A note on the Manin-Mumford conjecture

Damian Roessler †

Abstract. In [PR1], R. Pink and the author gave a short proof of the Manin-Mumford conjecture, which was inspired by an earlier model-theoretic proof by Hrushovski. The proof given in [PR1] uses a difficult unpublished ramification-theoretic result of Serre. It is the purpose of this note to show how the proof given in [PR1] can be modified so as to circumvent the reference to Serre's result. J. Oesterlé and R. Pink contributed several simplifications and shortcuts to this note.

0. Introduction.

Let A be an abelian variety defined over an algebraically closed field L of characteristic 0 and let X be a closed subvariety. If G is an abelian group, write Tor(G) for the group of elements of G which are of finite order. A closed subvariety of A whose irreducible components are translates of abelian subvarieties of A by torsion points will be called a torsion subvariety. The Manin-Mumford conjecture is the following statement:

The Zariski closure of $Tor(A(L)) \cap X$ is a torsion subvariety.

This was first proved by Raynaud in [R]. In [PR1], R. Pink and the author gave a new proof of this statement, which was inspired by an earlier model-theoretic proof given by Hrushovski in [H]. The interest of this proof is the fact that it relies almost entirely on classical algebraic geometry and is quite short. Its only non elementary input is a ramification-theoretic result of Serre. The proof of this result is not published and relies (see [Se] (pp. 33–34, 56–59)) on deep theorems of Faltings, Nori and Raynaud. In this note, we show how the reference to Serre's result in [PR1] can be replaced by a reference to a classical result in the theory of formal groups (see Th. 4 (a)).

The structure of the paper is as follows. For the convenience of the reader, the text has been written so as to be logically independent of [PR1]. In particular, no knowledge of

[†] CNRS, Institut de mathématiques de Jussieu, Université Paris 7, Case Postale 7012, 2, place Jussieu, 75251 PARIS CEDEX 05, FRANCE, E-mail: dcr@math.jussieu.fr

[PR1] is necessary to read it. Section 1 recalls various classical results on abelian varieties and also contains two less well-known, but elementary propositions (Prop. 1 and Prop. 3) whose proofs can be found elsewhere but for which we have included short proofs to make the text more self-contained. The reader is encouraged to proceed directly to section 2, which contains a complete proof of the Manin-Mumford conjecture and to refer to the results listed in section 1 as needed.

Notations. w.r.o.g. is a shortening of without restriction of generality; if X is closed subvariety of an abelian variety A defined over an algebraically closed field L of characteristic 0, then we write Stab(X) for the stabiliser of X; this is a closed subgroup of A such that $Stab(X)(L) := \{a \in A(L) | a + X = X\}$; it has the same field of definition as X and A; if p is a prime number and G is an abelian group, we write $Tor^p(G)$ for the set of elements of Tor(G) whose order is prime to p and $Tor_p(G)$ for the set of elements of Tor(G) whose order is a power of p.

Acknowledgments. We want to thank J. Oesterlé for his interest and for suggesting some simplifications in the proofs of [PR1] (see [Oes]) which have inspired some of the proofs given here. Also, the proof of Prop. 3 in its present form is due to him (see the explanations before the proof). I am also very grateful to R. Pink, who carefully read several versions of the text and suggested many improvements and simplifications. In particular, Prop. 6 was suggested by him. Many thanks as well to J. Boxall, who read the final version of the paper carefully and suggested generalizations. I am also grateful to T. Ito for his remarks and corrections. See his recent preprint On the Manin-Mumford conjecture for abelian varieties with a prime of supersingular reduction (ArXiv math.NT/0411291), which is partially inspired by this paper. Finally my thanks go to the referee, for a careful reading of the article.

1. Preliminaries.

Lemma 0. Let $L \subseteq L'$ be algebraically closed fields of characteristic 0. Let A be an abelian variety defined over L and let X be a closed L-subvariety of A. Then:

- (a) X is a torsion subvariety of A iff $X_{L'}$ is a torsion subvariety of $A_{L'}$;
- (b) the Manin-Mumford conjecture holds for X in A iff it holds for $X_{L'}$ in $A_{L'}$.

