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Abstract

A theorem of Green, Lazarsfeld and Simpson (formerly a conjecture of
Beauville and Catanese) states that certain naturally defined subvarieties of
the Picard variety of a smooth projective complex variety are unions of trans-
lates of abelian subvarieties by torsion points. Their proof uses analytic meth-
ods. We refine and give a completely new proof of their result. Our proof
combines galois-theoretic methods and algebraic geometry in positive charac-
teristic. When the variety has a model over a function field and its Picard
variety has no isotrivial factors, we show how to replace the galois-theoretic
results we need by results from model theory (mathematical logic). Further-
more, we prove partial analogs of the conjecture of Beauville and Catanese in
positive characteristic.

1 Introduction

In this article we shall refine and give a new proof of the following result of Green,
Lazarsfeld and Simpson, which was conjectured by Beauville and Catanese. To
formulate it, let Y be a smooth projective complex manifold and let Pic0(Y ) be
its Picard variety, which classifies the holomorphic line bundles on Y which are
algebraically equivalent to 0. For integers i, j, m ≥ 0 let

Si,j
m (Y ) := {L ∈ Pic0(Y )(C)|dimC(Hi(Y,Ωj

Y ⊗ L)) ≥ m}

The semi-continuity theorem implies that this set is Zariski-closed.

Theorem 1.1 (Green-Lazarsfeld; Simpson) The irreducible components of Si,j
m (Y )

are translates of abelian subvarieties of Pic0(Y ) by torsion points.

In [5], Green and Lazarsfeld prove that the irreducible components of Si,j
m (Y ) are

translates of abelian subvarieties of Pic0(Y ) by some points. Their proof relies on
an in-depth analysis of the relative de Rham complex of the universal family over
Pic0(Y ). In [11], Simpson proves the full statement; his proof relies on the fact that
the set Si,j

m (Y ) carries several different algebraic structures, which arise from the
various descriptions of line bundles that are algebraically equivalent to 0 (e.g. as
locally constant systems ofrank 1 or as line bundles with a flat connection). This
allows him to reprove the result of Green and Lazarsfeld. To obtain the full Theorem
1.1, he applies a result from transcendance theory, the criterion of Schneider-Lang.
Both of the above proofs are analytic in nature. In our proof, we first suppose that
Y has a model over a number field. Our proof of the conjecture in this case then
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relies on a result by Deligne and Illusie (Theorem 3.2) originally used to give a proof
of the Kodaira-Nakano vanishing theorem and on a classification theorem (Theorem
2.1). The proof of this classification result combines algebraic geometry in positive
characteristic and density arguments. The infinitesimal arguments used in the an-
alytic approach are thus replaced by density arguments in our approach. Finally,
one can reduce the general case of the conjecture of Beauville and Catanese to the
number field case by standard arguments. The just described proof is contained in
Section 3 and the proof of the classification theorem 2.1 is contained in Section 2.
When the variety Y has a model over a function field (in one variable) and Pic0(Y )
has no isotrivial factors (this is made precise in Section 6), we give a proof of The-
orem 1.1, which does not use density arguments but relies on results from model-
theory (of mathematical logic) instead. We use results of Hrushovski (see [7]) which
appear in his proof that the Mordell-Lang conjecture for function fields in charac-
teristic 0 can be deduced from the analogous result in characteristic p. This proof
is contained in Section 6.
We shall also prove the following result, which improves the result of Simpson. Let
r, k ≥ 0 and let

Sr
k(Y ) := {L ∈ Pic0(Y )(C)|

∑
i+j=r

dimC(Hi(Y,Ωj
Y ⊗ L)) ≥ k}.

Let cr,k ≥ 0 be the number of irreducible components of Sr
k(Y ). Now let m ≥ 0

and let Mr,m := Maxk≥mcr,k.

Proposition 1.2 Let i + j = r. For each irreducible components C of Si,j
m (Y ),

there exists a torsion point t ∈ C such that ϕ(order(t)) ≤ Mr,m.

Here ϕ is Euler’s ϕ-function (ϕ(a) := #(Z/aZ)∗ for all a ≥ 2 and ϕ(1) = 1). Since
ϕ(a) → ∞ as a → ∞, we see that Proposition 1.2 really gives an upper bound for
order(t). We shall give an algebraic proof of this result, although an analytic proof
is also possible. The proof is given in Section 3 (Theorem 3.6).
In Section 4, we show the implications of our methods for the natural positive
characteristic analog of the conjecture of Beauville and Catanese.
In Section 5, we formulate a conjecture on the cohomology of torsion line bundles,
which would imply the natural positive characteristic analog of the conjecture of
Beauville and Catanese.
Acknowledgments. Our thanks go to H. Esnault, who pointed out the conjecture
of Beauville and Catanese to the first author and asked whether the techniques of
our previous article [10] could be used to tackle this conjecture. We also want to
thank C. Soulé for interesting suggestions.

