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0.
For the necessity, note that clearly [g]z = [(Ok, (exp(g5))-)]— (O, (1))].

Since ¢; is well-defined on Kgg(X), this means that the last expression is 0
iff (Ox, (exp(g,))e)=(Ok,(1)s). The computation at the end of the proof of
5.6 therefore settles the matter. &

‘Theorem 5.8 There is a commutative diagram with exact rows

0 - R¥%/T 5 Ko (X)L Ko(X) — 0
| Id. | I

L

0 — R¥%/T 2 Bos(X) £ Ke(X) — 0

——

The map from Ko(X) to Kgs(X) is the natural repelling one (i.e. [M] Re
[(M]g__)-

Proof: It only remains to check the commutativity of the first square, i.e.
to check the equation

912, = (O, (exp(9:))0 )z, = [(Or: (1))l (7)

This is clear. The commutation of the other squares is immediate. &

This proposition has a satisfying corollary:
Corollary 5.9 K¢(X )~ EGS(X ) by the natural repelling map

Proof: Apply the 5-lemma (see [11, p. 112]) to the commutative diagram
of the last theorem. &

The preceding results show that we shall lose no information by formulating
from now on all our results for Ec(X ) only, even if the other isomorphic
Grothendieck groups will be of essential importance in some proofs. An-
oother conceptually important consequence is that one obtains isomorphic
Grothendieck groups if one replaces orthogonal split exactness by
volume exactness (a volume on a metrized module is just a hermitian
metric on iis determinant).

We are now in position to tackle with the structure theorem for Eg.

21




5.4 The structure theorem for Kq(X)

We record as a proposition an immediate consequence of the splitting prin-
ciple (3.2):

Proposition 5.10 EC(X ) is generated as a group by the elements of the
form [M] g Jor M invertible metrized modules.

We define now a Chern character mapping

Definition 5.11 The Chern character mapping ch is defined by
ch: Ko(X) — CH(X)
ch(e) := rg(z) + c1(Det(z))
The property of main interest is
Proposition 5.12 ck is a ring homomorphism.

Proof: The proof is a éomputation:
e (commutation with the additive structure):

ch(z +y) L rg(z +y) + ai(Det(z +y)) =

rg(z) + rg(y) + ci( Det(z). Det(y)) =
rg(z) + rg(y) + cr(Det(e)) + c1(Det(y))

(z,y € Ko(X))

¢ (commutation with the multiplicative structure):

In view of 5.10 and the last set of equations, we can restrict the verification
to the invertible case.

ch(z.y) rg(z.y) + e1(Det(z.y)) =
1+ a(Det(a)) + a(Det(y)) = (1 + e (Det(2))) © (1 + ea( Det(y)))

For the second equality, remember that the (arithmetic) determinant has no
effect on an invertible metrized module. For the last one, remember that the

® product of elements of CH ! vanishes. &

Note that this proposition shows that ch obeys the axiomatic rules that a
Chern character must obey (see {19, p.84, (ii),(iii),(iv)]). Finally we have the
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Theorem 5.13 (The Structure Theorem for K¢ (X)) ch is bijective, i.c.

it i3 a ring isomorphism.

Proof: We shall provide an inverse. By "abus de language” already define
it to be

————

ch  :OH - Ke(X)
B (rte)=r -1+ [ (eg,
(reZ=CH ,deCH
The injectivity of ch s readily seen from the equations

ch(r—1+[e ™ ()]g,) " r—1+ch(la N (el)g,) “E" r—1+14 el =r+d

Now to the surjectivity. Anticipating further results, assume that ch is addi-
tive. Then 5.10 tells us that we can restrict the verification of the equation
& ' och = Id. to invertible metrized modules, i.e to metrized fractional
ideals. But in this case one can readily compute

b (eh((I, (hr,)))) L 7 (1 + (T @ (~log(lr, 1)) L [T,

(T a metrized fractional ideal)
Therefore, we are reduced to verify the additivity of o

¢ Proof of the additivity of ch
Taking into account the isomorphism 4.4, this amounts to prove the equality

(r=1+Mg )+ (' —1+[Mg ) =r+r' -1+ [0z [Tz, (8
| L+ Mg, Tz, = Mg, + Tz, (9)

(I, T metrized fractional ideals, r,7’ € Z)

We can assume I, I’ to be integral ideals that are coprime in O. Indeed, we
can achieve integrality by tensoring I and I’ with suitable trivially metrized
principal fractional ideals. Then we can write the exact sequences

Ty 0 = (17, (e, b, )o) = (L, (b )o) = (T/(1.I'),(0),) = 0
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Zy 10— (I'yhp,) = (O, (1),) = (Ox/I',(0),) = 0

(note that ((I/(1.I)), = (Ok/I'); = 0). Now we use the isomorphy Ko(X) ~
KGS(X) to compute in KGS(X) instead; observing that Og/I' =~ I/(I.I')
since I + I' = Ok, these sequences allow us to write

(Ox/T',(0))]g,, = [T/(T.I),(0).)]g,, = [Nz, +eh(@)-1Nz [Tz Jfes =
1+ eh(T) - (Mg,

But we can calculate ch(Z;) = (—log(1/kz,))s = ch(Zz), and therefore the
last equation amounts to the equation 9 and we are done. &

3

5.5 Functoriality of K:

We now define a pull-back and a push-forward for the Grothendieck groups.