Proof: we first prove (a). To prove the equivalence of the two conditions, we only need to prove the sufficiency of the second one. The latter is a consequence of the fact that the morphism $\pi:A_{L'}\to A$ is faithfully flat and that any torsion point and any abelian subvariety of $A_{L'}$ has a model in A (see [Mi] (Cor. 20.4, p. 146)). To prove (b), let $Z:=\operatorname{Zar}(\operatorname{Tor}(A(L))\cap X)$ (resp. $Z':=\operatorname{Zar}(\operatorname{Tor}(A(L'))\cap X_{L'})$). Using again the fact that any torsion point in $A_{L'}$ has a model in A and that π is faithfully flat, we see that $\pi^{-1}(\operatorname{Tor}(A(L))\cap X)=\operatorname{Tor}(A(L'))\cap X_{L'}$. From this and the fact that the morphism π is open ([EGA] (IV, 2.4.10)), we get a set-theoretic equality $\pi^{-1}(Z)=Z'$. Since π is radicial, the underlying set of $\pi^*(Z):=Z_{L'}$ is $\pi^{-1}(Z)$ ([EGA] (I, 3.5.10)). Since $Z_{L'}$ is reduced ([EGA] (IV, 4.6.1)), we thus have an equality of closed subschemes $Z_{L'}=Z'$. Now, by (a), the closed subscheme $Z_{L'}$ is a torsion subvariety of $A_{L'}$ iff Z is a torsion subvariety of A. •

Proposition 1 (Pink-Roessler). Let A be an abelian variety over \mathbb{C} and let $F: A \to A$ be an isogeny. Suppose that the absolute value of all the eigenvalues of the pull-back map F^* on the first singular cohomology group $H^1(A(\mathbb{C}), \mathbb{C})$ is larger than 1. Then any closed subvariety Z of A such that F(Z) = Z is a torsion subvariety.

The following proof can be found in [PR1] (Remark after Lemma 2.6).

Proof: w.r.o.g., we may replace F by one of its powers and thus suppose that each irreducible component of Z is stable under F. We may thus suppose that Z is irreducible. Notice that $F(\operatorname{Stab}(Z)) \subseteq \operatorname{Stab}(Z)$. Let us first suppose that $\operatorname{Stab}(Z) = 0$.

Write cl(Z) for the cycle class of Z in $H^*(A(\mathbf{C}), \mathbf{C})$. We list the following facts:

(1) the degree of F is the determinant of the restriction of F^* to $H^1(A(\mathbf{C}), \mathbf{C})$;

(2) each eigenvalue of F^* on $H^i(A(\mathbf{C}), \mathbf{C})$ is the product of i distinct zeroes (with multiplicities) of the characteristic polynomial of F^* on $H^1(A(\mathbf{C}), \mathbf{C})$; Facts (1) and (2) follow from the fact that for all $i \geq 0$ there is a natural isomorphism $\Lambda^i(H^1(A(\mathbf{C}), \mathbf{C})) \simeq H^i(A(\mathbf{C}), \mathbf{C})$ (see [Mu] (p.3, Eq. (4))).

Now notice that since $\operatorname{Stab}(Z) = 0$, the varieties Z + a, where $a \in \operatorname{Ker}(F)(\mathbf{C})$, are pairwise distinct. These varieties are thus the irreducible components of $F^{-1}(Z)$. Now we compute

$$\operatorname{cl}(F^*(Z)) = \sum_{a \in \operatorname{Ker}(F)} \operatorname{cl}(Z + a) = \#\operatorname{Ker}(F)(\mathbf{C}) \cdot \operatorname{cl}(Z) = \operatorname{deg}(F) \operatorname{cl}(Z)$$

and thus $\operatorname{cl}(Z)$ belongs to the eigenspace of the eigenvalue $\operatorname{deg}(F)$ in $H^*(A(\mathbf{C}), \mathbf{C})$. Facts (1), (2) and the hypothesis on the eigenvalues imply that $\operatorname{cl}(Z) \in H^{2\operatorname{dim}(A)}(A(\mathbf{C}), \mathbf{C})$, which in turn implies that Z is a point. This point is a torsion point since it lies in the kernel of $F - \operatorname{Id}$, which is an isogeny by construction.