2 Linear subvarieties of abelian varieties

In the rest of this article, we shall use the following terminology. If B is an abelian
variety defined over an algebraically closed field L and Z is a reduced closed sub-
scheme of B, we shall say that Z is linear (resp. completely linear) if the irreducible
components of Z are translates of abelian subvarieties of A by some elements of
B(L) (resp. some torsion elements of B(L)). Note that an irreducible completely
linear subscheme is also referred to as a torsion subvariety.
If Y → S is any morphism of schemes, we shall write k(s) for the residue field of
the point s ∈ S and Ys for Y ×S Spec k(s); we also write Ys for Y ×S Spec k(s). If
S ⊂ SpecOK for a number field K we also write Yp and Yp for the fibre, respectively
the geometric fibre, at a finite prime p.
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The aim of this section is to prove the following classification theorem, that we shall
combine with a result a Deligne-Illusie (Theorem 3.2) in the next section to deduce
the conjecture of Beauville and Catanese.
Let K be a number field and let A be an abelian variety defined over K. Let X
be a closed subvariety of A, which is defined over K. We do not assume that X is
irreducible. Let U be an open subscheme of SpecOK , such that A extends to an
abelian scheme A over U , and X extends to a closed subscheme X ⊂ A.

Theorem 2.1 Suppose that for all but a finite number of primes p ∈ U we have
p ·Xp ⊆ Xp, where p := char(k(p)). Then X is a finite union of translates of abelian
subvarieties of A by torsion points of A(K).

The proof of Theorem 2.1 hinges on the following results.

I. Results from algebraic geometry.
Let A be an abelian variety over an algebraically closed field L, endowed with an
isogeny ϕ : A → A. We say that A is pure of positive weight if there are positive
integers r and s, not necessarily relatively prime, such that ϕs = Frobpr for some
model of A over Fpr . We say that A is pure of weight 0 if ϕ is an automorphism
of finite order on A. If A is pure of either positive weight or pure of weight 0,
then we simply say that A is pure. If A′ is another abelian variety over L endowed
with an isogeny ϕ′, we shall say that a homomorphism f : A → A′ is equivariant if
ϕ′ ◦ f = f ◦ ϕ. The following theorem is proven in [10, Th. 3.1].

Theorem 2.2 (Pink-Roessler) Let A be an abelian variety over an algebraically
closed field L, endowed with an isogeny ϕ : A → A. Let X ⊂ A be an irreducible,
reduced closed subscheme satisfying ϕ(X) = X. Suppose that there is no non-trivial
equivariant homomorphism from A to a pure abelian variety. Then X is linear.

Next, recall the following constructibility statements. Let S be a noetherian scheme
and π : Y → S a scheme of finite type over S. Recall Chevalley’s theorem: the image
by π of a constructible set of Y is constructible in S (see [6, Th. 1.8.4, chap. IV,
IHES no. 20, p. 239]).
Recall also that the following subsets of S are constructible: {s : Ys is geometrically
irreducible}, {s : Ys is geometrically reduced} (see [6, Th. 9.7.7, chap. IV, IHES
28, p. 79]).
Now suppose that S is also integral and normal. Let η ∈ S be its generic point and
suppose that k(η) is a field of characteristic 0.

Proposition 2.3 Suppose that Y is a closed subscheme of an abelian scheme B
over S. If Ys is linear in Bs for all the s ∈ D, where D is dense in S, then Yη is
linear.

Proof: Choose a finite extension F of k(η) where the irreducible components of
Y ×S Spec F are geometrically irreducible. Let f : S′ → S be the normalisation of
S in F ′. We shall need the

Lemma 2.4 Let g : X1 → X2 be a surjective morphism of finite type, where X1

and X2 are integral noetherian schemes. Let E ⊆ X2 be a dense subset of X2. Then
the set g−1(E) is dense in X1.

Proof: Suppose that the conclusion does not hold and let V ⊆ X1\g−1(E) be a
non-empty open subset of X1. The set g(V ) is constructible by Chevalley’s theorem
and thus g(V ) 6= X2 by hypothesis. The closed subset g−1(g(V )) is not equal to X1

since g is surjective. This contradicts the fact that X1 is irreducible and finishes
the proof. Q.E.D.
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By the lemma, the set f−1(D) is dense in S′. Let π′ : Y ′ → S′ be the scheme
obtained from Y by base-change. By the mentioned constructibility results and the
hypothesis, there is an open set V ′ ⊆ S′ such that for each irreducible component
Z of Y ′ ∩ (π′)−1(V ′), Zs is irreducible and reduced for all s ∈ V ′. Let Z be any
irreducible component of Y ′ ∩ (π′)−1(V ′) and let h, h′, h′′ ∈ Z(F ). If we further
shrink V ′, we may suppose that h, h′, h′′ extend to sections h, h′, h′′ ∈ Z(V ′). By
hypothesis, we have (hs−h′′s )+(h′s−h′′s ) ∈ Zs(k(s))−h′′s for s ∈ f−1(D)∩V ′. Hence
(h−h′′)+(h′−h′′) ∈ Z(F )−h′′. Similarly, we deduce that −(h−h′′) ∈ Z(F )−h′′.
Since F can be taken arbitrarily large, this implies that (h − h′′) + (h′ − h′′) ∈
Z(k(η))−h′′ and −(h−h′′) ∈ Z(k(η))−h′′ for any h, h′, h′′ ∈ Z(k(η)). Thus Z

k(η)

is linear and we are done. Q.E.D.