Definition 5.15 Let M € PF(Xg). Leti: K — L be an inclusion of
number fields. The pull-back function z'j%?r is defined by

5y PF(Xx) — PF(Xy)

is5(8) = (M S0, Op,"((has,))

(for the modules) L
i%3(F) = f ®oy 1d.

3As a corollary, we can deduce the existence of a filtration of Kc(X):

Corollary 5.14 Let FEc(X) be ch "CH'(X)). Then FRo(X) is an ideal and
FEo(X)? =0.

Proof: FKc(X) is an ideal, since CH ' (X) is an ideal in CH(X) (it a subgroup by

——— e
def. and © multiplication by any element of C'H(X) doesn’t lead out of it). Since ch
is a rmg hOl’anOl‘phlSIﬂ by 5.13, its image is also an ideal, and its square is 0, since

' (X)o CH {X) = 0 by the definition of ®. &
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(for the morphisms)
where (i*((Rag, )o))rex,s, = B, ., under the identification arising from the
canonical compler vector space isomorphism

(M Qo OL) ®0L,f C~M ®0K,u’ C (10)
when r|o and T € Xl 0 € Xg! .

The isomorphism is given by (m ®oy 20) Q0y, 2 — M Qoy, (20.2) (m €
M, zy € O,z € C). This map is clearly Clinear and surjective, and there-
fore injective, since the two spaces have the same dimension. The relevant

property is
Proposition 5.16 i%?_, is an additive functor.

Proof: The functoriality is merely the functoriality of the tensoring with
a given module. As to the additivity, the algebraic part follows from the
flatness of Or over O (since Oy, is torsion free); the metrical part follows
readily from the easily verified commutation

it (), it (d7)s

0— z'%;_,(M')T P i%%(M),. P i;’,—%(M”)T — 0

0— M % M, % M 0
where 7|0, T € XL, the vertical arrows are the isomorphisms of 10, and the
bottom sequence splits orthogonally. &
Since 1% is additive, we may view its domain of definition as Ko(X) and

even as a homomorphism fc(X K) — fC(X r). Therefore if we associate
i7 to the inclusion i : K — L, then K(X) becomes a covariant functor

NF = AB.
Similarly we have a push-forward.

Definition 5.17 The push-forward gy i defined as
ivgy t PF(Xp) — PF(Xk)

z*ﬁ(ﬁ) = (Mox’i*((hMr)f)) (11)
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z*ﬁ:(f) = fofc
where Mo, refers to M considered as an Og-module, fo, to f considered

as homomorphism of Ox-modules and i.((hat, )r)rexyt, = Sorjr has, under
the identification arising from the canonical isomorphism

M®ox,CPMQo,,C

rle
(m ®0K,cr z— ®T|0' m ®0L,1‘ z)'

Here the last mapping is clearly injective, and therefore surjective, since both
spaces have the same dimension. We have again

Theorem 5.18 i,z is an additive functor.

Proof: The functoriality is obvious. As to the additivity, the algebraic
part 1s clear, since exact sequences of Og-modules are also exact sequences
of Og-modules. The metrical part again follows from an easily verifiable
commutation as in the proof of 5.16. &

" If we associate bepy Ec(XL) — Ec(XK) to the inclusion ¢ : K — I, then
Ko(X) becomes again a contravariant functor N'F — AB.

6 The Riemann-Roch theorem

6.1 The Grothendieck-Riemann-Roch theorem

The Grothendieck-Riemann-Roch theorem is concerned with the natural-
ity of the push-forward mapping for K¢-groups with respect to the Chern-
character, i.e. it examines the commutativity of the diagram

Re(Xp) -2 TH(XL)
| gz R L gy
Ko(Xx) 2 CH(Xk)
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This diagram is not commutative. The Grothendieck-Riemann-Roch theo-
rem asserts that a universal multiplicative correction factor must be inserted
on the first row. We state

Theorem 6.1 (Grothendieck-Riemann-Roch) The diagram
FG(XL) Todd(lj_[)X)@eh (—;;'ﬂ.(XL) ®0

li*ﬁ'}‘r N ~L i*c’vﬁr
Ke(Xxk) 3 CH(Xx)

commuies.