If $\operatorname{Stab}(Z) \neq 0$, then replace A by $A/\operatorname{Stab}(Z)$ and Z by $Z/\operatorname{Stab}(Z)$. The isogeny F then induces an isogeny on $A/\operatorname{Stab}(Z)$, which stabilises $Z/\operatorname{Stab}(Z)$. We deduce that $Z/\operatorname{Stab}(Z)$ is a torsion point. This implies that Z is a translate of $\operatorname{Stab}(Z)$ by a torsion point and concludes the proof. \bullet

Corollary 2. Let A be an abelian variety over an algebraically closed field K of characteristic 0. Let $n \ge 1$ and let M be an $n \times n$ -matrix with integer coefficients. Suppose that the absolute value of all the eigenvalues of M is larger than 1. Then any closed subvariety Z of A^n such that M(Z) = Z is a torsion subvariety.

Proof: Because of Lemma 0 (a), we may assume w.r.o.g. that K is the algebraic closure of a field which is finitely generated as a field over \mathbf{Q} . We may thus also assume that $K \subseteq \mathbf{C}$. Prop. 1 then implies the result for $Z_{\mathbf{C}}$ in $A_{\mathbf{C}}^n$ and using Lemma 0 (a) again we can conclude. \bullet

Proposition 3 (Boxall). Let A be an abelian variety over a field K of characteristic 0. Let p > 2 be a prime number and let L := K(A[p]) be the extension of K generated by the p-torsion points of A. Let $P \in \operatorname{Tor}_p(A(\overline{K}))$ and suppose that $P \notin A(L)$. Then there exists $\sigma \in \operatorname{Gal}(\overline{L}|L)$ such that $\sigma(P) - P \in A[p] \setminus \{0\}$.

A proof of a variant of Prop. 3 can be found in [B]. For the convenience of the reader, we reproduce a proof, which is a simplification by Oesterlé (private communication) of a proof due to Coleman and Voloch (see [Vo]).

Proof: let $n \geq 1$ be the smallest natural number so that $p^n P \in A(L)$. For all $i \in \{1, \ldots, n\}$, let $P_i = p^{n-i}P$. Let also σ_1 be an element of $\operatorname{Gal}(\overline{L}|L)$ such that $\sigma_1(p^{n-1}P) \neq p^{n-1}P$. Furthermore, let $\sigma_i := \sigma_1^{p^{i-1}}$ and $Q_i := \sigma_i(P_i) - P_i$.

First, notice that we have $pQ_1 = \sigma_1(p^n P) - p^n P = 0$ and $Q_1 = \sigma_1(p^{n-1}P) - p^{n-1}P \neq 0$, hence $Q_1 \in A[p] \setminus \{0\}$. We shall prove by induction on $i \geq 1$ that $Q_i = Q_1$ if $i \leq n$. This will prove the proposition, since $Q_n = \sigma_n(P) - P$.

So assume that $Q_i = Q_1$ for some i < n. We have $p^2(\sigma_i - 1)(P_{i+1}) = p(\sigma_i - 1)(P_i) = pQ_i = 0$. Since any p-torsion point of A is fixed by σ , and hence by σ_i , we also have $p(\sigma_i - 1)^2(P_{i+1}) = 0$ and $(\sigma_i - 1)^3(P_{i+1}) = 0$. The binomial formula shows that, in the ring of polynomials $\mathbf{Z}[T]$, T^p is congruent to 1 + p(T - 1) modulo the ideal generated by $p(T-1)^2$ and $(T-1)^3$ (notice that $p \neq 2$!). We thus have $(\sigma_i^p - 1)(P_{i+1}) = p(\sigma_i - 1)(P_{i+1}) = (\sigma_i - 1)(P_i)$, id est $Q_{i+1} = Q_i$. This completes the induction on i.

Suppose now that K is a finite extension of \mathbf{Q}_p , for some prime number p and let K^{unr} be its maximal unramified extension. Let k be the residue field of K. Suppose that A is an abelian variety over K which has good reduction at the unique non-archimedean place of K. Denote by A_0 the corresponding special fiber, which is an abelian variety over k.

Theorem 4.

(a) The kernel of the homomorphism

$$\operatorname{Tor}(A(K^{\operatorname{unr}})) \to A_0(\overline{k})$$

induced by the reduction map is a finite p-group.

(b) The equality $\operatorname{Tor}^p(A(K^{\operatorname{unr}})) = \operatorname{Tor}^p(A(\overline{K}))$ holds.