II. Density results.

Theorem 2.5 For 1 ≤ i ≤ d let Ai be an abelian variety over a number field K
and ai ∈ Ai(K) a rational point. Assume that for all finite places v of K in a set
of Dirichlet density 1 the reduction of at least one ai is annihilated by a power of
the residue characteristic pv. Then at least one ai = 0.

Proof: This is [9, Th. 5.1]. The second author noticed that this also follows from
results of Wong, Nori and Zarhin. See [9, Par. 5, Rem. 5.2] for details about this
implication. Q.E.D.
The following theorem is [9, Th. 5.3] and is more difficult to prove than Theorem
2.5.

Theorem 2.6 (Pink) For 1 ≤ i ≤ d let Ai be an abelian variety over a number
field K and ai ∈ Ai(K) a rational point. Let f(T ) ∈ Z[T ] be any polynomial which
is a product of cyclotomic polynomials and a power of T . For any finite place v of
K let pv denote the characteristic of the residue field and ai,v the reduction of ai.
Assume that for all finite places v of K in a set of Dirichlet density 1 at least one
ai,v is annihilated by f(pv). Then at least one ai is a torsion point.

Finally we shall need a density statement on supersingular reduction. To state it
consider any abelian variety B over an algebraically closed field L of characteristic
p > 0. Recall that B is supersingular if and only if the Dieudonné module of its
p-divisible group is pure of slope 1/2. When B possesses a model over a finite
subfield Fq ⊂ L with q elements, this is equivalent to saying that all the eigenvalues
of the characteristic polynomial of the Frobenius morphism Frobq have the form√

q · z, where z is a root of unity. This in turn is equivalent to saying that B is
pure of positive weight for the isogeny given by multiplication by p. In general, B is
supersingular if and only if B is isogenous to a supersingular abelian variety defined
over a finite field.
We shall say that B has a supersingular factor if it possesses a non-trivial subquo-
tient which is a supersingular abelian variety. Since abelian varieties are semisimple
up to isogeny, this is equivalent to saying that there exists a non-trivial homomor-
phism from B to an abelian variety which is pure of positive weight for the isogeny
given by multiplication by p. Note that multiplication by p is never an automor-
phism of finite order on any non-trivial abelian variety over L. Thus saying that B
has no supersingular factor is equivalent to saying that there exists no non-trivial
homomorphism from B to an abelian variety which is pure for the isogeny given by
multiplication by p, which is just the condition from Theorem 2.2.

Theorem 2.7 (Pink) Let A be an abelian variety over a number field K. Then
there exists a finite extension L of K such that for all finite places of L in a set of
Dirichlet density 1 the reduction of A×K L does not have a supersingular factor.
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For the proof see [9, Cor. 1.7].

III. Proof of Theorem 2.1.
Recall that U is an open subscheme of SpecOK , such that A extends to an abelian
scheme A over U , and X extends to a closed subscheme X ⊂ A. After shrinking U
we may suppose that p · Xp ⊆ Xp for all U .
Before beginning with the proof of Theorem 2.1, notice that one of the difficulties of
the proof is the fact that we do not require X to be geometrically irreducible. If X is
geometrically irreducible, then Theorem 2.7 together with Theorem 2.2 immediately
imply that Xp is linear for a set of places of density 1 and Proposition 2.3 implies
that X is linear. To show that X is completely linear, just notice that the image of
X in A/ Stab(X) is a point which is almost everywhere a p− 1 torsion point. This
implies that this point is a torsion point by Theorem 2.6 and concludes the proof
in this case.

We shall now tackle the general case. We may suppose that the irreducible compo-
nents X1, . . . ,Xr of X are flat over U and that Xi := Xi,K is defined over K and
geometrically irreducible for all i ≥ 1. We may also suppose that K is sufficiently
large so that the conclusion of Theorem 2.7 holds for A. Let U0 ⊆ U be the set
of non-archimedean places p such that X1,p, . . .Xr,p are geometrically integral and
such that Ap has no supersingular factors. The set U0 has Dirichlet density 1 by
Theorem 2.7. Let p ∈ U0. Consider the descending sequence

Xp ⊇ p · Xp ⊇ p2 · Xp ⊇ . . .

where p = char(k(p)). By Noethericity, this sequence must stabilize and we call Yp

the first stable term. By the construction of Yp there exists k0 ≥ 0 such that

Xp ⊆ (pk0)−1Yp. (1)

Furthermore, Theorem 2.2 and the equality p · Yp = Yp implies that Yp is linear.
Fix i ≥ 1. The inclusion (1) now implies that Xi,p is contained in a closed set of the
form t + Z where Z is a (necessarily linear) irreducible component of Yp and t is a
pk0-torsion point of Ap(k(p)). Amongst the pairs t, Z with this property, choose one
such that the dimension of Z is maximal. We claim: Z is an irreducible component
of Xp as well. To see this, suppose the contrary, i.e. that there is an irreducible
component Z ′ of Xp such that Z ⊆ Z ′ and Z 6= Z ′. There exists t′, a pk0-torsion
point and an irreducible component Z ′′ of Yp such that Z ′ ⊆ t′ + Z ′′. This implies
that there is an inclusion Xi,p ⊆ (t + t′) + Z ′′, where dim(Z ′′) > dim(Z), which is
impossible, thus proving the claim. We deduce that there is a function

jp : {1, . . . , r} → {1, . . . , r}

such that
Xi,p ⊆ ti,p + Xjp(i),p.