Todd(Y|X) is an element of CH(X1)® Q, depending only on OgandOy, to
be defined immediately.

Definition 6.2 The (arithmetic) Todd class is Todd(Y | X) := 14 1df(Y'|X),
where df (Y |X) is the image in oH' of Dy

The tensoring by Q has only been introduced to allow the factor 7, which will
be swallowed in the computations; the group homomorphisms from CH(X L)
extend to group homomorphisms from CH(X 1) ® Q by linearity. This theo-

~tem, when specialized over Og = Z is an essential tool to solve the Riemann-
Roch problem. Before proving it, we need two propositions examining the
effect of the push-forward on the direct summands of ch.

Proposition 6.3 Let M be a metrized Op-module. Then rg(i*ﬁ(ﬂ )) =
[L: K].rg(M).

Proof: This equation is in fact classical. We have to show that rg(Mp, ) =
[L: K]rg(Mo,). This can be found in [9, p. 416]. &

Before we proceed to the next two propositions, we list some computations
of the image of certain morphisms under the o-functor:

(a) Trace

Let I be an integral ideal of Of. We may view the Trpx as an Og-
homomorphism I — Og (the image is in Ox because the characteristic
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polynomials of elements of Oy, have coefficients in Og). What is T'r, 7 We

have natural isomorphisms I, 2 D 1oy, b4 @ C given by ¢{t ® z) =
®rio(t ®0,, 2) and Y(@je(tr Q0. 7)) = Bro7(¢r). 2 . These isomorphisms
will be often used in the sequel and the subscript () notation will be used
to denote the components as above. We now compute T'r,:

o(Tr(s)) ®oy, 2 T a(z“;{ 7(s)) ®ox., 2 = (§|: 7(2)) B0y, #

which means that under the identification provided by v, we may calculate
Tr, as the usual trace.
(b) Multiplication _
Same setting as before with another integral ideal J of Or. We consider the
multiplication I ®¢, J — Oy, as an O homomorphism. We compute for
cel,pe J:

("’ ®0K,o- u).,(p ROk, 'v) = (L-P ®0K,.,- u"v)

and applying 7 o ¢ to the last expression we get

Glaf(a).r(p).u.'v
which means that under the identification provided by i, we may calculate
.o by componentwise multiplication.
(d) Norm
With the same setting as for the trace, Nk corresponds to the usual norm,
under the ¢ identification.
With these computational data in hand, we can easily prove

Proposition 6.4 c(Det(i.z3(M))) = i.z5(c1(Det(M)))+rg(M).co(Det(inzz(1))).

Proof: Again 5.10 allows us to assume rg(M) = 1, since both sides of the
equation are manifestly additive. Therefore, let M = I (I a fractional Oy-
ideal). If we use the isomorphism 4.4 to write our equation in Pic(X), we
. obtain

((NLIK(I))’ (H hr)tr) @OK Det(oLOK: (@ l)a)éDet(IOK: (@ h'r)a')

e Tle Tl
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(hr)rex,:, is the metric of T (we dropped subscripts for notational conve-
nience) and ]] refers to the product of the coefficients in the standard basis.
An obvious candidate for an isometric isomorphism is L where

L:a® (bl AU A b[L:K]) — a,.(bl FAY b[L:K})

(to be read in Detg L)

To verify that L is an algebraic isomorphism, we first assume that Ox and
Oy are both p.i.d. Then we could choose a generator of ¢’ of I and an
Ox-basis b) ... bk of Op. Then Npg(c') is a generator of Nyx(I) (by
multiplicativity of the norm) and Ngjx(c') @ (8] A ...bfL:K]) a basis of the
source set of L. We can compute

L(NL]K(C!) ® (bll FAYPI bEL:K])) = (C'.b; AL C"bEL:K])

using the definition of the norm, so that L sends a basis on a basis. The
usual localisation procedure then yields the general result (i.e. we localise
for any two prime ideals p C Ok, P C Oy, with p C P; the localisations are
discrete valuation rings, since Og, O are Dedekind domains), since injec-
tivity and surjectivity are local properties (see [2]). To verify that L induces
an isometry, we exhibit orthonormal bases for the first and second member.
We calculate at a fixed o. Straightforward application of the rules (cf. 3.1)
yields .
(Nux(1):[LU/(IT2#) ® (A Or.{1])

Tlo Tlo

and for the second one .

AU-1]/h2)

Tlo
if we use 6.1 to compute in @, C, we see that (I,{1]).4(Or,[1]) = ¥(L[1]).1
so that I;[1].,0r.{1] = I,[1]. Therefore the computation of Ny 5, shows that
L, sends the first basis on the second one. &

This theorem provides a kind of "additive” Riemann-Roch formula; such the-
orems are in general refered to as Riemann-Roch Theorems without denomi-
nators. Asit points out, we shall need an explicit formula for ¢;(Det(i.53(1))).
In fact, we have
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Proposition 6.5 ¢;(Det(1.532(1))) = . s5(2.Todd(Y|X)—2) := i, = (df(Y]X)).