Proof: for statement (b), see [Mi] (Cor. 20.8, p. 147). Statement (a), which is more difficult to prove, follows from general properties of formal groups over K. See [Oes2] (Prop. 2.3 (a)) for the proof. \bullet

Let now $\phi \in \operatorname{Gal}(\overline{k}|k)$ be the arithmetic Frobenius map.

Theorem 5 (Weil). There is a monic polynomial $Q(T) \in \mathbf{Z}[T]$ with the following properties:

- (a) $Q(\phi)(P) = 0$ for all $P \in A_0(\overline{k})$;
- (b) the complex roots of Q have absolute value $\sqrt{\#k}$.

Proof: see [We]. \bullet

2. Proof of the Manin-Mumford conjecture.

Proposition 6. Let A be an abelian variety over a field K_0 that is finitely generated as a field over \mathbf{Q} . Then for almost all prime numbers p, there exists an embedding of K_0 into a finite extension K of \mathbf{Q}_p , such that A_K has good reduction at the unique non-archimedean place of K.

Proof: since by assumption K_0 has finite transcendence degree over \mathbf{Q} , there is a finite map

Spec
$$K_0 \to \operatorname{Spec} \mathbf{Q}(X_1, \dots, X_d)$$
,

for some $d \geq 0$ (notice that d = 0 is allowed). Let $V \to \mathbf{A}_{\mathbf{Z}}^d$ be the normalisation of the affine space $\mathbf{A}_{\mathbf{Z}}^d$ in K_0 . The scheme V is integral, normal and has K_0 as a field of rational functions. Furthermore, V is finite and surjective onto $\mathbf{A}_{\mathbf{Z}}^d$. There is an open subset $B \subseteq V$ and an abelian scheme $\mathcal{A} \to B$, whose generic fiber is A. Choose B sufficiently small so that its image f(B) is open and so that $f^{-1}(f(B)) = B$ (this can be achieved by replacing B by $f^{-1}(\mathbf{A}_{\mathbf{Z}}^d \setminus f(V \setminus B))$). Let U := f(B). This accounts for the square on the left of the diagram (*) below.

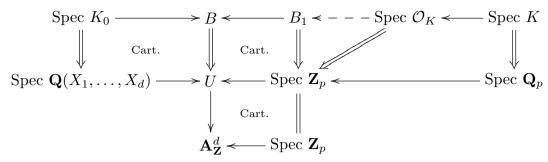
Now notice that $U(\mathbf{Q}) \neq \emptyset$, since $\mathbf{A}^d(\mathbf{Q})$ is dense in $\mathbf{A}^d_{\mathbf{Q}}$ and $U \cap \mathbf{A}^d_{\mathbf{Q}}$ is open and not empty. Thus, for almost all prime numbers p, we have $U(\mathbf{F}_p) \neq \emptyset$. Let p be a prime number with this property. Let $P \in U(\mathbf{F}_p)$ and let $a_1, \ldots, a_d \in \mathbf{F}_p$ be its coordinates. Choose as well elements $x_1, \ldots, x_d \in \mathbf{Q}_p$ which are algebraically independent over \mathbf{Q} . The elements x_1, \ldots, x_d remain algebraically independent if we replace some x_i by $\frac{1}{x_i}$ so we may suppose that $\{x_1, \ldots, x_d\} \subseteq \mathbf{Z}_p$. Notice also that any element of the residue field \mathbf{F}_p of \mathbf{Z}_p is the reduction mod p of an element of $\mathbf{Z} \subseteq \mathbf{Z}_p$. Furthermore, the elements x_1, \ldots, x_d remain algebraically independent if some x_i is replaced by $x_i + m$, where m is an integer. Hence, we may also suppose that $x_i \mod p = a_i$ for all $i \in \{1, \ldots, d\}$. The choice of the x_i induces a morphism $e : \operatorname{Spec} \mathbf{Z}_p \to \mathbf{A}^d_{\mathbf{Z}}$, which by construction sends the generic point of $\operatorname{Spec} \mathbf{Z}_p$ on the generic point of $\mathbf{A}^d_{\mathbf{Z}}$ and hence of U and sends the special point of $\operatorname{Spec} \mathbf{Z}_p$ on $P \in U(\mathbf{F}_p)$. Hence $e^{-1}(U) = \operatorname{Spec} \mathbf{Z}_p$. This accounts for the lowest square in (*).