where Xjp(i),p is linear and ti,p is a p∞-torsion point. Let now Ji be the subset of
{1, . . . , r} of elements that are equal to jp(i) for an infinity of p ∈ U0. Let l ∈ Ji.
Proposition 2.3 implies that Xl is linear and thus the image of Xl in A/ Stab(Xl) is
a point Ql. Similarly, the image of Xi,p in Ap/ Stab(Xl,p) is a point for an infinity
of p ∈ U and thus the image of Xi in A/ Stab(Xl) is also a point Pl. Consider the
set of points Pl − Ql, where l ∈ Ji. This set has the property that for all but a
finite number of places p ∈ U0, there is an l ∈ Ji such that (Pl − Ql) (mod p) is
a p∞-torsion point. Thus Theorem 2.5 implies that Pl = Ql for some l ∈ Ji. This
implies that Xi,p = Xl,p for an infinity of p ∈ U and thus Xi = Xl; hence Xi is
linear and since i was arbitrary X is linear.
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To prove that X is completely linear, suppose that it is not and let C be an irre-
ducible component of X which is a translate of an abelian subvariety B of A such
that C/B is not a torsion point. Suppose that C is of the largest possible dimension
with this property and let C be the corresponding irreducible component of X . Let
c0 be the number of irreducible components of dimension dim(C). Let C1, . . . , Ch be
the irreducible components of X which are of dimension larger than dim(C) and let
C1, . . . , Ch be the corresponding components of X . Let bi (1 ≤ i ≤ h) be the order of
the point which is the image of Ci in A/ Stab(Ci). Let n := b1! · · · . . . · · · bh!·(c0+1)!.
For almost all p ∈ U0, we have:

(1) pn · Ci,p = Ci,p (1 ≤ i ≤ h);

(2) either pn · Cp is an irreducible component of Xp or pn · Cp is contained in one of
the Ci,p, where i depends on p.

If pn · Cp is an irreducible component of Xp, then the closed sets

Cp, p · Cp, p2 · Cp, . . . , pc0+1 · Cp

are also irreducible components of Xp. Hence there are natural numbers kp and
lp, with 1 ≤ kp, lp ≤ c0, such that plp · (pkp · Cp) = (pkp · Cp). This implies that
pn · (pkp · Cp) = pkp · Cp and finally that pn+c0 · Cp = pc0Cp.
After a permutation of the numbering, we may assume that C1, . . . , Cr are the
components which appear in (2) for an infinite number of places (r ≤ h). Consider
the following set of points S: the image of C in A/ Stab(C), the image of C − Ci

in A/ Stab(Ci) where 1 ≤ i ≤ r. Then for almost all p ∈ U0, there is a P ∈ S such
that pn · (pn+c0 − pc0)(P mod p) = 0. By Theorem 2.6, one of the elements of S
is a torsion point. So let T be a torsion point in S. Suppose first that T 6= 0. The
restriction of the reduction map A(K) → Ap(k(p)) to the set of torsion points of
order prime to p is injective for all p ∈ U0. Hence T cannot satisfy the condition
pn · (T mod p) = 0 for an infinite number of p ∈ U , thus it has to be the image of
C in A/ Stab(C). This implies that C is a translate of Stab(C) by a torsion point,
which is a contradiction. Thus T = 0; but this implies that either C is a translate
of Stab(C) by a torsion point or C ⊆ Ci for some i with 1 ≤ i ≤ h. This is the
contradiction which concludes the proof of the theorem. Q.E.D.
Remark. In the above proof, Theorem 2.6 is only needed to prove that X is
completely linear. To prove that X is linear, the theorems 2.5 and 2.7 suffice.

3 A new proof of the conjecture of Beauville and
Catanese

The conjecture of Beauville and Catanese is now a simple consequence of the clas-
sification theorem 2.1 and of a result of Deligne-Illusie originally used to give an
algebraic proof of the Kodaira-Nakano vanishing theorem.
We shall use the following terminology. If Y is a smooth and projective variety over
a field k and L is a line bundle over Y , we define

hi,j(Y,L) := dimk(Hi(Y,Ωj
Y ⊗ L)),

where ΩY is the sheaf of differentials of Y over k and

hr
D(Y,L) = hr

D(L) :=
∑

i,j≥0, i+j=r

hi,j(Y,L).

Furthermore, we define

Sr
m(Y ) := {L ∈ Pic0(Y )(k)|hr

D(Yk,L) ≥ m}
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and
Si,j

m (Y ) := {L ∈ Pic0(Y )(k)|hi,j(Yk,L) ≥ m}

for any r, m, i, j ≥ 0. Here Pic0(Y ) is the neutral component of the Picard scheme
of Y ; its underlying reduced scheme is an abelian variety over k. The sets Sr

m(Y )
and Si,j

m (Y ) are Zariski-closed by the semi-continuity theorem and we endow them
with their reduced induced subscheme structure. About these sets, we have the
following result.