Proof: Writing this equation out and using the definition of the Todd class,
we see that it is equivalent to the equation

Det(iv53(01))®*2é7x

Here we use the classical relation épx = (Npjx(Drx)); the fact that 8k is
trivially metrized follows directly from the definition of i, B
Define an Og homomorphism

T : Det(Or) ® Det(Of) — Ok

T((a]_ Ao A a[L:K]) ® ([31 AUA ﬂ[LK])) — DEt(TTLIK(ai-ﬂj)lgi.jg[L:K})
It is well-known that the image is the discriminant ideal (by definition) and
T is then injective, since Deto,(Or) @ Deto, (Of) is also projective of rank
1.

For the geometrical part, we again exhibit orthonormal bases at . We work
entirely in the complex identification [I,, C. Since the metric is trivial, if

OL,[l] = z, then
(A =z-)®

T|o

is an orthonormal basis for (Det(Or) @ Det(Or)),. We compute
IT"'((/\ m"‘)®2)| = IDet(( Lry-ilr; )fg,fjla')l = fo— =1

Tlo Tl

since &.2,; = 0, if ¢ # j and T'r,(2,.2,) = 1 (see the computation 6.1).
Since the absolute value in C of the resulting basis is 1, it is orthonormal for
the usual metric of C, i.e. of &y x,- o

Finally we come to the proof
Proof; (of the Grothendieck-Riemann-Roch Theorem)

"The proof is a simple computation. Since both sides of the equation are

evidently additive, we can restrict ourselves to the case rg(z) = 1, by 5.10.
We compute

i3 (Todd(Y X).Gh(2)) = i g (1 + 5 (VIX))(cr( Det()) + 1)) =
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i-g(er(Det(z)) + 1+ Zdf(¥]X)) &
bap (L) +eu(Det(ing(2)) e Detlinzz(1)))+er(Detlinzz(1))) = (L : Klter(Det(ing3(a)),

rg(isz3(2)) + c1(Det(inzz(2))) 2 chlipp(z))
&

6.2 The absolute Riemann-Roch Theorem via #-functions
6.2.1 Preliminaries

Now recall the classical Riemann-Roch theorem for compact Riemann sur-
faces. It enounces that

X(L(D)) = dim HY(L(D)) - dim H*(L(D)) =

dim H°(L(D)) — dim HY(Q ® (L(D))Y) =deg(D) +1—g

where D is a divisor on a compact Riemann surface of genus g, {0 is the
canonical bundle (dualizing sheaf over C). £ sends D on its corresponding
holomorphic line bundle and x(.) takes the Euler-Poincaré characteristic.
The second equation holds by Serre Duality. We can rewrite this formula in

. the form

x(£(D)) = deg(D) + x(O) = deg(D) + dim H°(O) — dim H}(O) (12)

where O is the structure sheaf. We shall try to derive a formula analogous
to 12. To perform this, we shall of course need an analog of y.

6.2.2 Exact and approximate Riemann-Roch theorem

Before starting with the definitions, recall that C¥* is endowed with a natu-
ral involution, given by (2,), — (7). The subspace of fixed points under this
mvolution will be refered to as Kg. It is naturally isomorphic to RX* and
‘the natural embeding of the integer ideals of O sends them inside Kg (cf.
[15, p. 31]). In the sequel, we shall consider the integer ideals as embedded
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in K, without mentioning it. ~; will refer to the vector of the coefficients of
the metric of the metrized ideal T, , viewed as an element of Kr. ny will refer
to v/h1 (the square roots being taken componentwise). -

Now we can define

Definition 6.8 The (arithmetic) Fuler-Poincaré characteristic, or Euler-
Minkowski characteristic is

xK:ﬁ(X)-—)R

xx(M) 1= deg(i.53(M))

where t : Q — K 1is the inclusion.

This mapping is clearly additive so we may view it as a map from K¢ (X).
Applying deg on both sides of 6.4 we get

xx (D) = deg(M) + xx (inz3(1)) (13)

~ where [ is a metrized fractional Ofk-ideal. This last formula as the required
. appearance. Xx can be computed as follows

Proposition 6.7 Let I be integral. Then

xx(T) = —log(vol(nr.I)) +log(y/|dx!)