The middle square in (*) is obtained by taking the fibre product of $B \to U$ and $\operatorname{Spec} \mathbf{Z}_p \to U$. The morphism $B_1 \to \operatorname{Spec} \mathbf{Z}_p$ is then also finite and surjective.

To define the arrows in the triangle next to it, consider a reduced irreducible component B'_1 of B_1 which dominates Spec \mathbf{Z}_p . This exists, because the morphism $B_1 \to \operatorname{Spec} \mathbf{Z}_p$ is dominant. The morphism $B'_1 \to \operatorname{Spec} \mathbf{Z}_p$ will then also be finite and will thus correspond to a finite (and hence integral) extension of integral rings. Let K be the function field of B'_1 , which is a finite extension of \mathbf{Q}_p ; the ring associated to B'_1 is by construction included in the integral closure \mathcal{O}_K of \mathbf{Z}_p in K and the arrow $\operatorname{Spec} \mathcal{O}_K --> B_1$ is defined by composing the morphism induced by this inclusion with the closed immersion $B'_1 \to B_1$.

The morphism Spec $K \to \operatorname{Spec} \mathbf{Q}_p$ has been implicitly defined in the last paragraph and the morphisms Spec $\mathbf{Q}_p \to \operatorname{Spec} \mathbf{Z}_p$ and Spec $K \to \operatorname{Spec} \mathcal{O}_K$ are the obvious ones.

We have a commutative diagram (*):



The single-barreled continuous arrows (\rightarrow) represent dominant maps; the double-barreled continuous ones (\Rightarrow) represent finite and dominant maps; all the schemes in the diagram apart from B_1 are integral; the cartesian squares carry the label "Cart.".

Now notice that the map Spec $K \to B$ obtained by composing the connecting morphisms sends Spec K on the generic point of B; to see this notice that the maps Spec $K \to \operatorname{Spec} \mathcal{O}_K$, Spec $\mathcal{O}_K \Rightarrow \operatorname{Spec} \mathbf{Z}_p$ and Spec $\mathbf{Z}_p \to U$ are all dominant; hence Spec K is sent on the generic point of U; since $B \to U$ is a finite map, this implies that Spec K is sent on the generic point of B.

Thus the map Spec $K \to B$ induces a field extension $K|K_0$. Furthermore, as we have seen, K is a finite extension of \mathbb{Q}_p and by construction, the abelian variety A_K is the generic fiber of the abelian scheme $\mathcal{A} \times_B \operatorname{Spec} \mathcal{O}_K$. In other words A_K is an abelian variety defined over K which has good reduction at the unique non-archimedean place of $K.\bullet$

Next, we shall consider the following situation. Let p > 2 be a prime number and let K be a finite extension of \mathbb{Q}_p . Let k be its residue field. Let A be an abelian variety over K. Suppose that A has good reduction at the unique non-archimedean place of K. Let A_0 be the corresponding special fiber, which is an abelian variety over k.

Recall that K^{unr} refers to the maximal unramified extension of K. Let $\phi \in \mathrm{Gal}(\overline{k}|k)$ be the arithmetic Frobenius map and let $\tau \in \mathrm{Gal}(K^{\mathrm{unr}}|K)$ be its canonical lift.

Proposition 7. Let X be a closed K-subvariety of A. Then the Zariski closure of $X_{\overline{K}} \cap \text{Tor}(A(K^{\text{unr}}))$ is a torsion subvariety.

Proof: w.r.o.g. we may suppose that $Tor(A(K^{unr}))$ is dense in $X_{\overline{K}}$ (otherwise, replace X

by the natural model of $\operatorname{Zar}(X_{\overline{K}} \cap \operatorname{Tor}(A(K^{\operatorname{unr}})))$ over K). By Th. 4 (a), the kernel of the reduction homomorphism $\operatorname{Tor}(A(K^{\operatorname{unr}})) \to A_0(\overline{k})$ is a finite p-group. Let p^r be its cardinality and let $Y := p^r \cdot X$. Let $Q(T) := T^n - (a_n T^{n-1} + \ldots + a_0) \in \mathbf{Z}[T]$ be the polynomial provided by Th. 5 (i.e. the characteristic polynomial of ϕ on $A_0(\overline{k})$). Let F be the matrix

$$\begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ a_0 & a_1 & \dots & a_{n-2} & a_{n-1} \end{pmatrix}$$