Proposition 3.1 Every irreducible component of Si,j
m (Y ) is an irreducible compo-

nent of Si+j
m′ (Y ) for some m′ ≥ m.

Proof: Let Z be an irreducible component of Si,j
m (Y ). Then by semicontinuity there

exists an open dense subset V ⊂ Z such that for all pairs (i′, j′) the value hi′,j′

Z :=
hi′,j′

(Yk,L) for L ∈ V (k) is independent of L. Moreover, again by semicontinuity
there exists an open neighbourhood U ⊂ Pic0(Y ) of V such that for all (i′, j′)
we have hi′,j′

(Yk,L) ≤ hi′,j′

Z for all L ∈ (U r V )(k). Furthermore, since Z is
an irreducible component of Si,j

m (Y ), we can choose U and V such that the last
inequality is strict for (i′, j′) = (i, j). Summing up over all pairs (i′, j′) with i′+j′ =
i+ j we deduce that hi+j

D (Yk,L) takes some constant value m′ for all L ∈ V (k), and
that hi+j

D (Yk,L) < m′ for all L ∈ (U r V )(k). This shows that V = U ∩ Si+j
m′ (Y );

hence its closure Z is an irreducible component of Si+j
m′ (Y ), as desired. Q.E.D.

To formulate the result of Deligne and Illusie, suppose now that k is perfect of
characteristic p > 0 and let Y be a smooth and projective variety over k. Let L be
a line bundle over Y .

Theorem 3.2 (Deligne-Illusie) Suppose that Y admits a lifting to a flat scheme
over the ring w2(k) of the Witt vectors of length 2 of k and that dim(Y ) ≤ char(k).
Then the inequality

hr
D(L) ≤ hr

D(Y,L⊗p)

holds for all r ≥ 0.

For the proof see [3, Lemma 2.9, par. 3, p. 258].
Let now Y be a smooth projective variety over Q.

Proposition 3.3 For any r, m ≥ 0, the scheme Sr
m(Y ) is completely linear.

Proof: Choose a number field K which is a field of definition for Y . We shall
thus view Y as a K-scheme. Let Y be a smooth an projective model of Y over
an open subscheme U0 of OK . Shrink U0 so that Pic0(Y ) has a model A over
U0 which is an abelian scheme. Suppose also that the universal line bundle on
Y ×Pic0(Y ) extends to a line bundleM on Y×U0A which is also compatible with the
group scheme structure of A. Let Sr

m(Y) := {s ∈ A|hr
D(Yk(s),M(s)) ≥ m}. This

set is again closed by the semicontinuity theorem; endow Sr
m(Y) with its reduced

induced subscheme structure. By construction, its set of Q-points is Sr
m(Y )(Q).

Furthermore, for all the closed p ∈ U0 which are unramified over Q and of residue
field characteristic ≥ dim(Y ), we have p · Sr

m(Y)p(k(p)) ⊆ Sr
m(Y)p(k(p)). Thus if

we apply Theorem 2.1 to (a cofinite subset of) U0 and Sr
m(Y ), we are done. Q.E.D.

If we combine the proposition 3.3 with the Proposition 3.1, we obtain

Corollary 3.4 For any i, j, m ≥ 0, the scheme Si,j
m (Y ) is completely linear.

Finally this implies the conjecture of Beauville and Catanese. We shall need the
following lemma:
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Proposition 3.5 Let Y be a smooth projective variety over Q. Let n ≥ 1, r ≥ 0
and let L be a line bundle over Y , such that L⊗n ' OY . Then hr

D(L⊗k) = hr
D(L)

if (k, n) = 1.

Proof: Let K be a number field which a field of definition for Y and L. Let
U ⊂ Spec OK be an open subscheme of Spec OK with the following properties:

• Y has smooth and proper model Y over U ;

• L extends to a line bundle L̃ over Y for which the identity L̃⊗n ' OY also holds;

• all the non-archimedean places in U are coprime to n, unramified over Q and of
residue field characteristic ≥ dim(Y ).

Let p be any non-archimedean place in U . Let l be the smallest integer such that
pl = 1 (mod n), where p = char(k(p)). By Theorem 3.2, we have

hr
D(L̃p) ≤ hr

D(L̃⊗p
p ) ≤ hr

D(L̃⊗pl

p ) = hr
D(L̃p)

and thus hr
D(L̃p) = hr

D(L̃⊗p
p ). By Dirichlet’s theorem on arithmetic progressions,

there is an infinity of prime numbers in the sequence a · n + k, a →∞. Thus there
is an infinity of non-archimedean places p in U such that

hr
D(L̃⊗k

p ) = hr
D(L̃⊗(a·n+k)

p ) = hr
D(L̃⊗p

p ) = hr
D(L̃p),

where a depends on p. Thus hr
D(L⊗k) = hr

D(L) and we are done. Q.E.D.

Remark. The last lemma can also be proven by an analytic method.