(vol takes the volume of a fundamental domain of a lattice in the standard
metric)

Proof: Using a standard result of algebraic number theory (cf. [15, p.
33, Th. 5.2]), we compute —log(vol(n;.I))=—log(y/|dx|) + —log(N (1)) +
—log(N(nr))=—log(y/ldx |)+—log(N (I))}+—3 3, log(hz,) = —log(y/|dx )+
deg() which yields our claim. &

‘We still need an interpretation of the dimensions of the cohomology groups.
The analog of dim H®(.) we crave to introduce for a metrized integral ideal is

. of course the number of intersection points of the ideal with a convex compact

centrally symmetric body within Kg. We could define more generally
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Definition 6.8
H'(I, B) = log(#(n;.IN B))

where T is a metrized integral Ok-ideal, B is a (convez, compact, centrally
symmetric) body in Kg. If B is the unit ball for the metric induced by I on
Kg, then we write H(T) for H'(I, B).

The analog of dim H'(.) would then simply be EO((DZTK.j)“l,B*), A£|1K
playing the role of the dualizing sheaf. Nevertheless, it is intuitively quite
obvious that if we tried to formulate an analog of 12 with the present defini-
tion of H (T, B), we wouldn’t be able to obtain an equality, since the inter-
section numbers of lattices with bodies can only be estimated from below, as
is well-known. The impossibility to reach equalities in Minkowski’s geometry
of numbers is a sort of instance of Heisenberg’s uncertainty principle*. The

~ article [6] gives the best inequalities reached so far. For instance, they get

V(ldxl)=C(r,8) < BN~ (D) —deg(D—x(Tx) < Yldx])+C(r, s) (14)

where 7 is the number of real embeddings of K, s the number of complex
ones, C(r,s) = (r + s).log(3) — s.log(2.7) + log((» + s)!) + s.log(2). 14 can
be considered as an "approximate Riemann-Roch theorem”.

To remedy this situation we replace the counting of intersection points by a
global measure of the concentration of a lattice around the origin, by means
of f-functions. We define

Definition 6.9 The 0-function of a metrized integral ideal T of Ox is

(T, %) = N(Z). 3 exp(—7. < thr@t, 0 >)
el

. whereF € K (to be suitably chosen). We write §(I) for 6(T,1).

If we endow C* with the metric of T then G(D is just the usual @-function
of the lattice I, at the complex vector —i. F°(I, &) := log(6(T, Z)) will now
replace H°(I, B). Again, we define HY(T,Z) = log(N(:E')B((ﬁng.j)_l, =)
An important invariance property of 8 is

*This idea seems to go back to M. Atiyah
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Lemma 6.10 8 depends on the isometry class of I only.
Proof: Asusual, let J := a.] with the induced metric. Then we can compute

0(7,%) % N@) T exp(—r. < AP.hrl/ad, A >) =
A€a.l

N(Z)> exp(—=. < a.e.d.hr.1/a® a0 >) = (1, %)
eI

&

The natural domain of definition of (., ) is therefore Pic(X). We could of
course have defined the # of an entire metrized module M by defining it to
be §(Det(M), #). The domain of definition of that 6 is then K¢(X). With
this setting, we can finally prove

Theorem 6.11 Let I be a metrized wntegral ideal of Or. Then
70(1,2) - (T, ) = x(I)
Proof: Just apply the classical f-transformation formula (cf. [15, Chap.
VII, p. 472, Prop. 3.6]) with Z = —i.h;.&2%, using 6.7. &
We can now compute the genus of L by means of the formula
(Bx) - F(O) = (15)

x(Ok) = —log(vol(Ok)) + log(|dx|)

So that we obtain gx = H!(Ox) = H°(Ox) — log(|dx]) + log(vol(Ox)). For
example the genus of Q is log(},,cz exp(—m.n?)). This definition is absolute
and does not depend on the choice of a standard body. The choice
- of the value 1 for & is justified by the fact that it is the only value for which
the correction N(Z) is not necessary in the formula for 7{!. We can finally
formulate our Riemann-Roch theorem as follows:

~ Theorem 6.12 (Riemann-Roch) ‘ﬁn(ﬂ—’ﬁl(f) = deg(f)—i—?"?o(@?()—gr{
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We shall now show that the f-functions a related to a quantum view of
Minkowski’s First Theorem. We may describe the situation as follows; let
an integral ideal I be given, and a (compact, convex, centrally symmetric)
body B C Kg. Imagine that very small particles are located at each lattice
point. We are interested in the number of particles inside B. If we think
classically, this amounts precisely to the basic question of the geometry of
numbers. Whereas if we think quantum-mechanically, the question may be
formulated in the following terms. Let Pg(s) be the probability of the particle
¢ of being found inside B; what is the sum of all the Pp(.) 7 We assume that
the particle waves all have Gaussian probability distributions of the type

NE)exp(—n. || (- 7).8 |)
The passage to the classical view point is then performed by the passage to
the limit 5 — oco. In formulas, the quantum Minkowski problem amounts
then to compute the following integral:

L E V@ exp(—n || (5 - )8 |[*)dz

el
As the §-function gave certain weights to the elements of I, the last integral
gives still other ones. The classical approach gives of course weight 0 to the
elements of I outside B.
We can gain a vantage view-point on all these different approaches, if we

formalize them in terms of measures. We list
o The §-measure on I is defined by

po,(¢) := N(Z) exp(—x. < 0.hr. 3%, ¢ >)

¢ The quantum measure on I is defined by

pay,(0) = [ N®)exp(=r || (- )b |}z

~ o The classical measure on I is defined by

ticg (L) = ¥pnr(e)
where g is the characteristic function of the set S.
In all three cases the Minkowski problem amounts to the computation of the
measure of the entire /. We have the following asymptotic relations between
the quantum and #-measures:
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Proposition 6.13

.U'Q;’B(") _
diam(rg)-—bo 'UOI(B) - ”os(b)
”QE‘B(L)

lim

BB -1
) vol(B).,ugb,(b)

Proof: The two assertions follow trivially from the mean-value theorem and
the fact that the first derivative of the Gaussian function (around the origin,
say) converges to 0 at co. &

These relations show that we may always summarize in a §-measure the
asymptotic properties of any quantum measure by taking the first limit. The
resulting measure has then the advantage of being independent of the body
B.

Of course the following relation between the quantum and classical measure

holds

Proposition 6.14
im jig,, () = oy (0

Proof: This is merely the assertion that the integral of a Dirac §-function
on any set away from its peak is 0. &

If we are given a measure u' on Kr we may canonically induce a measure g
on [ by means of the formula

1
—lim——— '
#(v) rod vol(B(¢, 7)) B(:,,r)dﬂ

(B(1,) is the ball of radius r (in the canonical metric) around )

~ The reader will easily find out that all the measures on [ listed above can be

obtained that way. In the classical case ' 1s then simply the canonical mea-
sure inside B and 0 outside. We can therefore naturally speak of quantum,
classical or #-measures on Kp.

Moreover, in this setting, we may interpret 6.13 in the following way: the
f-measure is to the quantum measure what the Haar measure of
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K is to the classical measure. Indeed, the classical measure is asymp-
totically 0 when diem(B) — 0, and is also asymptotically 0 when ¢+ — oo.
The 0-measure being a multiple of the usual Haar measure, this means that
we have similar asymptotic relationships between the Haar measure and the
classical measure as between the f-measure and the quantum measure.

7 Conclusion

The natural continuation of this work would be a generalisation of the #-
function approach to the Riemann-Roch problem described above. The gen-
eral impression we gather from a quantum approach to the Minkowski prob-
lem (alias the arithmetic Riemann-Roch problem) is that it might be fruitful
to replace the Haar measures at the infinite places by §-measures. The 6-
relation above shows that if one does so in the case of curves, it is possible
to consider separately the elements of the extended determinant of the coho-
mology (i.e. with H! included in our case) and write down a Riemann-Roch
theorem in a classical guise. Since the work of Faltings (cf. [4]) it has become
clear that one could only hope to compute the Euler-Minkowski characteris-
tic of the determinant of the cohomology, and that one can not even endow
the cohomology groups separately with Haar measures. We conjecture that
it is possible to endow them with §-measures, so that the alternating sum of
the measures of the cohomology groups would give back the Euler-Minkowski
characteristic.

Notes. The material presented here was essentially developed in the eight-
ies. Grayson first proved the structure theorem for Kg(X) ([5]); Tamme
seems to have developed the Grothendieck formalism (in his lectures, never-
theless see [21]); Hitbschke investigated the connections between the idelclass
group and the arithmetic Chow group ([8]). The seminars of Szpiro ([20])
and Faltings-Wiistholz ([23]) made Arakelov geometry more widely known.
The isomorphy fGS(X ) ~ EC(X ) is due to us, as well as the proof that
EGS(X ) can also be defined without projectivity assumptions. Our proof of
the structure theorem for EC(X ) is also new in that it is very much simplified
by our use of K, as(X)' in the computation. The #-function approach to the
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Riemann-Roch problem is due to usS.

Appendix A

.1 Grothendieck groups without projectivity assump-
tions

In this appendix, we carry out the proof of the assertion Kgg(X) ~ Kgs(X).
As we mentioned before, it is also true that Eg(X ) o~ K, c(X)', but since we
didn’t use that statement, we refer to [15, Th. 5.4, p. 251] for the proof.
Recall that the definition fcs(X )' is completly analogous to the definition
of K, as(X), with only a requirement of finite generation on the modules. We
begin with a lemma which will provide us with a inverse to the natural map.
 From now on, metrized modules may be non-projective .

Lemma .1 Let M be a metrized module. Then there is an orthogonally
splitting resolution

0B F M=o
where E, F are projective metrized modules.