For any $a \in A(K^{\mathrm{unr}})$, write $u(x) := (x, \tau(x), \tau^2(x), \dots, \tau^{n-1}(x)) \in A^n(K^{\mathrm{unr}})$. Let $\widetilde{Y} := \operatorname{Zar}(\{u(a)|a \in (p^r \cdot \operatorname{Tor}(A(K^{\mathrm{unr}}))) \cap Y_{\overline{K}}\})$. Th. 5 (a) and Th. 4 (a) imply that

$$F(u(a)) = u(\tau(a))$$

for all $a \in p^r \cdot \text{Tor}(A(K^{\text{unr}}))$. Furthermore, by construction,

$$\tau(p^r \cdot \text{Tor}(A(K^{\text{unr}}))) \subseteq p^r \cdot \text{Tor}(A(K^{\text{unr}})).$$

Hence $F(\widetilde{Y}) = \widetilde{Y}$. Now Th. 5 (b) implies that the absolute value of the eigenvalues of the matrix F are larger than 1 and Cor. 2 then implies that \widetilde{Y} is a torsion subvariety of $A_{\overline{K}}$. The variety $Y_{\overline{K}}$ is the projection of \widetilde{Y} on the first factor and is thus also a torsion subvariety. Finally, this implies that $X_{\overline{K}}$ is a torsion subvariety. •

Proposition 8. Let X be a closed K-subvariety of A. Then the Zariski closure of $X_{\overline{K}} \cap \text{Tor}(A(\overline{K}))$ is a torsion subvariety.

Proof: we may suppose w.r.o.g. that K = K(A[p]), that X is geometrically irreducible and that $X_{\overline{K}} \cap \operatorname{Tor}(A(\overline{K}))$ is dense in $X_{\overline{K}}$. We shall first suppose that $\operatorname{Stab}(X) = 0$. Let $x \in X_{\overline{K}} \cap \operatorname{Tor}(A(\overline{K}))$ and suppose that $x \notin A(K^{\operatorname{unr}})$. Write $x = x^p + x_p$, where $x^p \in \operatorname{Tor}^p(A(\overline{K}))$ and $x_p \in \operatorname{Tor}_p(A(\overline{K}))$. By Th. 4 (b) $x^p \in A(K^{\operatorname{unr}})$ and thus $x_p \notin A(K^{\operatorname{unr}})$. By Prop. 3, there exists $\sigma \in \operatorname{Gal}(\overline{K}|K^{\operatorname{unr}})$ such that

$$\sigma(x_p) - x_p = \sigma(x) - x \in A[p] \setminus \{0\}.$$

Now notice that for all $y \in X(\overline{K})$ and all $\tau \in \operatorname{Gal}(\overline{K}|K^{\operatorname{unr}})$, we have $\tau(y) \in X(\overline{K})$. Hence if the set $\{x \in X_{\overline{K}} \cap \operatorname{Tor}(A(\overline{K})) | x \notin A(K^{\operatorname{unr}})\}$ is dense in $X_{\overline{K}}$ then $\operatorname{Stab}(X)(\overline{K})$ contains a element of $A[p] \setminus \{0\}$. Since $\operatorname{Stab}(X) = 0$, we deduce that the set $\{x \in X_{\overline{K}} \cap \operatorname{Tor}(A(\overline{K})) | x \notin A(K^{\operatorname{unr}})\}$ is not dense in $X_{\overline{K}}$ and thus the set $X_{\overline{K}} \cap \operatorname{Tor}(A(K^{\operatorname{unr}}))$ is dense in $X_{\overline{K}}$. Prop. 7 then implies that $X_{\overline{K}}$ is a torsion point. If $\operatorname{Stab}(X) \neq 0$, then we may apply the same reasoning to $X/\operatorname{Stab}(X)$ and $A/\operatorname{Stab}(A)$ to conclude that $X_{\overline{K}}$ is a translate of $\operatorname{Stab}(X)_{\overline{K}}$ by a torsion point. \bullet