Notice that Lemma 3.5 together with Proposition 3.1 immediately imply Proposi-
tion 1.2 in the case where Y is a smooth and projective variety over Q.

Theorem 3.6 Let Y be smooth projective variety over C. Then the sets Si,j
m (Y )

are completely linear. Furthermore Proposition 1.2 holds.

Proof: Let L0 be a field of definition for Y , which is finitely generated over Q.
From now on, we shall view Y as an L0-variety. Choose a normal, integral scheme
S0 of finite type over Q so that the variety Y can be extended to a smooth and
projective fibration f̃ : Ỹ → S0. Suppose also that there is a section S0 → Ỹ and
that the natural map OS0 → f̃∗OeY is universally an isomorphism (i.e. remains so
after any base-change). This can be achieved by shrinking S0. Let Pic(Ỹ )/S0 be
the Picard scheme of Ỹ /S0. There is a line bundle M on Ỹ ×S0 Pic(Ỹ ) with the
obvious universal property with respect to line bundles which are rigidified along the
section S0 → Ỹ (see [1, Prop. 4, chap. 8.2, p. 211]). There is an open and closed
S0-group-subscheme Picτ (Ỹ )/S0 of Pic0(Ỹ ) which is projective over S0 and has the
following property: for any point s ∈ S0, the set Picτ (Ỹ )s(k(s)) coincides with the
line bundles on Ỹs whose image in the Néron-Severi group of Ỹs is of finite order
(see [1, Th. 3, Th. 4, chap. 8.4]). The reduced identity component of Picτ (Ỹ )s

coincides with the Picard variety Pic0(Ỹs). As Picτ (YL0
) is smooth, we may replace

S0 by one of its open subsets and suppose that Picτ (Ỹ ) is smooth over S0. After
replacing S0 by its normalisation in a finite extension and further shrinking S0, we
may suppose that there is an irreducible component Pic0(Ỹ ) of Picτ (Ỹ ) such that
Pic0(Ỹ )s = Pic0(Ỹs) for all s ∈ S0. Let

Si,j
m (Ỹ ) := {s ∈ Pic0(Ỹ )|dimk(s) Hi(Ỹs,Ω

jeYs
⊗M(s)) ≥ m}
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which is a Zariski-closed set. Endow this set with its reduced-induced subscheme
structure. For each closed point s ∈ S0, the residue field k(s) is a number field
and thus Si,j

m (Ỹs) is completely linear by Proposition 3.3. Furthermore, closed
points are dense in S0 and by construction Si,j

m (Ỹ )(L0) = Si,j
m (Y )(L0). Thus, using

Proposition 2.3, we conclude that Si,j
m (YL0

) is linear.
Now consider that since Si,j

m (Ỹs) is completely linear, there exists a constant cs ≥ 2
such that cs · Si,j

m (Ỹs) = Si,j
m (Ỹs) for each closed point s in S0. We may choose

cs := l
Q

t ϕ(dt,s)
s . Here dt,s is the order of the image of Ct,s in Pic0(Ỹs)/ Stab(Ct,s),

where Ct,s runs through the irreducible components of Si,j
m (Ỹs); the number ls is

the smallest prime number wich is larger than dt,s for all t. Now further shrink S0

so that for all m′ ≥ m, the number of irreducible components of Si+j
m′ (Ỹs) remains

constant. By Lemma 3.5 and Proposition 3.1, the numbers ls and dt,s have to remain
bounded on S0 (otherwise the number of irreducible components of ∪m′≥mSi+j

m,′ (Ỹs)
couldn’t be finite). Thus cs remains bounded too. This implies that there is a
dense subset D ⊆ S0 such that cs is a constant c0 in D. This in turn implies that
c0 ·Si,j

m (YL0
) = Si,j

m (YL0
) and thus that Si,j

m (YL0
) is completely linear. The estimate

of Proposition 1.2 then follows from the corresponding estimate for Si,j
m (Ỹs), where

s varies in a dense subset of closed points of S0. Q.E.D.
Remark. One could also have used Hilberts irreducibility theorem (see [4, Cor.
6.3, p. 244]) instead of Proposition 3.5 to prove that Si,j

m (YL0
) is completely linear.

4 The conjecture of Beauville and Catanese over
perfect fields of positive characteristic

The proof given in section 3 of the conjecture of Beauville and Catanese combines
results in positive characteristic with density results. In this section, we shall briefly
indicate the consequences of the positive characteristic results alone for the natural
analog of the conjecture of Beauville and Catanese over a perfect field of positive
characteristic.

Proposition 4.1 Let Y be a smooth and projective variety over a perfect field k of
characteristic p > 0. Suppose that Y admits a flat lift to a scheme over w2(k) and
that dim(Y ) ≤ char(k). Suppose furthermore that the Picard variety of Y has no
supersingular factors. Then for any integers r, m ≥ 0, the irreducible components
of maximal dimension of Sr

m(Y ) are completely linear.