Proof: The general structure theorem for f.g. modules over a Dedekind ring
([9, Th. 10.15, p.628]), tells us that we have an isomorphism

M~La..0LoOk/Ld...0 0/,

for some fractional ideals. We let F' := (@<, L)Y® Ok® and E :=
®D1<i<,r I;. The maps are the obvious ones. We choose any metrics on the
E,. We choose any splitting s, of the sequence

0——+E‘,—~+F,,‘—‘£>M,—>0

and we choose the metric on F; to be hg, @ 35, (har,). &

The following lemma provides us with a link between two possible projective
resolutions:

¥We have to thank C. Soulé, for having brought to our knowledge the idea that 8-
functions are relevant of a "quantum” approach, as well as having indicated to us the
article of Siegel [18].
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Lemma .2 Let M be an f.g9. Og-module and E",F", E', F' the elements
of two projective resolutions. Then there exist a projective resolution E,F
and surjective homomorphisms o/, ', a",8" so that the following diagram

commautes; ,
0 - B S P 5L M So

T o (A |
0 - E — F i> M —0
l a” l ﬁ” ”

0 - E* — B 5 oM —o

Proof: This lemma in fact holds in a much more general sheaf-theoretic
context and is used to prove a proposition similar to the following one, in a
classical context. In our case, the solution is easy: choose E = E' @ E" and
F={(z" e Fe& FU|f(z') = (="}, f (2, 2") — fa') = F'(z") and
o, f',a", 8" to be the projections on the factors. The diagram then clearly
commutes and the «, # are surjective, by construction. Since F, F are clearly
torsion free, therefore projective, we are done. &

Theorem .3 Kgs(X) ~ Kgs(X) by the natural map

Proof: We proceed to construct an inverse to this mapping. We define
7 : Kes(X) — Kgs(X)

(Mg, ):=Flg,, — [Flg,, (16)

(lolz. ) = 9]z,

where E' ,F" is a resolution of M as in the first lemma. We now confront
a double well-definedness problem: is 7 well-defined as a mapping into
Kes(X) ? is it well-defined as a mapping from Kes(XY 7 The two ques-
tions are obviously only problematic for 16. As to the first question, we shall
~use the last lemma. Let &, " be another resolution and E, F be a (non-
metrized) resolution dominating both of them. We endow E, F with metrics
as in .1 and then induce some metrics on ker B', ker o/. We have then two

sequences:
A:0 s keroe = E - F' =0
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B:0—kerp »F 5 F -0
By commutativity, it is clear that kg;afékg;‘ﬁ'. We can then compute
Flges — g, =
[F']I?Gs + [Ker Bz — ch(B) — ([El]f?es +[Ker o]~ ch(A) =
[F s — B 74s
since the Bott-Chern forms are equal by 5.2. Replacing E', F' by E”, F* and
going through the same computation then settles the first question.
As to the second question, it amounts to show that = is additive on s.e.s
modulo a Bott-Chern form by the universality of the group. We proceed

to prove this in two steps. First we prove that it is merely additive on
orthogonally splitting s.e.s. Let

Mo M ML S0 (17)

be such a sequence. Choose a metrized projective resolution

—

0—>E—>F’LM——~—>O
_ofﬂ.Then .,
0B S FL M0

(f” — gbf, B = Kep fll)
is also a metrized projective resolution. B carries the metric induced by F.
By construction, we obtain a commutative diagram of non-metrized modules

with exact rows:

0—>E~—>F—f)M—>O

Y A
0 — E" > F 5 MY — 0

The Snake Lemma (cf. [9, p. 337]) then immediately yields the algebraic
exactness of the following sequence:

0-—>E—>E”—LM'—>O
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(the snake sequence is 0 — M’ — E"/E s 0)

Actually, it splits orthogonally, as can easily be checked. With these resolu-
tions of M’, M, M" in hand, the additivity is clear.

Now to the general case: suppose we are given a sequence like 17, that is only
algebraically exact. Then leaving the metric on M fixed, we can uniquely
prescribe new metrics on M’ and M", obtaining new metrized modules M!
and H{' so that the sequence splits orthogonally. We can then draw the
following commutative diagram with algebraically exact rows and columns:

0 0 0
4 I A

0 - M - M —- M' — 0
4 I 1

0 - M —- M —- M! — 0
! I !
0 0 0

If we apply 5.2 to this diagram, we readily see that the computation of
the Bott-Chern form of the first row corresponds to the computation of the
Bott-Chern form of first and last column. So it should be clear that if we
‘can achieve additivity modulo Bott-Chern on the first and last column only,
we would obtain the full additivity modulo Bott-Chern. We prove this in a
sublemma: '

Lemma .4 Let M: 0 — M — fl—f{ — 0 be an algebraically ezact sequence
of metrized modules. Then w(M') = x(M;) + ch(M).