We shall now prove the Manin-Mumford conjecture. Let the terminology of the introduction hold. By Lemma 0 (b), we may assume w.r.o.g. that L is the algebraic closure of a field K_0 that is finitely generated as a field over \mathbf{Q} and that A (resp. X) has a model \mathbf{A} (resp. \mathbf{X}) over K_0 . By Prop. 6, there is an embedding of K_0 into a field K, with the following properties: K is a finite extension of \mathbf{Q}_p , where p is a prime number larger than 2 and \mathbf{A}_K has good reduction at the unique non-archimedean place of K. Prop. 8 now implies that the Manin-Mumford conjecture holds for $\mathbf{X}_{\overline{K}}$ in $\mathbf{A}_{\overline{K}}$ and using Lemma 0 (b) we deduce that it holds for X in A.

Remark. Let the notation of the introduction hold. Prop. 3. alone implies the statement of the Manin-Mumford conjecture, with $\operatorname{Tor}(A(L))$ replaced by $\operatorname{Tor}_p(A(L))$, for any prime number p>2. To see this, we may w.r.o.g. assume that X is irreducible and that $\operatorname{Tor}_p(A(L))\cap X$ is dense in X. By an easy variant of Lemma 0 (b), we may w.r.o.g. assume that L is the algebraic closure of a field K that is finitely generated as a field over \mathbb{Q} and that A (resp. X) has a model \mathbb{A} (resp. \mathbb{X}) over K. Finally, we may assume w.r.o.g. that $K=K(\mathbb{A}[p])$. Suppose first that $\operatorname{Stab}(X)=0$. By the same argument as above, the set $\{a\in\operatorname{Tor}_p(A(L))|a\notin\mathbb{A}(K),\ a\in X\}$ must be dense in X. Hence the set $\{a\in\operatorname{Tor}_p(A(L))|a\in\mathbb{A}(K),\ a\in X\}$ must be dense in X; the theorem of Mordell-Weil (for instance) implies that this set is finite and thus X consists of a single torsion point. If $\operatorname{Stab}(X)\neq 0$, then we deduce by the same reasoning that $X/\operatorname{Stab}(X)$ is a torsion point in $A/\operatorname{Stab}(X)$ and hence X is a translate of $\operatorname{Stab}(X)$ by a torsion point. This proof of a special case of the Manin-Mumford conjecture is outlined in [B] (Remarque 3, p. 75).

References.

- [B] Boxall, J. Sous-variétés algébriques de variétés semi-abéliennes sur un corps fini in *Number Theory, Paris 1992-3*, S. David, ed., London Math. Soc. lecture note series **215**, 69–89, Cambridge Univ. Press, 1995.
- [EGA] Grothendieck, A. Éléments de géométrie algébrique. *Inst. Hautes Études Sci. Publ.*Math. 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967).
- [H] Hrushovski, E. The Manin-Mumford conjecture and the model theory of difference fields. *Ann. Pure Appl. Logic* **112** (2001), no. 1, 43–115.
- [Mi] Milne, J. S. Abelian varieties. Arithmetic geometry (Storrs, Conn., 1984), 103–150, Springer, New York, 1986.
- [Mu] Mumford, D. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Oxford University Press, London, 1970.
- [Oes] Oesterlé, J. Lettre à l'auteur (20/12/2002).
- [Oes2] Oesterlé, J. Courbes sur une variété abélienne (d'après M. Raynaud). Séminaire Bourbaki, Vol. 1983/84. Astérisque No. **121-122** (1985), 213-224.
- [PR1] Pink, R., Roessler, D. On Hrushovski's proof of the Manin-Mumford conjecture. Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 539–546, Higher Ed. Press, Beijing, 2002.
- [R] Raynaud, M. Sous-variétés d'une variété abélienne et points de torsion. *Arithmetic and geometry*, Vol. I, 327–352, Progr. Math. 35, Birkhäuser Boston, Boston, MA, 1983.
- [Se] Serre, J.-P. Oeuvres, vol. IV (1985-1998). Springer 2000.
- [Vo] Voloch, J.-F. Integrality of torsion points on abelian varieties over *p*-adic fields. *Math. Res. Lett.* **3** (1996), no. 6, 787–791.
- [We] Weil, A. Variétés abéliennes et courbes algébriques. Hermann 1948.