Proof: By Theorem 3.2, we have p · Sr
m(Y ) ⊆ Sr

m(Y ). Let C be an irreducible
component of maximal dimension of Sr

m(Y ). Since the multiplication by p map is
finite, pk · C is also an irreducible component of maximal dimension, for all k ≥ 1.
Since the number of such components is finite, there are integers k2 > k1 ≥ 1 such
that pk1 · C = pk2 · C. Let C ′ := pk1 · C. Since pk2−k1 · C ′ = C ′, the Theorem 2.2
implies that C ′ is completely linear. Since C ⊆ (pk1)−1(C ′), we deduce that C is
also completely linear. Q.E.D.
If we combine the last proposition with the Proposition 3.1, we obtain

Corollary 4.2 Let Y be a smooth and projective variety defined over a finite field k.
Suppose that Y admits a flat lift to a scheme over w2(k) and that dim(Y ) ≤ char(k).
Suppose furthermore that the Picard variety of Y is simple and not supersingular.
Then for any integers i, j, m ≥ 0, the set Si,j

m (Y ) is finite.

Another noteworthy result is

9



Proposition 4.3 Let Y be a smooth and projective variety defined over a finite
field k. Suppose that Y admits a flat lift to a scheme over w2(k) and that dim(Y ) ≤
p := char(k). Suppose furthermore that the Picard variety of Y has no supersingular
factors and has p-rank 0. Then for any integers i, j, m ≥ 0, the scheme Si,j

m (Y ) is
completely linear.

Proof: The condition on the p-rank insures that p · Sr
m(Y ) = Sr

m(Y ). This follows
from the fact that all the k-points of Sr

m(Y ) are then torsion points of order prime to
p. We can thus apply Theorem 2.2 to conclude that Sr

m(Y ) is linear and Proposition
3.1 to conclude the proof. Q.E.D.

5 A conjecture

We shall formulate a conjecture which is suggested by Proposition 3.5.

Conjecture 5.1 Let X be a smooth and projective variety over a perfect field L of
positive characteristic. Suppose that X has a flat lift to w2(L) and that dim(X) ≤
char(L). Let L be a line bundle on X which is defined over L. Fix n ≥ 1 and
suppose that L⊗n ' OX . Then

hr
D(X,L) = hr

D(X,L⊗k)

for all k ≥ 1 such that (k, n) = 1.

The theorem 3.2 shows that this conjecture holds when L has positive characteristic
p and k = p. The Proposition 3.5 shows that the natural characteristic 0 analog of
the conjecture holds.
A positive answer to the latter conjecture would imply that the natural positive
characteristic analog of the conjecture of Beauville and Catanese holds for X. To
show this implication, one needs the Weil conjectures and an easy special case of
Theorem 2.2.

6 Function fields

In this section, we shall tackle the function field analog of the sections 2 and 3. The
analog of section 2 is simpler and relies on earlier results by Hrushovski.

Linear varieties.
We want to formulate and prove the analog of Theorem 2.1 (Theorem 6.1) when K
is a function field in one variable over a number field k. Let U ⊆ Spec Ok be an
open subset and let S be an affine smooth (relative) curve over U , whose field of
rational functions is K. Let A → S be an abelian scheme and let A := A×S K. We
suppose that there are no non-trivial K−homomorphisms from an abelian variety
which has a model over a number field to A. This is by definition equivalent to
saying that A has no isotrivial factors. For any point p ∈ U , denote by Sp the affine
curve over k(p) obtained by base-change. We also write Kp for the function-field
of Sp. If Y/S is an S-scheme, we then write Yp for the Sp-scheme Yp/Sp obtained
by base-change, YKp for the corresponding scheme over Spec Kp and YKp

for the
corresponding scheme over Spec Kp. The aim is to prove

Proposition 6.1 Let X ↪→ A be a closed S-subscheme such that X := X ×S K
is reduced. Suppose that it has the following property: for any closed point p ∈ U ,
p.XKp

⊆ XKp
, where p = char(k(p)). Then YK is completely linear.
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Proof: The proof hinges on the following facts, all proven by Hrushovski in [7]:

(*) Let Y be a geometrically reduced, geometrically irreducible closed Kp-subscheme
of dimension ≥ 1 of AKp , where p ∈ U is closed and suppose that the stabiliser
of Y in AKp is finite. If for all k ≥ 0, pk.AKp((Kp)sep) ∩ Y (Kp) is geometrically
dense in Y , then there is a non-trivial Kp-map from an abelian variety defined over
a finite field to AKp

(more is true; see [2, th. 3.3, p. 192]). Here (Kp)sep ⊆ Kp is
the separable closure of Kp.

Remark. The only known proof of (*) is via model theory.

(**) For almost all p ∈ U , the reduction map A(K) → AKp(Kp) is injective (see [7,
Lemma 4, p. 199]).

(***) For almost all p ∈ U , there are no non-trivial Kp-maps from an abelian variety
defined over a finite field to AKp

(see [7, Cor. 8, p. 201]).

(*)’ Let Y be a geometrically reduced, geometrically irreducible closed Kp-subscheme
of AKp , where p ∈ U is closed. Suppose that for all k ≥ 0, pk.AKp((Kp)sep)∩Y (Kp)
is geometrically dense in Y . Furthermore suppose that there are no non-trivial Kp-
maps from an abelian variety defined over a finite field to AKp

. Then Y must be
the translate of an abelian subvariety.