Proof: Just apply 5.2 to the following diagram:

0 0
L
0—)E’1§$Ei——>0
Lo, )

0 - B 3% B 5 90
1oL
0—>M'ﬁ;{—>0

where the columns are metrized projective resolutions. &
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Appendix B

.1 More about the arithmetic Chow groups

How can we describe the first arithmetic Chow group in terms of the ideal-
class group 7 We are provided with a natural forgetful mapping from the
latter to the former; its kernel can be described as follows:

Theorem .5 The following sequence is exact:
1 — u(Og) — Og* 4 R¥ % GH (X)L cyx)—1 (18)

where p(Og) is the (cyclic) group of roots of unity lying in Ok, Og* the
~group of units of Og. CIl(X) is the usual ideal class group of OK
The mappings are defined as follows:

p(a) = (=2.log(|o(a)]))s

(€ Ox*,0 € X[,
a(g) := [(Ox & (g0 )0 Ml 532

" (g € R%=) and
I ® (90)o] 53) = o)

Proof: The exactness at the end of the two first arrows is clear (see the
proof of Dirichlet’s Unit Theorem, cf. [15]). The exactness at the end of
the third arrow may be reformulated as (g € [') < 3Fa € K*(div(a) def
((a) ®(—2.10g(lo(a)]))s) = (Ox ® (9o )s). This is clear, since (a) = O <=
a € Og™ and then p(a) € I'. The exactness at the end of the 4th arrow
amounts to the statement g € R¥=([Ox @ (g,,),] st = = (g‘,),,] 1) =
da € K*(I = (a)) (for some fractional ideal I of OK, and (g,,)s € RXW) For
the « direction, choose g = ¢’ — (—2.log(|o(a)|))s, if some a is given. The
— direction is obvious. The exactness at the end of the 5th arrow is clear.

[
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It is clear that we may topologize Z%(X), with the discrete topology on the
first factor and the usunal one on the second one. A topological characteriza-
tion of div(K™*) runs as follows:

Proposition .6 div(K*) lies discretly in Z1(X)

Proof: Since Z'(X) is discrete, it is obviously sufficient to prove that
div(K*) N (I @ R¥x) lLies discretly in (I @ R¥%), for any fractional ideal
1. We can even replace I by Ok, since multiplication by a trivially metrized
Tisan homeomorphism of Z* onto itself. The statement for T = Oy is clear:
the only k € K* sent within (I @ R*%) are the units of Ox. They form a

lattice in that set and by definition a lattice is a discrete set. &

Note The former proposition implies that we have R¥=/p(Ox™) & Cl(X) ~
CH 1(X ), since R%x/p(Ok™) is a divisible abelian group, which is therefore
injective,

Note 2 The latter proposition implies that ¢ H ' (X) has a natural structure
of Lie group (it has a natural differentiable structure as a quotient manifold,
since by .6 div(K*) is closed). Its Lie algebra is isomorphic to R as a trivial
Lie algebra, since the group is commutative. With that setting, the mapping
a is the exponential mapping, since it is a mapping onto the quotient. As a
corollary, we trivially obtain that @ is differentiable.

We can compare the Chow groups with the much older idele groups (for basic
definitions see [12, Par. 3, Ch. VII]). In fact we have

Theorem .7 C"ffl(X) ~ Ig[(Ig.K*)
the isomorphism being canonical and topological.

I% is to be defined.

Proof: Let Mg be the set of all normalized (so that their restriction to
Q is standard) absolute values of K, M} the set of all non-archimedean
normalized absolute values of K. We define a mapping

U:Ix — ZY(X)
U((ap)pentsc) = (vp(@))pemy @ (215, (a))oexy,
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(the factor 2 has only been introduced, because we want to interpret v, as
the norm of the standard basis at o - and not as its square)

where we implicitly use the fact that (1) the group of fractional ideals is
naturally isomorphic to the free group generated by all the prime ideals of Ox
(2) each normalized non-archimedean absolute value corresponds to exactly
one prime ideal (3) each normalized archimedean absolute value (denoted by
Do) corresponds to exactly one pair of conjugate embeddings o, 7.

U is clearly continuous (since the image carries the product topology, we
must only check for each absolute value separately and then it is obvious).
It follows readily from the definition that this mapping also sends K* (as
embedded in the idele group) on div{K*). We can therefore consider U/ as a

mapping Ix/K* — CH 1(X ). What is its kernel 7 We have
ker U =: If = {(ap)p € Ix : v5(ap) = 0 Vp}

This yields the result. &

From this proposition, one can infer the compactness of the kernal of deg.
Indeed, it is easily checked (just compare the formulae) that the degree map-
ping onlg (minus the logarithm of the norm) is compatible through U with

deg, so that the kernal of deg is just the image through U of the kernal of .

the degree mapping on Ix. This last kernal is compact, as is well-known (cf.

[12}).
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