The statement (*)’ follows from the statement (*), applied to the quotient of AKp

by the stabilisor of Y . We shall now prove:
(1) X is linear.
For this, it is sufficient to prove that XKp

is linear for almost all p ∈ U . We may
replace K by a finite extension and remove a finite number of closed points from U
if necessary. Thus we may assume that, for any p ∈ U , the base change to Kp of an
irreducible component of X is irreducible, reduced and of the same dimension; we
may also assume that the irreducible components of X remain distinct after base
change to Kp. We may also assume that (***) holds for all p ∈ U .
As in the proof of Theorem 2.1, for some fixed p ∈ U , we consider the descending
sequence

XKp
⊇ p · XKp

⊇ p2 · XKp
⊇ . . .

which must stabilize by Noethericity and we denote by Z(p) the first stable term.
Fact (*) (perhaps applied to an extension of Kp) and (***) imply that Z(p) is
linear. The theorem 2.2 has the same consequence and can be used as a substitute
for (*) and (***). Therefore each irreducible component of XKp

is contained in an
irreducible component of Z(p) translated by an element of AKp

[p∞], i.e. a torsion
point of order a power of p in AKp

(Kp). Let W0 be an irreducible component of
XKp

; we know that W0 ⊆ B(p)+P (p), where B(p) is a linear irreducible component
of Z(p) and P (p) ∈ AKp

[p∞]; choose B(p) of maximal dimension with this property.
As in the proof of Theorem 2.1, B(p) is then an irreducible component of XKp

. Let

W̃0 be the irreducible component of X corresponding to W0. Since U is infinite
and the number of irreducible components of X is finite, we see that there exists a
linear irreducible component B̃ of X corresponding to B(p) for an infinite number
of places p ∈ U . Consider now the image of W̃0 in the quotient A/B̃. This is a
point Q ∈ A/B̃(K), with the property that, for an infinite number of places p ∈ U ,
its reduction mod. Kp is a p∞-torsion point. Fact (∗∗) (applied to A/B̃ rather than
A) then implies that Q = 0. Thus X is linear.
(2) X is completely linear.
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We first shrink U even further so that for all p ∈ U , XKp
is linear. For any p ∈ U

and any d ≥ 0, let XKp,d be the union of the irreducible components of dimension
d of XKp

.
First, we claim that for any d ≥ 0 the following holds: for almost all closed p ∈ U ,
p · XKp,d ⊆ XKp,d.
To prove the claim, suppose the contrary. This implies that there is an infinite
set I0 ⊆ U , such that for all p ∈ I0, there exists an irreducible component Cp of
XKp

, such that p · Cp is contained in an irreducible component Dp of XKp
, such

that dim(Dp) > dim(Cp). For each p ∈ I0, choose Cp of maximal dimension with
this property. Let C be an irreducible component of X which corresponds to Cp

for all p in an infinite set I1 ⊆ I0. Let D be an irreducible component of X which
corresponds to Dp for all p in an infinite set I2 contained in I1. For all p ∈ I2, we
then have Cp ⊆ D′

p + lp, where D′
p is an irreducible component of XKp

which is of
dimension dim(D) and lp is a torsion point whose order is a power of p. Let D′ be
an irreducible component of X which corresponds to D′

p in an infinite set I3 ⊆ I2.
The variety C/ Stab(D′) is then a non-zero point, whose reduction is of order p for
an infinite number of p, which is a contradiction to (**).
Secondly, we claim: for almost all closed p ∈ U , XKp

is completely linear.
To prove the claim, fix a p ∈ U such that for all d ≥ 0, p · XKp,d ⊆ XKp,d. Let C :=
t(p)+B(p) be any irreducible component of XKp

. Here B(p) is an abelian subvariety
of AKp

and t(p) ∈ AKp
(Kp). Let c0 be the number of irreducible components of

dimension dim(B(p)) of Xp (and thus of X). As in the proof of 2.1, we deduce
that pc0!pc0 · C = pc0 · C. The image of t(p) in AKp

/B(p) is thus in the kernel of
(pc0! − 1)pc0 and is thus a torsion point. Consider now any irreducible component
t+B of X, where t ∈ A(K) and B is an abelian subvariety of A. By the first claim
and the second claim together, the image of t in A/B is a point in (A/B)(K), such
that for almost all closed p ∈ U , its reduction mod. Kp is a torsion point. Fact (**)
implies that t is torsion point. This concludes the proof. Q.E.D.

The conjecture of Beauville and Catanese.
The Theorem 6.1 can be combined with a relative generalisation of 3.2 (relying on
[3, Cor. 3.7, p. 263]) to obtain the following theorem, which is the function field
case of the conjecture of Beauville and Catanese.

Theorem 6.2 Let Y be a smooth projective variety defined over a function field K
of characteristic 0. Suppose that Pic0(YK) has no isotrivial factors. Then the sets
Si,j

m (Y ) are completely linear for all integers i, j, m ≥ 0.

Since this theorem can reduced to a special case of Theorem 3.6 using the Lefschetz
principle, we shall not give the details of the proof.
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